二次根式提高练习题(含答案)复习过程
中考数学总复习《二次根式》练习题附带答案
中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
二次根式经典练习含答案
二次根式经典练习含答案亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档二次根式经典练习含答案,这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
二次根式经典练习含答案篇一:《二次根式》典型分类练习题《二次根式》分类练习题知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()AD2______个【例2】有意义,则x的取值范围是.举一反三:1、使代数式x3有意义的x的取值范围是()x4B、x≥3C、x>4D、x≥3且x≠4A、x>32x的取值范围是1mn有意义,那么,直角坐标系中点P(m,n)的位置在()3、如果代数式mA、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=x5+x+2009,则x+y=解题思路:式子a≥0),x50,x5,y=2009,则x+y=20xx5x0举一反三:1(xy)2,则x-y的值为()A.-1B.1C.2D.32、若x、y都是实数,且y=2x332x4,求xy的值3、当a1取值最小,并求出这个最小值。
已知ab是a1的值。
b2若的整数部分是a,小数部分是b,则ab。
若的整数部分为x,小数部分为y,求x21y的值.知识点二:二次根式的性质【知识要点】1.非负性:a(a0)是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.a)2aa(0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a)2(a0) a(a0)3.a2注意:(1)字母不一定是正数.|a|a(a0)(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.a(a0))2aa(0)的区别与联系4.公式a2与a|a|a(a0)(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)(a)2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()2的运算结果都是非负的.【典型例题】a2c40,abc【例4】若则.2举一反三:1、若3(n1)20,则mn的值为。
二次根式精选习题及答案
二次根式精选习题及答案二次根式是初中数学中较为重要且难度较大的一个知识点,它关系到许多数学题的解题方法。
今天,我们来精选一些二次根式的习题及答案,希望能对大家的学习有所帮助。
一、简化二次根式1、$\sqrt{20}$答案:$\sqrt{20}=\sqrt{4\times 5}=2\sqrt{5}$2、$\sqrt{80}$答案:$\sqrt{80}=\sqrt{16\times 5}=4\sqrt{5}$3、$\sqrt{48}$答案:$\sqrt{48}=\sqrt{16\times 3}=4\sqrt{3}$4、$\sqrt{45}$答案:$\sqrt{45}=\sqrt{9\times 5}=3\sqrt{5}$二、二次根式的运算1、$\sqrt{3}+\sqrt{12}$答案:$\sqrt{3}+\sqrt{12}=\sqrt{3}+2\sqrt{3}=3\sqrt{3}$2、$\sqrt{5}+\sqrt{20}-\sqrt{45}$答案:$\sqrt{5}+\sqrt{20}-\sqrt{45}=\sqrt{5}+2\sqrt{5}-3\sqrt{5}=-\sqrt{5}$3、$\sqrt{2}\times\sqrt{18}$答案:$\sqrt{2}\times\sqrt{18}=\sqrt{2\times 18}=6\sqrt{2}$4、$\frac{\sqrt{6}}{\sqrt{2}}$答案:$\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}$三、解二次方程1、$x^2+4x-5=0$答案:将$x^2+4x-5=0$移项得$x^2+4x=5$,再加上4后可以写成$(x+2)^2=9$,从而得到$x=-5$或$x=1$。
2、$2x^2-8x+6=0$答案:将$2x^2-8x+6=0$两边同除以2,得到$x^2-4x+3=0$,然后写成$(x-1)(x-3)=0$,从而得到$x=1$或$x=3$。
二次根式知识点总复习含答案
二次根式知识点总复习含答案一、选择题1.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在 【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.3. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C 【解析】 由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.5.若m 与18是同类二次根式,则m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 将m 与18化简,根据同类二次根式的定义进行判断. 【详解】解:18=32A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意; B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.7.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B8.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.9.已知n 是一个正整数,135n 是整数,则n 的最小值是( ). A .3 B .5 C .15 D .25 【答案】C 【解析】【分析】 【详解】解:135315n n =,若135n 是整数,则15n 也是整数,∴n 的最小正整数值是15,故选C .10.50·a 的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a ,再根据条件确定正整数a 的最小值即可.【详解】∵50·a =50a =52a 是一个整数,∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.实数,a b ||a b + )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】 解:0,,a b a b <<>0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.下列运算正确的是( )A 532=B 822=C 114293=D ()22525-=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】 A .532≠A 错误; B .8222-2=2=,故B 正确;C .137374=993=,故C 错误; D .()225255-2-=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。
初二数学二次根式提高题与常考题与培优题(含解析)
二次根式提升题与常考题型压轴题(含解读)一.选择题(共13 小题)1.二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠02.计算:﹣,正确的选项是()A.4B.C.2D.3.如图,在长方形ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 24.若 1<x< 2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 25.以下计算正确的选项是()A.=2B.=C.=x D.=x6.以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+7.以下二次根式中,与是同类二次根式的是()A.B.C.D.8.化简+﹣的结果为()A.0 B.2C.﹣ 2D.29.已知, ab>0,化简二次根式 a的正确结果是()A.B.C.﹣D.﹣10. a的小数部分,b的小数部分.的()A.+ 1 B.+1 C.1D.++111.把中根号外面的因式移到根号内的果是()A.B.C.D.12.假如=2a 1,那么()A.a B.a≤C.a D.a≥13.已知: a=,b=,a与b的关系是()A.ab=1B.a+b=0 C.a b=0 D.a2=b2二.填空(共17 小)14.假如代数式存心,那么x的取范.15.在数上表示数 a 的点如所示,化+| a 2| 的果.16.算:=.17.察以下等式:第 1个等式: a1=,=1第 2个等式: a2=,=第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:(1)写出第 n 个等式: a n=;(2) a1+a2+a3+⋯+a n=.18.算 2的果是.19.算(+)()的果等于.20.化简:(0<a<1)=.21.假如最简二次根式与能够归并,那么使存心义的x 的取值范围是.22.已知 a,b 是正整数,且知足是整数,则这样的有序数对( a,b)共有对.23.对正实数 a,b 作定义 a*b=﹣a,若 2*x=6,则 x=..已知x+y=, x﹣y=4﹣y4.24,则 x=25.已知=﹣(x,y 为有理数),则 x﹣ y=.26.已知是正整数,则实数 n 的最大值为.27.三角形的三边长分别为3、m、 5,化简﹣=.28.若实数 m 知足=m+1,且 0<m<,则m的值为.29.计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=.30.察看以下各式:=11+3×1+1,=22+3×2+1,=32+3× 3+1,猜想:=.三.解答题(共10 小题)31.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.32.若 1< a<2,求+的值.33.已知 x, y 都是有理数,而且知足,求的值.34.先化简,再求值:,此中x=﹣3﹣(π﹣3)0.35.( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且(+)=3(+5).求的值.36.察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.37.先化简,再求值:(+)÷,此中a=+1.38.求不等式组的整数解.39.阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.(1)若一个三角形的三边长分别是 5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.40.已知: y=++ ,求﹣的值.二次根式提升题与常考题型压轴题(含解读 )参照答案与试卷解读一.选择题(共13 小题)1.(2017 春?启东市月考)二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠0【剖析】依据二次根式存心义的条件和分式存心义的条件得出3﹣x≥0 且 x≠ 0,求出即可.【解答】解:要使存心义,一定3﹣x≥0且x≠ 0,解得: x≤3 且 x≠ 0,应选 B.【评论】本题考察了二次根式存心义的条件和分式存心义的条件等知识点,能根据题意得出 3﹣x≥0 且 x≠ 0 是解本题的重点.2.(2017 春?萧山区校级月考)计算:﹣,正确的选项是()A.4B.C.2D.【剖析】直接化简二次根式从而归并求出答案.【解答】解:﹣=2﹣=.应选: D.【评论】本题主要考察了二次根式的加减运算,正确化简二次根式是解题重点.3.( 2017 春?嵊州市月考)如图,在长方形 ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 2【剖析】依据正方形的面积求出两个正方形的边长,从而求出AB、BC,再依据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和 12cm2,∴它们的边长分别为=4cm,=2 cm,∴AB=4cm,BC=( 2 +4) cm,∴空白部分的面积 =( 2 +4)× 4﹣12﹣ 16,=8 +16﹣ 12﹣16,2=(﹣ 12+8)cm.【评论】本题考察了二次根式的应用,算术平方根的定义,解题的重点在于依据正方形的面积求出两个正方形的边长.4.(2016?呼伦贝尔)若 1<x<2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 2【剖析】已知 1<x<2,可判断 x﹣3<0,x﹣1>0,依据绝对值,二次根式的性质解答.【解答】解:∵ 1<x<2,∴x﹣3<0,x﹣1>0,原式 =| x﹣3|+=| x﹣3|+| x﹣1|=3﹣x+x﹣1=2.【评论】解答本题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0 时,表示 a 的算术平方根;当 a=0 时, =0;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=| a| .5.(2016?南充)以下计算正确的选项是()A.=2B.=C.=x D.=x【剖析】直接利用二次根式的性质分别化简求出答案.【解答】解: A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=| x| ,故此选项错误;应选: A.【评论】本题主要考察了二次根式的化简,正确掌握二次根式的性质是解题重点.6.(2016?杭州)以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+【剖析】直接利用二次根式的性质以及同底数幂的乘法运算法例和分式的混淆运算法例分别化简求出答案.【解答】解: A、x2?x3=x5,故此选项错误;B、=| x| ,正确;C、(x2﹣)÷ x=x﹣,故此选项错误;D、x2﹣ x+1=( x﹣)2+,故此选项错误;【评论】本题主要考察了二次根式的性质以及同底数幂的乘法运算和分式的混淆运算等知识,正确掌握有关运算法例是解题重点.7.(2016?巴中)以下二次根式中,与是同类二次根式的是()A.B.C.D.【剖析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解: A、 =3 ,与不是同类二次根式,故此选项错误;B、 = ,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;应选: B.【评论】本题主要考察了同类二次根式,正确化简二次根式是解题重点.8.(2016?营口)化简+﹣的结果为()A.0B.2C.﹣ 2D.2【剖析】依据根式的开方,可化简二次根式,依据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,应选: D.【评论】本题考察了二次根式的加减,先化简,再加减运算.9.(2016?安徽校级自主招生)已知, ab> 0,化简二次根式a的正确结果是()A.B.C.﹣D.﹣【剖析】直接利用二次根式的性质从而化简得出答案.【解答】解:∵ ab>0,∴ a=a×=﹣.【评论】本题主要考察了二次根式的性质与化简,正确应用二次根式的性质是解题重点.10.(2016?邯郸校级自主招生)设 a 为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1 C.﹣﹣1D.++1【剖析】第一分别化简所给的两个二次根式,分别求出a、b 对应的小数部分,而后辈、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣=== ,∴ a 的小数部分 =﹣1;∵﹣===,∴ b 的小数部分 =﹣ 2,∴﹣====.应选 B.【评论】该题主要考察了二次根式的化简与求值问题;解题的重点是灵巧运用二次根式的运算法例来剖析、判断、解答.11.( 2016?柘城县校级一模)把中根号外面的因式移到根号内的结果是()A.B.C.D.【剖析】先依据被开方数大于等于 0 判断出 a 是负数,而后平方后移到根号内约分即可得解.【解答】解:依据被开方数非负数得,﹣>0,解得 a<0,﹣ a==.应选 A.【评论】本题考察了二次根式的性质与化简,先依据被开方数大于等于0 求出 a 的取值范围是解题的重点,也是本题最简单犯错的地方.12.( 2016?杨浦区三模)假如=2a﹣1,那么()A.a B.a≤C.a D.a≥【剖析】由二次根式的化简公式获得1﹣ 2a 为非正数,即可求出 a 的范围.【解答】解:∵=| 1﹣ 2a| =2a﹣ 1,∴1﹣ 2a≤0,解得: a≥ .应选 D【评论】本题考察了二次根式的性质与化简,娴熟掌握二次根式的化简公式是解本题的重点.13.(2016?临朐县一模)已知: a=,b=,则a与b的关系是()A.ab=1B.a+b=0C.a﹣b=0 D.a2=b2【剖析】先分母有理化求出a、b,再分别代入求出ab、a+b、 a﹣ b、 a2、b2,求出每个式子的值,即可得出选项.【解答】解: a===2+,b===2﹣,A、ab=( 2+)×(2﹣)=4﹣3=1,故本选项正确;B、a+b=(2+)+(2﹣)=4,故本选项错误;C、a﹣b=(2+)﹣(2﹣)=2,故本选项错误;D、∵ a2=( 2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故本选项错误;应选 A.【评论】本题考察了分母有理化的应用,能求出每个式子的值是解本题的重点.二.填空题(共17 小题)14.(2017?静安区一模)假如代数式存心义,那么x的取值范围为x>﹣2.【剖析】依据二次根式存心义的条件、分式存心义的条件列出不等式,解不等式即可.【解答】解:由题意得, x+2>0,解得, x>﹣ 2,故答案为: x>﹣ 2.【评论】本题考察的是二次根式存心义的条件,掌握二次根式中的被开方数一定是非负数是解题的重点.15.( 2016?乐山)在数轴上表示实数 a 的点如下图,化简+| a﹣2| 的结果为3.【剖析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a﹣5<0,a﹣2> 0,则+| a﹣2|=5﹣a+a﹣2=3.故答案: 3.【点】此主要考了二次根式的性以及的性,正确掌握掌握有关性是解关.16.( 2016?聊城)算:=12.【剖析】直接利用二次根式乘除运算法化求出答案.【解答】解:=3×÷=3=12.故答案: 12.【点】此主要考了二次根式的乘除运算,正确化二次根式是解关.17.( 2016?黄石)察以下等式:第 1个等式: a1=,=1第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;;=( 2) a1+a2+a3+⋯+a n1.=【剖析】(1)依据意可知, a12=3==1,a =, a ==2,a4==2,⋯由此得出第 n 个等式: a n==;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a1==1,第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,∴第 n 个等式: a n==;( 2) a1+a2+a3+⋯+a n=(1)+()+(2)+(2)+⋯+()=1.故答案=;1.【点】此考数字的化律以及分母有理化,要修业生第一剖析意,找到律,并行推得出答案.18.( 2016?哈)算 2的果是2.【剖析】先将各个二次根式化成最二次根式,再把同二次根式行归并求解即可.【解答】解:原式 =2×3= 3= 2 ,故答案: 2 .【点】本考了二次根式的加减法,解答本的关在于掌握二次根式的化与同二次根式归并.19.( 2016?天津)算(+)()的果等于 2 .【剖析】先套用平方差公式,再依据二次根式的性算可得.【解答】解:原式 =()2()2=5 3=2,故答案为: 2.【评论】本题考察了二次根式的混淆运算的应用,娴熟掌握平方差公式与二次根式的性质是重点.20.( 2016?博野县校级自主招生)化简:(0<a<1)=﹣a.【剖析】联合二次根式的性质进行化简求解即可.【解答】解:==| a﹣| .∵0< a<1,∴ a2﹣1<0,∴ a﹣ =<0,∴原式 =| a﹣| =﹣( a﹣)=﹣a.故答案为:﹣a.【评论】本题考察了二次根式的性质与化简,解答本题的重点在于娴熟掌握二次根式的性质及二次根式的化简.21.(2016?绵阳校级自主招生)假如最简二次根式与能够归并,那么使存心义的 x 的取值范围是x≤ 10.【剖析】依据二次根式可归并,可得同类二次根式,依据同类二次根式,可得 a 的值,依据被开方数是非负数,可得答案.【解答】解:由最简二次根式与能够归并,得3a﹣8=17﹣2a.解得 a=5.由存心义,得20﹣2x≥0,解得 x≤10,故答案为: x≤ 10.【评论】本题考察了同类二次根式,利用同类二次根式得出对于 a 的方程是解题重点.22.( 2016?温州校级自主招生)已知a,b 是正整数,且知足是整数,则这样的有序数对( a, b)共有7对.【剖析】 A, B 只好是 15n2,而后分别议论及的取值,最后可确立有序数对的个数.【解答】解: 15 只好约分红3, 5那么 A,B 只好是 15n2先考虑 A 这边:①,那么 B 能够这边能够是 1 或许,此时有:(15,60),( 15,15),(60,15),②,只好 B 这边也是,此时有:(60,60),③,那么 B 这边也只好是,∴2×( + )=1,此时有:(240, 240)④的话,那么 B 这边只好是,那么 2( + ) =1,此时有:(135, 540),(540,135).综上可得共有 7 对.故答案为: 7.【评论】本题考察二次根式的化简求值,难度较大,重点是依据题意分别议论及的取值.23.( 2016?福州自主招生)对正实数a,b 作定义 a*b=﹣a,若2*x=6,则x= 32.【剖析】依据定义把 2*x=6 化为一般方程,求解即可.【解答】解:∵a*b=﹣a,∴2*x=﹣2,∴方程 2*x=6 可化为﹣2=6,解得x=32,故答案为: 32【评论】本题主要考察二次根式的化简,利用新定义把方程化为一般方程是解题的重点.24(.2016?黄冈校级自主招生)已知 x+y=,x﹣y=,则 x4﹣y4=.【剖析】把所给式子两边平方再相加可先求得x2+y2,再求得 x2﹣y2,可求得答案.【解答】解:∵ x+y=,x﹣y=,∴( x+y)22+2xy+y2()2+,(﹣y)2 2﹣2xy+y2=x==x=x=()2=﹣,∴ x2+y2=,又 x2﹣ y2= ( x+y )( x ﹣ y ) = ()() ==1,∴ x4﹣y4(2+y2)( x2﹣y2)=,=x故答案为:.【评论】本题主要考察二次根式的化简,利用乘法公式分别求得x2+y2和 x2﹣ y2的值是解题的重点.25.( 2016?黄冈校级自主招生)已知=﹣(x,y为有理数),x y= 1 .【剖析】把已知条件两平方,整理可获得 x+y 2,合x、y均有理数,可求得 x、y 的,可求得答案.【解答】解:∵=,∴()2=()2,即23= x+ y 2,∴ x+y 2=2= +2,∵ x,y 有理数,∴x+y= + ,xy= ×,由条件可知 x>y,∴x= ,y= ,∴x y=1,故答案: 1.【点】本主要考二次根式的化,由条件求得 x、 y 的是解的关.26.( 2016 春?固始期末)已知是正整数,数n 的最大11.【剖析】依据二次根式的意可知 12 n≥0,解得 n≤12,且 12 n 开方后是正整数,切合条件的 12 n 的有 1、4、9⋯,此中 1 最小,此 n 的最大.【解答】解:由意可知 12 n是一个完整平方数,且不 0,最小 1,所以 n 的最大 12 1=11.【点】主要考了二次根式存心的条件,二次根式的被开方数是非数.27.(2016?山西模)三角形的三分3、m、5,化=2m 10 .【剖析】先利用三角形的三关系求出m 的取范,再化求解即可.【解答】解:∵三角形的三分3、m、5,∴2< m<8,∴﹣=m﹣2﹣( 8﹣m) =2m﹣10.故答案为: 2m﹣10.【评论】本题主要考察了二次根式的性质与化简及三角形三边关系,解题的重点是熟记三角形的三边关系.28.( 2016?武侯区模拟)若实数m知足=m+1,且 0<m<,则m的值为.【剖析】直接利用二次根式的性质化简从而得出对于m 的等式即可得出答案.【解答】解:∵=m+1,且 0< m<,∴ 2﹣ m=m+1,解得: m=.故答案为:.【评论】本题主要考察了二次根式的性质与化简,正确开平方是解题重点.29.( 2016?龙岩模拟)计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=102016.【剖析】直接利用已知数据计算得出结果的变化规律从而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102016.故答案为: 102016.【评论】本题主要考察了二次根式的性质与化简,正确得出结果变化规律是解题重点.30.(2016?丹东模拟)察看以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜想:= 20112+3×2011+1.【剖析】依据题意得出数字变换规律从而得出答案.【解答】解:由题意可得:=20112+3× 2011+1.故答案为: 20112+3× 2011+1.【评论】本题主要考察了二次根式的化简,正确得出数字变化规律是解题重点.三.解答题(共10 小题)31.( 2017 春?临沭县校级月考)计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.【剖析】(1)先进行二次根式的除法运算,而后化简后归并即可;(2)利用完整平方公式和平方差公式计算.【解答】解:(1)原式 =3 ﹣ 2 +=3 ﹣2 +2=3;( 2)原式 =1﹣5+1+2+5=2+2.【评论】本题考察了二次根式的混淆运算:先把各二次根式化简为最简二次根式,而后进行二次根式的乘除运算,再归并即可.32.( 2017 春?沂源县校级月考)若 1< a< 2,求+的值.【剖析】依据 a 的范围即可确立a﹣ 2 和 a﹣1 的符号,而后依据算术平根的意义进行化简求值.【解答】解:∵ 1<a<2,∴a﹣ 2<0, a﹣1>0.则原式=+=+=﹣1+1=0.【评论】本题考察了二次根式的化简求值,正确理解算术平方根的意义,理解=| a| 是重点.33(.2017 春?启东市月考)已知 x,y 都是有理数,而且知足,求的值.【分析】观察式子,需求出x , y的值,所以,将已知等式变形:,x,y 都是有理数,可得,求解并使原式存心义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴ x2+2y﹣ 17 与 y+4 也是有理数,∴解得∵存心义的条件是x≥y,∴取 x=5,y=﹣4,∴.【评论】此类问题求解,或是变换式子,求出各个未知数的值,而后辈入求解.或是将所求式子转变为已知值的式子,而后整体代入求解.34.( 2016?锦州)先化简,再求值:,此中x=﹣3﹣(π﹣ 3)0.【剖析】先依据分式混淆运算的法例把原式进行化简,再把化简后 x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4 ﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入获得:==.即=.【评论】本题考察的是分式的化简求值,在解答此类题目时要注意通分及约分的灵巧应用.35.( 2016?湖北校级自主招生)( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且( + )=3 ( +5).求的值.【剖析】( 1)由二次根式存心义的条件可知 x≥2013,而后化简得=2012,由算术平方根的定义可知:x﹣2013=20122,最后联合平方差公式可求得答案.( 2)依据单项式乘多项式的法例把( +)=3(+5)进行整理,得出 a﹣2﹣ 15b=0,再进行因式分解得出(﹣5)(+3)=0,而后依据 a>0,b>0,得出﹣5 =0,求出 a=25b,最后辈入要求的式子约分即可得出答案.【解答】解:(1)∵ x﹣2013≥0,∴x≥2013.∴ x﹣2012+=x.∴=2012.∴x﹣2013=20122.∴x=20122+2013.∴x﹣20132=20122﹣20132+2013 =﹣(2012+2013)+2013 =﹣2012.( 2)∵(+ )=3(+5 ),∴ a+=3+15b,∴a﹣ 2﹣15b=0,∴(﹣5)(+3)=0,∵a> 0,b> 0,∴ ﹣5 =0,∴ a=25b,∴原式 ===2.【评论】本题主要考察的是二次根式的混淆运算,用到的知识点是二次根式存心义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第(1)题求得 x﹣2013=20122,第( 2)求出 a=25b 是解题的重点.36.( 2016?山西模拟)察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.【剖析】依据察看,可得规律,依据规律,可得答案.【解答】解:(1)5=考证: 5====;( 2) n=,证明: n====.【评论】本题考察了二次根式的性质与化简,运用n=的规律是解题重点.37.( 2016?仙游县校级模拟)先化简,再求值:(+)÷,此中a=+1.【剖析】利用通分、平方差公式等将原式化简为,代入 a 的值即可得出结论.【解答】解:原式 =(+)÷,=?,=?,=.当 a= +1 时,原式 ==.【评论】本题考察了分式的化简求值,解题的重点是将原式化简成.本题属于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是重点.38.( 2016?高邮市一模)求不等式组的整数解.【剖析】第一解不等式组,注意系数化“1时”,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣ 1,0.【评论】本题考察了一元一次不等式组的解法.要注意系数化“1时”,系数是正仍是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,依据题意解题.39.( 2016?太原一模)阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.( 2)若一个三角形的三边长分别是,求这个三角形的面积.【剖析】(1)把 a、 b、 c 的长代入求出 S2,再开方计算即可得解;2( 2)把 a、b、c 的长代入求出 S ,再开方计算即可得解.【解答】解:(1)p===9,S===6.答:这个三角形的面积等于6.(2) S=====.答:这个三角形的面积是.故答案为: 6.【评论】本题考察了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.( 2016 春?饶平县期末)已知: y=++,求﹣的值.【剖析】第一依据二次根式中的被开方数一定是非负数,求出x 的值是多少,进而求出 y 的值是多少;而后把求出的x、y 的值代入化简后的算式即可.【解答】解:∵+存心义,∴,解得 x=8,∴ y=++=++=0+0+=∴﹣=﹣=﹣=﹣=﹣=【评论】本题主要考察了二次根式存心义的条件,要娴熟掌握,解答本题的重点是要明确:二次根式中的被开方数一定是非负数,不然二次根式无心义.。
八年级初二数学二次根式知识点及练习题含答案
八年级初二数学二次根式知识点及练习题含答案一、选择题1.下列运算错误的是( ) A .1832= B .322366⨯=C .()2516+=D .()()72723+-=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .274.下列各式计算正确的是( ) A .1222= B .362÷=C .2(3)3=D .222()-=-5.下列计算正确的是( ) A .93=±B .8220-=C .532-=D .2(5)5-=-6.下列各式中,正确的是( ) A .32 >23 B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 27.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4. ②若12a a ++值为2,则3a =. ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .① B .①②C .①③D .①②③8.当119942x +=时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-9.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定10.3 )A .18B .13C 24D 0.311.751m +m 的值为( ) A .7B .11C .2D .112.32的结果是( ) A .±3B .﹣3C .3D .9二、填空题13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; 222222(11)(22)(22)(33)(33)(44)f f f f f f ++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f =+⋅+z z __________.14.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a cb=___________ 15.x y 53xy 153,则x+y=_______. 16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.已知1<x <2,171x x +=-11x x --_____.18.36,3,2315,,则第100个数是_______.19.如果332y x x --,那么y x =_______________________. 20.25523y x x =--,则2xy 的值为__________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2()()()S p p a p b p c =---2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.29.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.2.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A2,不是最简二次根式;B,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.4.C解析:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】2,故选项A错误;=B错误;C. 23=,故选项C正确;2=,故选项D 错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.B解析:B【分析】直接利用二次根式的性质化简得出答案. 【详解】3=,故此选项错误;0=,正确;D. 5=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.6.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.8.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.∵11994x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 9.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.B解析:B【详解】A 18323不是同类二次根式,故此选项错误;B 13333C 24=63不是同类二次根式,故此选项错误;D 0.3310=30103不是同类二次根式,故此选项错误; 故选B . 11.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确; 故选择C.本题考查了同类二次根式的定义.12.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C .【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 14.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 15.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=, 解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2 =4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100 .故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.19.【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】解析:1 9【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
第16章 二次根式复习题---解答题(含解析)
人教版八下第16章二次根式复习题---解答题一.解答题(共43小题)1.(2018秋•漳州期末)计算:×(﹣)+|﹣2|﹣()22.(2018秋•永定区期末)观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.3.(2018秋•邵阳县期末)设a,b,c为△ABC的三边,化简:++﹣.4.(2018秋•雁塔区校级月考)已知实数a、b、c在数轴上的位置如图所示,化简:﹣|a+b|++|b+c|.5.(2018秋•浦东新区校级月考)已知a、b、c分别是△ABC的三边长,化简:6.(2018秋•达川区校级月考)实数a、b所对应的点如图所示,化简7.(2018秋•太仓市期中)已知a、b、c为△ABC的三边长,化简:+.8.(2017秋•桂平市期末)先阅读材料,然后回答问题:(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=…①=…②=…③=﹣…④上述化简过程中,第步出现了错误,化简正确的结果为.(2)请根据你从上述材料中得到的启发,化简9.(2018秋•浦东新区校级月考)计算:(a>b>0)10.(2018秋•浦东新区月考)计算:×11.(2018秋•杭州期中)计算(1)(﹣)×21×(保留一位小数,≈1.41)(2)﹣24﹣24×()12.(2018秋•中原区校级月考)计算:(1)(﹣2)2﹣()﹣1+20170(2)13.(2018秋•松江区期中)计算:•(﹣)÷(a>0)14.(2018春•全椒县期末)计算:2×.15.(2018•梧州)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)0 16.(2018•柳州)计算:2+3.17.(2018秋•东城区期末)计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).18.(2018秋•延庆区期末)计算:﹣2﹣3(﹣).19.(2018秋•大兴区期末)计算:.20.(2018秋•南关区期末)计算:﹣3+2.21.(2018秋•浦东新区校级月考)计算:﹣﹣+22.(2018秋•浦东新区期中)计算:﹣+2﹣.23.(2018春•长白县期中)计算:﹣3a224.(2018•大连)计算:(+2)2﹣+2﹣225.(2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)026.(2018秋•青岛期末)计算(1)﹣4+(2)(+)2﹣(﹣)(+)27.(2018秋•章丘区期末)(1)计算:﹣5(2)计算:628.(2018秋•南京期末)计算(1)2﹣﹣3+;(2)×÷.29.(2018秋•延庆区期末)阅读材料,然后作答:在化简二次根式时,有时会碰到形如,这一类式子,通常进行这样的化简:==;==﹣1,这种把分母中的根号化去叫做分母有理化.还有一种方法也可以将进行分母有理化:例如:===﹣1请仿照上述方法解决下面问题:(1)化简;(2)化简.30.(2018秋•埇桥区期末)计算:(1)﹣+2(2)+(1﹣)031.(2018秋•顺义区期末)已知x=+2,y=﹣2,求x2﹣y2的值.32.(2018秋•顺义区期末)先化简,再求值:(+b),其中a+b=2.33.(2018秋•安岳县期末)已知a=,求的值.34.(2018秋•温江区期末)在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.35.(2018秋•武冈市期末)已知x=(+),y=(﹣),求下列各式的值.(1)x2﹣xy+y2;(2)+.36.(2018秋•东营区校级期中)求值:(1)已知a=3+2,b=3﹣2,求a2+ab+b2的值;(2)已知:y>++2,求+5﹣3x的值.37.(2018秋•郓城县期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?38.(2018春•嘉祥县期中)计算:(1)﹣()﹣1+(﹣1)﹣20180﹣|﹣2|.(2)如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,求图中空白部分的面积.39.(2018春•韩城市期末)已知某三角形的面积等于长、宽分别为、的矩形的面积,若该三角形的一条边长为,求这条边上的高.40.(2018春•南昌期中)已知长方形的长为a,宽为b,且a=,b=.(1)求长方形的周长;(2)当S长方形=S正方形时,求正方形的周长.41.(2018春•上杭县校级期中)已知:m=1+,n=﹣1,求的值.42.(2018秋•靖边县期中)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.43.(2017秋•农安县校级月考)如图,钓鱼竿AC长6m,露出水面上的鱼线BC长3m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为3m,求鱼竿转过的角度?人教版八下第16章二次根式复习题---解答题参考答案与试题解析一.解答题(共43小题)1.(2018秋•漳州期末)计算:×(﹣)+|﹣2|﹣()2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=﹣2+2﹣﹣2=﹣3,2.(2018秋•永定区期末)观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.3.(2018秋•邵阳县期末)设a,b,c为△ABC的三边,化简:++﹣.【分析】根据三角形的三边关系判定出a+b﹣c,a+c﹣b,b+c﹣a的符号,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|+|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.4.(2018秋•雁塔区校级月考)已知实数a、b、c在数轴上的位置如图所示,化简:﹣|a+b|++|b+c|.【分析】根据数轴判断a、a+b、c﹣a、b+c与0的大小关系即可求出答案.【解答】解:由数轴可知:a>0,a+b<0,c﹣a<0,b﹣c>0,∴原式=a+a+b﹣(c﹣a)﹣b﹣c=a+a+b﹣c+a﹣b﹣c=3a﹣2c.5.(2018秋•浦东新区校级月考)已知a、b、c分别是△ABC的三边长,化简:【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵a、b、c分别是△ABC的三边长,∴a﹣b+c>0,a﹣b﹣c<0,∴原式=a﹣b+c﹣(a﹣b﹣c)=2c.6.(2018秋•达川区校级月考)实数a、b所对应的点如图所示,化简【分析】根据数轴化简绝对值后即可求出答案.【解答】解:由数轴可知:<b<0<a,∴﹣a<0,b+>0,a﹣b>0,∴原式=﹣(﹣a)+b+﹣(a﹣b)﹣b=﹣+a+b+﹣a+b﹣b=b7.(2018秋•太仓市期中)已知a、b、c为△ABC的三边长,化简:+.【分析】直接利用三角形三边关系得出a+b﹣c>0,b﹣c﹣a<0,进而化简得出答案.【解答】解:∵a、b、c为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴原式=a+b﹣c﹣(b﹣c﹣a)=2a.8.(2017秋•桂平市期末)先阅读材料,然后回答问题:(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=…①=…②=…③=﹣…④上述化简过程中,第④步出现了错误,化简正确的结果为﹣.(2)请根据你从上述材料中得到的启发,化简【分析】(1)根据二次根式的性质判断即可;(2)先化成完全平方公式的形式,再根据二次根式的性质得出即可.【解答】解:(1)第④,﹣,故答案为:④,;(2)====|﹣|=﹣.9.(2018秋•浦东新区校级月考)计算:(a>b>0)【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式===.10.(2018秋•浦东新区月考)计算:×【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×=×=×=.11.(2018秋•杭州期中)计算(1)(﹣)×21×(保留一位小数,≈1.41)(2)﹣24﹣24×()【分析】(1)直接利用二次根式的乘除运算法则计算得出答案;(2)利用乘法分配律进而计算得出答案.【解答】解:(1)(﹣)×21×(保留一位小数,≈1.41)=﹣9≈﹣12.7;(2)﹣24﹣24×()=﹣16﹣8+20﹣18=﹣22.12.(2018秋•中原区校级月考)计算:(1)(﹣2)2﹣()﹣1+20170(2)【分析】(1)先计算乘方,后计算加减即可;(2)除法化为除法,根据二次根式的乘法法则计算即可;【解答】解:(1)原式=4﹣2+1=3(2)原式=﹣×2××2=﹣.13.(2018秋•松江区期中)计算:•(﹣)÷(a>0)【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:•(﹣)÷(a>0)=﹣•a2b÷=﹣9a2=﹣.14.(2018春•全椒县期末)计算:2×.【分析】根据二次根式的乘除法法则,系数相乘除,被开方数相乘除,根指数不变,如:2×÷3,÷,计算后求出即可.【解答】解:原式=(2××),=.15.(2018•梧州)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.16.(2018•柳州)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.17.(2018秋•东城区期末)计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用乘法公式化简求出答案.【解答】解:(1)原式==;(2)原式=x2﹣4x+4﹣x2+9=﹣4x+13.18.(2018秋•延庆区期末)计算:﹣2﹣3(﹣).【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=3﹣﹣3+3=5﹣3.19.(2018秋•大兴区期末)计算:.【分析】根据二次根式的加减法的法则计算即可.【解答】解:原式=5+3﹣4=4.20.(2018秋•南关区期末)计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.21.(2018秋•浦东新区校级月考)计算:﹣﹣+【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=2﹣﹣+=2﹣﹣+=.22.(2018秋•浦东新区期中)计算:﹣+2﹣.【分析】先把二次根式化为最简二次根式,再合并同类二次根式..【解答】解:原式=﹣+2×4﹣=﹣+8﹣=7+23.(2018春•长白县期中)计算:﹣3a2【分析】先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并.【解答】解:原式=+6a﹣3a2=×4+6a×﹣3a2×=+a﹣3a=﹣2a24.(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.25.(2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0【分析】先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后合并即可.【解答】解:原式=+﹣1+1=3+﹣1+1=4.26.(2018秋•青岛期末)计算(1)﹣4+(2)(+)2﹣(﹣)(+)【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=2﹣+=;(2)原式=2+4+6﹣(5﹣3)=4+6.27.(2018秋•章丘区期末)(1)计算:﹣5(2)计算:6【分析】(1)根据二次根式的除法法则运算;(2)先进行二次根式的乘法运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:(1)原式=﹣﹣5=2﹣2﹣5=﹣2﹣3;(2)原式=2﹣+9﹣=9.28.(2018秋•南京期末)计算(1)2﹣﹣3+;(2)×÷.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式化的乘除法则运算.【解答】解:(1)原式=2﹣2﹣+=﹣;(2)原式==1.29.(2018秋•延庆区期末)阅读材料,然后作答:在化简二次根式时,有时会碰到形如,这一类式子,通常进行这样的化简:==;==﹣1,这种把分母中的根号化去叫做分母有理化.还有一种方法也可以将进行分母有理化:例如:===﹣1请仿照上述方法解决下面问题:(1)化简;(2)化简.【分析】(1)将分子2变形为()2﹣()2,再将其因式分解,继而约分即可得;(2)将分子a﹣b变形为()2﹣()2,再将其因式分解,继而约分即可得.【解答】解:(1)原式===﹣;(2)原式===.30.(2018秋•埇桥区期末)计算:(1)﹣+2(2)+(1﹣)0【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=3﹣+2=;(2)原式=+1=+1=5+1=6.31.(2018秋•顺义区期末)已知x=+2,y=﹣2,求x2﹣y2的值.【分析】根据平方差公式可得x2﹣y2=(x+y)(x﹣y),再把x=+2,y=﹣2代入,分别求出x+y,x﹣y,然后相乘即可.【解答】解:x2﹣y2=(x+y)(x﹣y).∵x=+2,y=﹣2,∴x+y=(+2)+(﹣2)=2,x﹣y=(+2)﹣(﹣2)=4,∴x2﹣y2=(x+y)(x﹣y)=2×4=8=16.32.(2018秋•顺义区期末)先化简,再求值:(+b),其中a+b=2.【分析】先把原式中括号内的项通分利用同分母分式加法法则计算,再把除法运算化为乘法运算,然后约分得到原式=(a+b),最后把a+b=2代入计算即可.【解答】解:原式=(+)=•=(a+b),当a+b=2时,原式=×2=6.33.(2018秋•安岳县期末)已知a=,求的值.【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【解答】解:∵a===2﹣,∴a﹣2=2﹣﹣2=﹣<0,则原式=﹣=a+3+=2﹣+3+2+=7.34.(2018秋•温江区期末)在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.【分析】(1)将原式分母有理化后,得到规律,利用规律求解;(2)将a分母有理化得a=+1,移项并平方得到a2﹣2a=1,变形后代入求值.【解答】解:(1)==;(2)∵a==+1,∴a﹣1=,∴a2﹣2a+1=2,∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.35.(2018秋•武冈市期末)已知x=(+),y=(﹣),求下列各式的值.(1)x2﹣xy+y2;(2)+.【分析】由x=(+),y=(﹣),得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.【解答】解:∵x=(+),y=(﹣),∴x+y=,xy==(x+y)2﹣3xy=7﹣=;(2)+===12.36.(2018秋•东营区校级期中)求值:(1)已知a=3+2,b=3﹣2,求a2+ab+b2的值;(2)已知:y>++2,求+5﹣3x的值.【分析】(1)根据a=3+2,b=3﹣2,代入(a+b)2﹣ab进行计算即可;(2)依据被开方数为非负数,即可得到x=,进而得出y>2,据此可得+5﹣3x的值.【解答】解:(1)∵a=3+2,b=3﹣2,∴a2+ab+b2=a2+2ab+b2﹣ab=(a+b)2﹣ab=36﹣1=35;(2)∵,∴,∴x=,∴y>2,∴+5﹣3x=+5﹣3x=+5﹣3x=﹣1+5﹣3x=4﹣3x=4﹣3×=2.37.(2018秋•郓城县期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?【分析】(1)将h=50代入t1=进行计算即可;将h=100代入t2=进行计算即可;(2)计算t2与t1的比值即可得出结论;(3)将t=1.5代入公式t=进行计算即可.【解答】解:(1)当h=50时,t1==(秒);当h=100时,t2===2(秒);(2)∵==,∴t2是t1的倍.(3)当t=1.5时,1.5=,解得h=11.25,∴下落的高度是11.25米.38.(2018春•嘉祥县期中)计算:(1)﹣()﹣1+(﹣1)﹣20180﹣|﹣2|.(2)如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,求图中空白部分的面积.【分析】(1)根据实数的混合计算解答即可;(2)根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:(1)原式=(2)∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为,,∴AB=4cm,BC=,∴空白部分的面积=.39.(2018春•韩城市期末)已知某三角形的面积等于长、宽分别为、的矩形的面积,若该三角形的一条边长为,求这条边上的高.【分析】首先利用矩形的面积计算方法求得三角形的面积,根据三角形的面积公式:S=ah列式计算即可求解.【解答】解:==,答:这条边上的高为.40.(2018春•南昌期中)已知长方形的长为a,宽为b,且a=,b=.(1)求长方形的周长;(2)当S长方形=S正方形时,求正方形的周长.【分析】(1)直接化简二次根式进而计算得出答案;(2)利用二次根式乘法计算得出答案.【解答】解:(1)∵a==2,b==,∴长方形的周长是:2(a+b)=2(2+)=6;(2)设正方形的边长为x,则有x2=ab,∴x====2,∴正方形的周长是4x=8.41.(2018春•上杭县校级期中)已知:m=1+,n=﹣1,求的值.【分析】先利用完全平方公式将化简,得原式=mn,再将m=1+,n=﹣1代入计算即可.【解答】解:原式==mn,当m=1+,n=﹣1时,原式=(1+)(﹣1)=﹣1+﹣.42.(2018秋•靖边县期中)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.【分析】用大正方形的面积减去长方形的面积即可求出剩余部分的面积.【解答】解:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).43.(2017秋•农安县校级月考)如图,钓鱼竿AC长6m,露出水面上的鱼线BC长3m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为3m,求鱼竿转过的角度?【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,分别求出∠CAB,∠C′AB′的度数,然后可以求出∠C′AC的度数,即求出了鱼竿转过的角度.【解答】解:在Rt△ABC中,∵sin∠CAB===,∴∠CAB=45°.在Rt△AB′C′中,∵sin∠C′AB′===,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,答:鱼竿转过的角度是15°.。
二次根式练习题30道加答案过程
二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。
二次根式全章同步练习(含答案)
同步练习 (2)二次根式 (2)第1课时21.1二次根式(1) (2)第2课时21.1二次根式(2) (3)第3课时21.1二次根式(3) (3)第4课时21.2二次根式的乘除(1) (4)第5课时21.2二次根式的乘除(2) (6)第6课时21.2二次根式的乘除(3) (7)第7课时21.3二次根式的加减(1) (8)第8课时21.3 二次根式的加减(2) (9)第9课时21.3 二次根式的加减(3) (10)第10课时第21章二次根式单元复习(1) (12)第11课时第21章二次根式单元复习(2) (13)第12课时二次根式全章练习 (14)第13课时21.3二次根式的加减 (17)答案: (19)二次根式的乘除 (22)第1课时课堂练习 (22)第1课时课堂练习答案 (24)第2课时课堂练习 (24)第2课时课堂练习答案 (25)第3课时课堂练习 (26)第3课时课堂练习答案 (28)二次根式的加减 (29)答案 (32)同步练习二次根式第1课时21.1二次根式(1)一、选择题1.下列式子中,是二次根式的是()D.x2.下列式子中,不是二次根式的是()D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0B.1C.2D.无数5.已知a、b,求a、b的值.第2课时 21.1二次根式(2)一、选择题1.、个数是( ).A.4B.3C.2D.12.数a 没有算术平方根,则a 的取值范围是( ).A.a>0B.a ≥0C.a<0D.a=0二、填空题1.()2=________.2.x+1是一个_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3.=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5第3课时 21.1二次根式(3)一、选择题的值是().A.0B.23C.423D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是().二、填空题2.是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│。
提高版5.二次根式性质和运算复习专题(教师版)
课题:二次根式的性质和运算专题个性化教学辅导教案 组长签名:________学生姓名年 级 初二 学 科 数学 上课时间 年 月 日教师姓名课 题二次根式的性质和运算专题教学目标1、理解二次根式的概念,了解被开方数是非负数的理由.2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.3、了解最简二次根式的概念和性质,能运用二次根式的有关性质进行化简.4、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;5、会利用运算律和运算法则进行二次根式的混合运算.教学过程 教师活动学生活动1.把多项式x 2﹣8x +16分解因式,结果正确的是( ) A .(x ﹣4)2B .(x ﹣8)2C .(x +4)(x ﹣4)D .(x +8)(x ﹣8)【考点】54:因式分解﹣运用公式法. 【解答】解:x 2﹣8x +16=(x ﹣4)2. 故选:A .2.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A .240x−20﹣120x=4 B .240x+20﹣120x=4 C .120x﹣240x−20=4D .120x﹣240x+20=4【考点】B 6:由实际问题抽象出分式方程.【解答】解:设他上月买了x 本笔记本,则这次买了(x +20)本, 根据题意得:120x﹣240x+20=4.故选D .3.约分:①5ab20a 2b = ,②x 2−9x 2−6x+9= . 【考点】66:约分.【解答】解:①5ab20a 2b = 14a ; ②x 2−9x 2−6x+9 = (x+3)(x−3)(x−3)2=x+3x−3.4.已知x ﹣y =﹣1,xy =3,求x 3y ﹣2x 2y 2+xy 3的值.【考点】55:提公因式法与公式法的综合运用. 【解答】解:原式=xy (x 2﹣2xy +y 2) =xy (x ﹣y )2,把x ﹣y =﹣1,xy =3代入得:原式=3.5.先化简,再求值:x 2+2x+1x 3−x÷(1+1x),其中x =3.【考点】6D :分式的化简求值. 【解答】解:原式=(x+1)2x(x+1)(x−1)•xx+1 =1x−1 当x =3时, 原式=216.解方程:1x−2+3=1−x2−x .【考点】B 3:解分式方程.【解答】解:两边乘x ﹣2得到,1+3(x ﹣2)=x ﹣1, 1+3x ﹣6=x ﹣1, x =2,∵x =2时,x ﹣2=0,∴x =2是分式方程的增根,原方程无解.问题1二次根式的性质1.若√2x −1+√1−2x +1在实数范围内有意义,则x 满足的条件是( ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠12 【考点】72:二次根式有意义的条件. 【解答】解:由题意可知:{2x −1≥01−2x ≥0解得:x =12 ,故选(C )【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.问题2二次根式的运算法则2.已知(4+√7)•a =b ,若b 是整数,则a 的值可能是( ) A .√7 B .4+√7C .8﹣2√7D .2﹣√7【考点】76:分母有理化.【解答】解:因为(4+√7)•a =b ,b 是整数, 可得:a =8﹣2√7, 故选C【点评】此题考查分母有理化问题,关键是根据分母有理化的法则进行解答.3.计算:√8÷√2+(2﹣√2014)0﹣(﹣1)2014+|√2﹣2|+(﹣12)﹣2.【考点】79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂. 【解答】解:原式=√8÷2+1﹣1+2﹣√2+4 =2+1﹣1+2﹣√2+4 =8﹣√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.问题1 二次根式的性质对应知识点:(1)二次根式的概念;(2)二次根式的性质问题2 二次根式的运算对应知识点: (1)分母有理化;(2)二次根式的混合运算;【基础知识重温】(一)二次根式概念和性质(1)概念:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.(2)二次根式的性质① 非负性:a a ()≥0是一个非负数. ②()()a aa 20=≥.③ a a a a a a 200==≥-<⎧⎨⎩||()()(二)二次根式的乘除法运算法则 (1)乘法法则:(a ≥0,b ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘. (2)除法法则:b a ba =(a≥0,b >0),即两个二次根式相除,根指数不变,把被开方数相除.(3)最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.(4)同类二次根式的概念几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.(5)二次根式的加减法二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.【精准突破1】二次根式的性质【例题精讲】【例题1-1】要使二次根式√2x +6在实数范围内有意义,则实数x 的取值范围在数轴上表示正确的是( ) A . B . C .D .【考点】72:二次根式有意义的条件;C 4:在数轴上表示不等式的解集. 【解答】解:由题意得,2x +6≥0, 解得,x ≥﹣3, 故选:C .【例题1-2】己知x ,y 为实数,且y =12+√6x −1+√1−6x ,则x •y 的值为( )A .3B .13C .16D .112【考点】72:二次根式有意义的条件. 【解答】解:∵y =12+√6x −1+√1−6x ,∴6x ﹣1=0,解得:x =16,则y =12, 故xy =16×12=112.故选:D .【例题1-3】实数a ,b 在数轴上对应点的位置如图所示,化简|a |+√(a −b)2的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b【考点】73:二次根式的性质与化简;29:实数与数轴. 【解答】解:由图可知:a <0,a ﹣b <0,则|a |+√(a −b)2 =﹣a ﹣(a ﹣b ) =﹣2a +b . 故选:A .【精准突破2】二次根式的运算法则【例题精讲】【例题2-1】下列化简错误的是( ) A .√1625=45B .√1916=134C .√2764=38√3D .﹣√715=﹣65√5【考点】73:二次根式的性质与化简. 【解答】解:A 、√1625=45,故原题计算正确; B 、√1916=√2516=54,故原题计算错误; C 、√2764=3√38,故原题计算正确; D 、﹣√715=﹣√365=﹣65√5,故原题计算正确; 故选:B .【例题2-2】下列二次根式中,与√2之积为有理数的是( ) A .√18 B .√34 C .√12 D .﹣√27【考点】76:分母有理化.【解答】解:A 、√18=3√2,3√2×√2=6,符合题意; B 、原式=√32,√32×√2=√62,不符合题意; C 、原式=2√3,2√3×√2=2√6,不符合题意; D 、原式=﹣3√3,﹣3√3×√2=﹣3√6,不符合题意, 故选A【例题2-3】若最简二次根式√a +23b−1与√4b −a 是同类二次根式,则(a ﹣2b )2017= .【考点】77:同类二次根式;74:最简二次根式.【解答】解:由题意可知:{3b −1=2a +2=4b −a,解得:{a =1b =1,∴(a﹣2b)2017=(﹣1)2017=﹣1,故答案为:﹣1.+√48)÷2√3.【例题2-4】化简:(3√12﹣2√13【考点】79:二次根式的混合运算.+4√3)÷2√3【解答】解:原式=(6√3﹣2√33=28√3÷2√33.=143【巩固一】二次根式的性质1.下列各式中一定是二次根式的是()A.√x+2B.√x C.√x2+2D.√a2b【考点】71:二次根式的定义.【解答】解:(A)当x+2<0时,原式无意义,故A不一定是二次根式;(B)当x<0时,原式无意义,故B不一定是二次根式;(C)∵x2≥0,∴x2+1≥1,故C一定是二次根式;<0时,原式无意义,故D不一定是二次根式,(D)当a2b故选(C)2.若代数式√x+1有意义,则实数x的取值范围是()(x−2)2A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2【考点】72:二次根式有意义的条件.【解答】解:由题意得,x+1≥0且(x﹣2)2≠0,解得x≥﹣1且x≠2.故选D.3.若√(2a+4)2=2a+4,则a的取值范围为()A .a ≥2B .a ≤2C .a ≥﹣2D .a ≤﹣2 【考点】73:二次根式的性质与化简. 【解答】解:∵√(2a +4)2=|2a +4|=2a +4, ∴2a +4≥0, ∴a ≥﹣2 故选(C )4.当1<P <2时,代数式√(1−p)2+(√2−p )2的值为 . 【考点】73:二次根式的性质与化简. 【解答】解:∵1<P <2, ∴1﹣p <0,2﹣p >0,∴√(1−p)2+(√2−p )2=p ﹣1+2﹣p =1, 故答案为:1.【巩固二】二次根式的运算法则1. 计算√24﹣9√23的结果是( ) A .√6 B .﹣√6C .﹣43√6 D .43√6【考点】78:二次根式的加减法.【解答】解:√24﹣9√23=2√6﹣9×√63=2√6﹣3√6=﹣√6.故选:B .2.等式√x +1•√x −1=√x 2−1成立的条件是( )A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≥﹣1 【考点】75:二次根式的乘除法.【解答】解:∵√x +1•√x −1=√x 2−1成立, ∴x +1≥0,x ﹣1≥0. 解得:x ≥1. 故选:A .3.下列二次根式,不能与√12合并的是 (填写序号即可).①√48; ②−√125; ③√113; ④√32; ⑤√18.【考点】77:同类二次根式.【解答】解:√12=2√3,①√48=4√3,②﹣√125=﹣5√5;③√113=2√33,④√32,⑤√18=3√2. 不能与√12合并的是﹣√125和√18.故答案为:②⑤.4.计算:(1)3√223×(−18√15)÷12√25. (2)√12+√27+14√48−15√13.(3)(2√5﹣√2)0+|2﹣√5|+(﹣1)2017﹣13×√45.【考点】75:二次根式的乘除法;78:二次根式的加减法.79:二次根式的混合运算;6E :零指数幂.【解答】(1)解:原式=3√83×(﹣18√15)×2√52=﹣3×18×2×√83×15×52 =﹣34√100=﹣34×10 =﹣152.(2)解:原式=2√3+3√3+14×4√3﹣15×√33 =2√3+3√3+√3﹣5√3=√3.(3)解:原式=1+√5﹣2﹣1﹣√5【查漏补缺】1.使代数式1√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【考点】72:二次根式有意义的条件.【解答】解:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选:B.2.若3,m,5为三角形三边,化简:√(2−m)2﹣√(m−8)2得()A.﹣10B.﹣2m+6C.﹣2m﹣6D.2m﹣10【考点】73:二次根式的性质与化简;K6:三角形三边关系.【解答】解:由三角形三边关系可知:2<m<8∴2﹣m<0,m﹣8<0∴原式=﹣(2﹣m)+(m﹣8)=﹣2+m+m﹣8=2m﹣10故选(D)【举一反三】1.若最简二次根式√2x+y−53x−10和√x−3y+11是同类二次根式.(1)求x、y的值.(2)求√x2+y2的值.【考点】77:同类二次根式.【解答】解:(1)由题意得,3x﹣10=2,2x+y﹣5=x﹣3y+11,解得x=4,y=3;(2)当x=4,y=3时,√x2+y2=√42+32=5.2.计算:2y √xy5﹙﹣32√x3y﹚÷(13√yx).【考点】75:二次根式的乘除法.(2)2y √xy5﹙﹣32√x3y﹚÷(13√yx)=﹣2y ×32×3√xy5×x3y×xy=﹣9y√x5y5=﹣9x2y√xy.【方法总结】1.二次乘法法则可以推广到多个二次根式相乘的运算: ≥0,≥0,…..≥0).2.在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意, a ≥0,b >0,因为b 在分母上,故b 不能为0.3.运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.1.下列式子为最简二次根式的是( )A .√x5 B .√8 C .√3x 2y D .√x 2−9 【考点】74:最简二次根式.【解答】解:A 、被开方数含分母,故A 不符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含能开得尽方的因数或因式,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意; 故选:D .2.已知y =√4−x +√x −4+3,则yx 的值为( ) A .43 B .﹣43 C .34 D .﹣34 【考点】72:二次根式有意义的条件.【解答】解:由题意得,4﹣x ≥0,x ﹣4≥0,解得x =4,则y =3,则y x =34,故选:C .3.下列变形正确的是( )A .√(−4)(−9)=√−4×√−9B .√1614=√16×√14=4×12=2 C .√(a +b)2=|a +b | D .√252−242=25﹣24=1【考点】75:二次根式的乘除法;73:二次根式的性质与化简.【解答】解:A 、√(−4)(−9)=√4×√9,故A 选项错误;B 、√1614=√65×√14=√65×12=√652,故B 选项错误;C 、√(a +b)2=|a +b |,故C 选项正确;D 、√252−242=√(25+24)(25−24)=7,故D 选项错误.故选:C .4.实数a ,b 在数轴上的位置如图所示,则化简√(a −1)2﹣√(a −b)2+b 的结果是( )A .1B .b +1C .2aD .1﹣2a【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:a ﹣1<0,a ﹣b <0,则原式=1﹣a +a ﹣b +b =1.故选:A .5.计算:(1)4√12÷(﹣√6)×13√12. (2)√48﹣2×√274+(12)﹣1+(π﹣2017)0.【考点】75:二次根式的乘除法.79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂.(1)解:原式=﹣2√2÷√6×2√33 =﹣2√3×2√33 =﹣43. (2)解:原式=4√3﹣2×3√32+2+1=√3+3.【第1,2天】当周完成一.选择题1.下列各式中①√3;②√−5; ③√a 2; ④√x −1(x ≥1); ⑤√83; ⑥√x 2+2x +1一定是二次根式的有( )个.A .3B .4C .5D .6 【考点】71:二次根式的定义.【解答】解:①√3符合二次根式的定义,故正确.②√−5无意义,故错误.③√a 2中的a 2≥0,符合二次根式的定义,故正确.④√x −1(x ≥1)中的x ﹣1≥0,符合二次根式的定义,故正确.⑤√83是开3次方,故错误.⑥√x 2+2x +1中的x 2+2x +1=(x +1)2≥0,符合二次根式的定义,故正确. 故选:B .2.实数a 、b 在数轴上的对应点如图,化简√a 2﹣√b 2+√(a −b)2的结果是( )A .2a ﹣2bB .0C .﹣2aD .2b【考点】73:二次根式的性质与化简;29:实数与数轴.【解答】解:由数轴可得:∵﹣1<a <0,0<b <1,∴a ﹣b <0,∴√a 2﹣√b 2+√(a −b)2=﹣a ﹣b ﹣(a ﹣b )=﹣2a .故选:C .3.计算2√12×√34÷√3的结果是( ) A .√32 B .√34 C .√3 D .2√3【考点】75:二次根式的乘除法.【解答】解:原式=12√36÷√3 =3÷√3 =√3 故选(C )4.下列各式中计算正确的是( )A .3√2﹣√2=2√2B .2+√2=2√2C .√12−√102=√6−√5 D .√2+√3=√5 【考点】78:二次根式的加减法.【解答】解:3√2﹣√2=2√2,A 正确;2与√2不能合并,B 错误;√12−√102=2√3−√102=√3−√102,C 错误;√2与√3不是同类二次根式,不能合并,D 错误,故选:A .5.若y =√x −12+√12−x ﹣6,则xy = .【考点】72:二次根式有意义的条件.【解答】解:由题意可知:{x −12≥012−x ≥0,解得:x =12,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣36.计算:(2√3﹣√6)2+(√54+2√6)÷√3.【考点】79:二次根式的混合运算.【解答】解:原式=12﹣12√2+6+√54÷3+2√6÷3=18﹣12√2+3√2+2√2=18﹣7√2.7.一个直角三角形的两边m、n恰好满足等式m﹣√2n−12+√12−2n=8,求第三条边上的高的长度.【考点】7B:二次根式的应用.【解答】解:∵m﹣√2n−12+√12−2n=8,∴2n﹣12=0,∴n=6,m=8,则①当m、n为直角三角形时,第三条边长为√62+82=10,所以第三条边上的高的长度为:6×8=4.8;10②当m为斜边、n为直角边时,所以第三条边上的高的长度为:6.答:第三条边上的高的长度为4.8或6.【第7天】(同时放在下一讲的复习检查)1.式子√a+1有意义,则实数a的取值范围是()a−2A.a≥﹣1B.a≠2C.a≥﹣1且a≠2D.a>2【考点】72:二次根式有意义的条件.【解答】解:式子√a+1有意义,a−2则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.2.计算:(5√48﹣6√27+4√15)÷√3﹣4√5.【考点】79:二次根式的混合运算.【解答】解:原式=5√48÷3﹣6√27÷3+4√15÷3﹣4√5=20﹣18+4√5﹣4√5=2.【第15天】(同时放在下下讲的复习检查)1.计算3√45÷√15×23√223.【考点】75:二次根式的乘除法.【解答】解:原式=3×3√5÷√55×23×√83 =9√5÷√55×23×2√63=45×4√69 =20√6.2.计算:√48﹣6√13+(√3+2)(√3﹣2) 【考点】79:二次根式的混合运算.【解答】解:原式=4√3﹣2√3+3﹣4 =2√3﹣1.【第28天】(同时放在下下下一讲的复习检查)1.下列各等式成立的是( )A .4√5×2√5=8√5B .5√3×4√2=20√5C .4√3×3√2=7√5D .5√3×4√2=20√6【考点】75:二次根式的乘除法.【解答】解:A 、4√5×2√5=8×5=40,故选项错误;B 、5√3×4√2=20√3×2=20√6,故选项错误;C 、4√3×3√2=12√3×2=12√6,故选项错误;D 、5√3×4√2=20√3×2=20√6,故选项正确.故选D .2.计算:(2√32﹣√12)×(12√8+√23)﹣(√3﹣2)2.【考点】79:二次根式的混合运算.【解答】解:原式=(√6﹣√22)(√2+√63)﹣(3﹣4√3+4)=2√3+2﹣1﹣√3﹣7+4√33﹣6.=17√33教学反思。
第七章二次根式期末复习练习题(含答案)
课题:二次根式单元复习 授课人:慕寿建 备课时间:2016.6.21课型:习题课 授课时间:2016.6.28第1节8.1第4节8.2一、选择题1.9的值等于()A .3B .-3C .±3D .32.使13-x 有意义的x 的取值范围是()A .31>x B .31->x C .31≥x D .31-≥x 3.化简23)(-的结果是() A .3 B .-3 C .±3 D .94.下列运算错误的是()A .532=+B .632=∙C .326=÷D .222=-)(5.下列二次根式中属于最简二次根式的是()A .14B .48C .ba D .44+a 6.下列二次根式中,x 的取值范围是x ≥2的是()A .x -2B .x +2C .2-xD .21-x7.下面的等式总能成立的是()A . a a =2B .22a a a =C .ab b a =∙D .b a ab ∙=8.已知最简二次根式52-a 与3是同类二次根式,则a 的值可以是() A . 4 B .6 C .7 D .89.28-的结果是()A .6B .22C .2D .210.已知251,251+=-=b a ,则b a -的值为()A . 0B .1C .2D .-2二、填空题:11.计算:312+= .12.23)(-= . 13.化简:96= ,3625= ,412-= ,800-= , 均为正数)、、(z y x z y x 2312= .14.要使式子aa 2+有意义,则a 的取值范围为 . 15.若==-+++ab b a a 则,0224 .16.比较大小:53 62.17.若最简二次根式3532+-m m 与是同类二次根式,则m = .18.对于任意两个不相等的数a 、b 定义一种运算※如下:5232323,=-+=-+=※如※b a b a b a .那么12※4= . 三、解答题19.计算:5+-720.计算:++-+21.计算:+6a -3a 2281883120.1256321432a 18a 2a19.先化简,再求值:5,242442=-∙-+-x x x x x 其中)(.20.阅读下面问题:121212)12(1211-=-+-⨯=+))((; 232323)23(1231-=-+-⨯=+))((; )())(()(252525251251-=-+-⨯=+. 试求:(1)671+的值; (2)17231+的值;(3)为正整数)(n n n ++11的值.参考答案1. 考点:算术平方根.分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数. 解答:解:∵39=, 故选A .点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2. 考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,解不等式即可. 解答:解:根据题意得:3x -1≥0,解得x ≥31.故选C . 点评:本题考查的知识点为:二次根式的被开方数是非负数.3. 考点:二次根式的性质与化简.分析:本题可先将根号内的数化简,再开方,根据开方的结果得出答案.解答:解:3932==-)( .故选A .点评:本题考查了二次根式的化简,解此类题目要注意式子为23)(-的算术平方根,结果为非负数.4. 考点:实数的运算.专题:计算题.分析:本题涉及二次根式的乘法、加法以及除法、二次根式的乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答:解:A 、532≠+,错误,故本选项符合题意; B 、 632=∙,正确,故本选项不符合题意; C 、 326=÷,正确,故本选项不符合题意;D 、222=-)(,正确,故本选项不符合题意.故选A . 点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的加法、乘法以及除法法则等考点的运算.5. 考点:最简二次根式.分析:B 、D 选项的被开方数中含有未开尽方的因数或因式;C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答:解:因为:B 、3448=;C 、bab b a =; D 、1244+=+a a ; 所以这三项都不是最简二次根式.故选A .点评:在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.6. 考点:二次根式有意义的条件;分式有意义的条件.分析:根据分式有意义的条件为:分母不等于0;二次根式有意义的条件:被开方数大于或等于0,即可求解.解答:解:根据二次根式有意义的条件可知A 、当2-x ≥0时,二次根式有意义,即x ≤2,不符合题意;B 、当x +2≥0时,二次根式有意义,即x ≥-2,不符合题意;C 、当x -2≥0时,二次根式有意义,即x ≥2,符合题意;D 、当21-x ≥0且x -2≠0时,二次根式有意义,即x >2,不符合题意. 故选C .点评:本题考查的知识点为:分式有意义的条件为:分母不等于0;二次根式有意义的条件为:被开方数大于或等于0.7. 考点:二次根式的性质与化简.分析:考虑a 和b 小于零的情况及隐含条件,逐一判断.解答:解:A 、当a <0时不成立,故A 错误B 、当a <0式不成立,故B 错误.C 、由等式左边可知,a ≥0,b ≥0,符合二次根式积的乘法法则,正确;D 、当a <0,b <0时不成立,故D 错误.故选C .点评:本题考查二次根式的知识,正确理解二次根式乘法是解答问题的关键.8. 考点:同类二次根式.专题:计算题.分析:根据同类二次根式的被开方数相同可得出关于a 的方程,解出即可得出答案.解答:解:∵最简二次根式52-a 与3是同类二次根式, ∴2a -5=3,解得:a =4.故选A .点评:此题考查了同类二次根式的知识,解答本题需要掌握同类二次根式的被开方数相同这个知识点,难度一般.9. 考点:二次根式的加减法.分析:本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.解答:解:原式=2222=-.故选C .点评:合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.10. 考点:分母有理化.专题:计算题.分析:先通分求出a -b ,再求b a -即可.解答:解:∵,,251251+=-=b a ∴4)25)(25(2525=+-+-+=-b a , ∴24==-b a . 故选C . 点评:本题考查了分母有理化,解题的关键是通分,合并同类项.11. 考点:二次根式的加减法.分析:本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.解答:解:原式=33332=+.点评:同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.12. 考点:实数的运算.分析:直接根据平方的定义求解即可.解答:解:∵332=)(,∴332-=-)(.点评:本题考查了数的平方运算,是基本的计算能力.13. 考点:二次根式的性质与化简.专题:计算题.分析:把96化为16×6,然后根据二次根式的性质计算;先把412化为假分数,然后根据二次根式的性质计算;把800化为400×2,然后根据二次根式的性质计算;把12x 3y 2z 化为4x 2y 2•3xz ,然后根据二次根式的性质计算.解答:解:6461696=⨯=;653625=;2349412-=-=-; 2202400800-=⨯-=-;xz xy xz y x z y x z y x 3234122223=∙=均为正数),,(.故答案为64;65;23-;220-;xz xy 32. 点评:本题考查了二次根式的性质与化简:2a =a (a ≥0),此题比较简单,掌握二次根式的性质是解答本题的关键.14. 考点:二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:解:根据题意得:a +2≥0且a ≠0,解得:a ≥-2且a ≠0.故答案为:a ≥-2且a ≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15. 考点:非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可. 解答:解:∵若0224=-+++b a a ,∴可得:⎩⎨⎧=-+=+02204b a a , 解得:⎩⎨⎧=-=34b a , ∴ab =-12.故填-12.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16. 考点:实数大小比较;二次根式的性质与化简. 专题:推理填空题. 分析:把根号外的因式平方后移入根号内,求出结果,再根据结果进行比较即可. 解答:解:24626245535322=⨯==⨯=,, ∵ 2445>,∴6253>,故答案为:>.点评:本题考查了二次根式的性质和实数的大小比较的应用,注意此题还可以有以下方法:45532=)( 24622=)(,再比较.17. 考点:同类二次根式.分析:根据同类根式及最简二次根式的定义列方程求解.解答:解:∵最简二次根式32-m 与35+m 是同类二次根式,∴m 2-3=5m +3,解得m =6或m =-1,当m =-1时,232-=-m 无意义,故m =6.点评:此题比较简单,解答此类题目时要注意二次根式成立的条件.18. 考点:二次根式的性质与化简.专题:压轴题;新定义.分析:根据新定义的运算法则a ※b =ba b a -+得出. 解答:解:12※4=2184412412==-+. 点评:主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即可.19. 原式==20.原式= =21.原式== 22. 考点:分式的化简求值. 专题:计算题. 分析:先把分式因式分解,约分化简为最简形式,再把数代入求值.解答:解:原式=)()()(22222+∙--x x x (3分) =242-x ;(6分) x =5时,212452422=-=-)(x .(8分) 点评:此题是分式与整式的乘法运算,分子、分母能因式分解的先因式分解;注意应该把x +2看成一个整体.23. 考点:分母有理化.专题:阅读型.分析:观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化. 解答:解:(1)原式=67676767-=-+-))(( (2)原式=1723172317231723-=-+-))(( (3)原式=n n n n n n n n -+=-+++-+1111))(( 点评:要将b a ±中的根号去掉,要用平方差公式b a b a b a -=-+))((.教学反思:通过测试,学生提高了运用知识点灵活解决问题的能力。
二次根式精选练习题及答案
二次根式精选练习题及答案二次根式是高中数学中的一个重点内容,也是历年高考的常考题型。
掌握好二次根式的运算方法不仅有助于提高数学成绩,更能为今后学习更高深的数学知识打下坚实的基础。
下面是一些二次根式的精选练习题及其答案,供大家参考。
1.将下列二次根式合并为一个二次根式:$\sqrt{7}+\sqrt{3}-\sqrt{28}$解:$\sqrt{7}+\sqrt{3}-\sqrt{28}=\sqrt{7}+\sqrt{3}-2\sqrt{7}=-\sqrt{7}+\sqrt{3}$2.将下列二次根式化为最简形式:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}$解:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}=\frac{(2\sqrt{5}-\sqrt{2})(\sqrt{3}-3\sqrt{5})}{3-45}=\frac{-16\sqrt{5}+6\sqrt{6}}{-42}=\frac{8\sqrt{5}-3\sqrt{6}}{21}$3.将下列二次根式化为最简形式:$\sqrt{5-2\sqrt{6}}$解:设$\sqrt{5-2\sqrt{6}}=a\pm b\sqrt{6}$,则有$a^2+6b^2=5$和$2ab=-2$。
解得$a=1,b=-\frac{1}{\sqrt{6}}$或$a=-1,b=\frac{1}{\sqrt{6}}$,因此$\sqrt{5-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{6-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{(1-\sqrt{2})(1-\sqrt{3})}=\boxed{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}}$4.将下列二次根式化为最简形式:$\sqrt{7+4\sqrt{3}}$解:同上题,设$\sqrt{7+4\sqrt{3}}=a+b\sqrt{3}$,则有$a^2+3b^2=7$和$2ab=4$。
(完整版)《二次根式》培优试题及答案
《二次根式》提高测试〔一〕判断题:〔每题1分,共5分〕1.ab 2)2(-=-2ab .…………………〔〕【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.〔 〕【提示】231-=4323-+=-〔3+2〕.【答案】×.3.2)1(-x =2)1(-x .…〔〕【提示】2)1(-x =|x -1|,2)1(-x =x -1〔x ≥1〕.两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…〔 〕【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.〔 〕29x +是最简二次根式.【答案】×.〔二〕填空题:〔每题2分,共20分〕6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法那么和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】〔a -12-a 〕〔________〕=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=〔 〕2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2〔x -1〕=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab 〔ab >0〕,∴ ab -c 2d 2=〔cd ab +〕〔cd ab -〕.12.比拟大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比拟28,48的大小,再比拟281,481的大小,最后比拟-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·〔_________〕[-7-52.] 〔7-52〕·〔-7-52〕=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法那么和平方差公式. 14.假设1+x +3-y =0,那么(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数局部和小数局部,那么2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,那么其整数局部x =?小数局部y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数局部和小数局部时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数局部和小数局部就不难确定了. 〔三〕选择题:〔每题3分,共15分〕16.233x x +=-x 3+x ,那么………………〔 〕〔A 〕x ≤0 〔B 〕x ≤-3 〔C 〕x ≥-3 〔D 〕-3≤x ≤0【答案】D . 【点评】此题考查积的算术平方根性质成立的条件,〔A 〕、〔C 〕不正确是因为只考虑了其中一个算术平方根的意义.17.假设x <y <0,那么222y xy x +-+222y xy x ++=………………………〔 〕〔A 〕2x 〔B 〕2y 〔C 〕-2x 〔D 〕-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】此题考查二次根式的性质2a =|a |.18.假设0<x <1,那么4)1(2+-x x -4)1(2-+xx 等于………………………〔〕〔A 〕x 2 〔B 〕-x 2〔C 〕-2x 〔D 〕2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】此题考查完全平方公式和二次根式的性质.〔A 〕不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………〔 〕〔A 〕a - 〔B 〕-a 〔C 〕-a - 〔D 〕a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………〔 〕〔A 〕2)(b a + 〔 B 〕-2)(b a -〔C 〕2)(b a -+-〔D 〕2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】此题考查逆向运用公式2)(a =a 〔a ≥0〕和完全平方公式.注意〔A 〕、〔B 〕不正确是因为a <0,b <0时,a 、b 都没有意义.〔四〕在实数范围内因式分解:〔每题3分,共6分〕21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】〔3x +5y 〕〔3x -5y 〕. 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.〔五〕计算题:〔每题6分,共24分〕23.〔235+-〕〔235--〕; 【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.〔a 2m n -m ab mn +m n n m 〕÷a 2b 2mn; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=〔a 2m n-mab mn +mn n m 〕·221b a nm=21b n m m n ⋅-mab 1n m m n ⋅+22b ma n n m n m ⋅ =21b -ab 1+221b a =2221ba ab a +-. 26.〔a +ba abb +-〕÷〔b ab a ++a ab b --ab b a +〕〔a ≠b 〕. 【提示】此题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】此题如果先分母有理化,那么计算较烦琐. 〔六〕求值:〔每题7分,共14分〕27.x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将条件化简,再将分式化简最后将条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】此题将x 、y 化简后,根据解题的需要,先分别求出“x +y 〞、“x -y 〞、“xy 〞.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +〔22a x +-x 〕,x 2-x22a x +=-x 〔22a x +-x 〕.【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】此题如果将前两个“分式〞分拆成两个“分式〞之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1. 七、解答题:〔每题8分,共16分〕29.计算〔25+1〕〔211++321++431++…+100991+〕.【提示】先将每个局部分母有理化后,再计算. 【解】原式=〔25+1〕〔1212--+2323--+3434--+…+9910099100--〕=〔25+1〕[〔12-〕+〔23-〕+〔34-〕+…+〔99100-〕] =〔25+1〕〔1100-〕 =9〔25+1〕.【点评】此题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.假设x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy y x +|-|xy y x -|∵ x =41,y =21,∴ y x <x y .∴ 原式=x y y x+-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解此题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
《二次根式》提高练习题(含答案)
《二次根式》提高训练题(一)判断题:1.ab 2)2(-=-2ab . ( ) 2.3-2的倒数是3+2. ( ) 3.2)1(-x =2)1(-x . ( ) 4.ab 、31b a 3、bax 2-是同类二次根式. ( ) 5.x 8,31,29x +都不是最简二次根式. ( ). (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a =___________. 8.a -12-a 的有理化因式是__________. 9.当1<x <4时,|x -4|+122+-x x =__________. 10.方程2(x -1)=x +1的解是____________. 11.比较大小:-721______-341.12.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=_________.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………………………………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………………( )(A )x 2 (B )-x2(C )-2x (D )2x19.化简aa 3-(a <0)得……………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)在实数范围内因式分解:21.9x 2-5y 2; 22.4x 4-4x 2+1.(五)计算题:(每小题6分,共24分)23.(235+-)(235--); 24.1145--7114--732+;25.20102009)23()23(+∙-; 26.(a 2m n -m abmn +m nn m )÷a 2b 2mn (六)求值:27.已知a -1a求a +1a 的值。
中考数学一轮复习二次根式知识点及练习题及答案
一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 4.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=5.计算:()555+=( )A .55+B .555+C .525+D .105 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+ B .56+ C .56- D .536- 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.12.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 13.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.15.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 16.11882. 17.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 18.3a ,小数部分是b 3a b -=______. 191262_____.20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,++=,则ABC的周长为24410故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.7.D解析:D 【分析】根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可. 【详解】设633633x =--+,且633633-<+, ∴0x <,∴26332(633)(633)633x =---+++, ∴212236x =-⨯=, ∴6x =-, ∵3252632-=-+, ∴原式5266=--536=-, 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C 【解析】依据二次根式有意义的条件即可求得k 的范围. 解:若实数a ,b 满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k ≤3,化简可得﹣1≤k ≤1.故选C .点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a ≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k 的不等式组,求出k 的取值范围.9.A解析:A 【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x -40≠,2x ∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.二、填空题11.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
二次根式练习题及答案
二次根式练习题及答案二次根式是数学中的一个重要概念,它在解决实际问题和数学推理中起着重要的作用。
在学习二次根式的过程中,练习题是必不可少的一环。
通过练习题的反复练习,我们可以更好地理解和掌握二次根式的性质和运算规律。
下面,我将为大家提供一些二次根式的练习题及答案,希望能够对大家的学习有所帮助。
1. 化简下列二次根式:√(8)解:√(8)可以写成√(4*2),再进一步化简为√(4) * √(2)。
√(4) = 2,所以√(8) = 2√(2)。
2. 化简下列二次根式:√(18)解:√(18)可以写成√(9*2),再进一步化简为√(9) * √(2)。
√(9) = 3,所以√(18) = 3√(2)。
3. 化简下列二次根式:√(50)解:√(50)可以写成√(25*2),再进一步化简为√(25) * √(2)。
√(25) = 5,所以√(50) = 5√(2)。
4. 求下列二次根式的值:√(16)解:√(16) = 4,因为4的平方等于16。
5. 求下列二次根式的值:√(36)解:√(36) = 6,因为6的平方等于36。
6. 求下列二次根式的值:√(64)解:√(64) = 8,因为8的平方等于64。
7. 化简下列二次根式:√(27)解:√(27)可以写成√(9*3),再进一步化简为√(9) * √(3)。
√(9) = 3,所以√(27) = 3√(3)。
8. 化简下列二次根式:√(75)解:√(75)可以写成√(25*3),再进一步化简为√(25) * √(3)。
√(25) = 5,所以√(75) = 5√(3)。
9. 化简下列二次根式:√(98)解:√(98)可以写成√(49*2),再进一步化简为√(49) * √(2)。
√(49) = 7,所以√(98) = 7√(2)。
10. 求下列二次根式的值:√(100)解:√(100) = 10,因为10的平方等于100。
通过以上的练习题,我们可以发现二次根式的化简和求值方法。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
二次根式知识点总结及习题带答案
二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。
()注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.计算题: 1.
(
235+-)(235--);
2. 11
45
--
7
114--
7
32
+;
3.(a 2
m
n -m ab
mn +m
n n
m )÷a 2b 2
m
n ;
4.(
a +b
a ab
b +-)÷(
b
ab a ++
a
ab b --ab
b a +)
(a ≠b ).
二.求值:
1.已知
x =
2
323-+,y =
2
323+-,求
322342
3
2y
x y x y x xy x ++-的值. 2.当
x =1-
2
时,求
2
222a
x x a x x
+-++
22
2
22
2a
x x x a
x x +-+-+
22
1a
x +的值.
三.解答题:
1.计算(2
5+1)(2
11
++
3
21
++
4
31++…
+100991
+)
.
2.若x ,y 为实数,且y =
x 41-+
14-x +
2
1
.求
x
y y x ++2-x
y y x +-2的值.
计算题: 1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方
公式.
【解】原式=(
35-)2-2
)
2(
=5-2
15
+3-2=6-
215. 2、【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=
11
16)
114(5-+-711)711(4-+-79)73(2--=4+
11-11-
7-3+7=1.
3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二
次根式.
【解】原式=(a 2
m n -m
ab mn +m
n n m
)·2
21b a n m
=2
1b n
m
m n ⋅-
mab 1n m mn ⋅+
2
2b ma n n m n m ⋅
=2
1b -ab 1+2
21
b a =222
1
b
a a
b a +-. 4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.
【
解
】
原式=
b
a a
b b ab a +-++÷
)
)(()
)(()()(b a b a ab b a b a b a b b b a a a -+-+-+-- =
b
a b
a ++÷
)
)((2
222b a b a ab b a b ab b ab a a -++----
=
b
a b a ++·
)
()
)((b a ab b a b a ab +-+-=
-b
a +.
【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.
【解】∵ x =2
323-+=
2
)23(+=5+
2
6,
y =
2
32
3+-=
2
)
23(-=5-2
6.
∴ x +y =10,x -y =4
6,xy =52
-(26
)2=1.
322342
3
2y
x y x y x xy x ++-=
22)
())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.
【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 2、【提示】注意:x 2+a 2=
2
22)
(a x +,
∴ x 2+a 2
-x
2
2a
x +=
2
2a
x +(
2
2a
x +-x ),x 2-x
2
2
a
x +=-x
(
2
2
a
x +-x ).
【解】原式=
)
(2
222x a x a x x
-++-
)(22
2
2
2
x a x x a
x x -++-+
22
1a
x +
=
)
(()2(2
2222
2
2
2
2
2
2
x a x a x x a
x x a x x a x x -+++++-+- =
)
()(22
2
2
2
2
22222222x a x a x x x
a x x a x a x x x -++-+++++-=
)
()(2
2
2
2
2
2222x a x a x x a
x x a x -+++-+=
)()(2
2
2
2
2
2
2
2
x a x a x x x a x a x -++-++
=x
1.当x =1-
2时,原式=2
11
-=-1-
2.【点评】
本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即
原
式
=
)
(2
222x a x a x x
-++-
)(22
2
22x a x x a x x -++-+
22
1a
x +
=
)
11(
2
2
2
2
a
x x
a x +-
-+-
)
11
(22x x a x --++221a
x +=x
1
.
解答题: 1、【提示】先将每个部分分母有理化后,再计算.
【解】原式=(2
5
+1)(
1
21
2--+
2
323--+
3
434--+…+
99
10099100--)
=(2
5+1)[(12-)+(2
3-)+
(
34-)+…+(99
100-)]
=(25+1)(1100-)
=9(2
5+1).
【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.
2、【提示】要使y 有意义,必须满足什么条件?
]
.014041[⎩⎨⎧≥-≥-x x 你能
求出x ,y 的值吗?]
.2141[⎪⎪⎩
⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩
⎪⎪⎨
⎧
≥≤.414
1x x ∴ x =41
.当x =4
1
时,y =2
1.
又∵
x
y y x ++2-
x
y
y x +-2=
2)(x
y y x
+-
2)(x
y y x -
=|
x
y y x +|-|
x y
y
x -|∵ x =4
1,y =2
1,
∴
y
x <
x
y .
∴ 原式=
x
y y x +-
y
x x y +=2
y
x 当x =
4
1,y =21时,
原式=2
2
141=
2
.【点评】解本题的关键是利用二次根式
的意义求出x 的值,进而求出y 的值.。