绝对值问题的解法
例谈绝对值问题的求解方法
例谈绝对值问题的求解方法在初中数学竞赛试题中常出现绝对值问题,这是初中生较难把握的一类问题,现介绍若干种常见的解题方法,供参考。
一、定义法----- x —X—1597 = 0例1 若方程^7' 只有负数解,则实数a的取值范围是:。
分析与解因为方程只有负数解,故'-■"!',原方程可化为:-一+1 x = -199711997 丿+1> 0, ■ a >-1997即-厂说明绝对值的意义有两点。
其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。
利用绝对值的定义常可达到去掉绝对值符号的目的二、利用非负性例2 方程刪+1工7 + 1卜°的图象是((A)三条直线:■「―|■工.-f ;(B) ................................. 两条直线:「:■'(C)一点和一条直线:(0, 0), - 1 1 1(D)两个点:(0, 1), (- 1, 0)=叶闵啊-炖十血啊-问)=(同-01)(1 必 1+亦)=(卜卜怦)(70+处)=0说明 本题根据公式1I = H ,将原式化为含有同 的式子,再根据绝对值的定义求值。
四、分类讨论法分析与解 由已知,根据非负数的性质,得 矽二0.兀一尹+1 =解之得: 故原方程的图象为两个点(0, 1),(- 1 说明 利用非负数的性质,可以将绝对值符 题转化为其它的问题来解决。
0)。
去掉,从而将问 三、公式法例3 已知必V 。
,求邢卜『同+必也卜购分析与解 丫宀涉同牯圈, ...原式*冲|-甘巾|+必(同-同)的值或小” -1例4 实数a满足同+ "°且"-1,那么"1分析与解由1'1_,'可得心且】。
当-1 时,*卜1. ”1*+1| 一口十]一说明有的题目中,含绝对值的代数式不能直接确定其符号, 这就要求分情况对字母涉及的可能取值进行讨论。
01绝对值不等式(含经典例题+答案)
绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
含绝对值的函数方程解法
含绝对值的函数方程解法
对于含有绝对值的函数方程,求解的过程需要考虑绝对值的两种情况:正数和负数。
下面将介绍两种常见的解法。
1. 正数解法
当绝对值中的变量取正数时,可以将绝对值去除,直接求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,其中 $a,b,c$ 都是已知的实数常数,我们可以按照以下步骤求解:
1. 当 $x - a > 0$ 时,$|x - a| = x - a$,因此方程可转化为 $f(x) = x - a + b = c$;
2. 将方程整理为 $x = c - b + a$。
因此,当 $x - a > 0$ 时,方程的解为 $x = c - b + a$。
2. 负数解法
当绝对值中的变量取负数时,可以将绝对值去除,并加上负号,再求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,我们可以按照以下步骤
求解:
1. 当 $x - a < 0$ 时,$|x - a| = -(x - a)$,因此方程可转化为 $f(x) = -(x - a) + b = c$;
2. 将方程整理为 $x = a + c - b$。
因此,当 $x - a < 0$ 时,方程的解为 $x = a + c - b$。
需要注意的是,在求解含有绝对值的函数方程时,我们需要分
别考虑正数和负数的情况,并得到两组解。
最后,我们可以将两组
解合并为一个解集。
以上就是含绝对值的函数方程的解法。
希望以上内容能对你有
所帮助!。
绝对值不等式的解法及应用
绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
绝对值的化简求值问题的几种类型及解法解析
数学篇解题指南绝对值在化简求值问题、解方程或不等式问题中都会涉及.解答含绝对值问题的关键就在于去掉绝对值符号.一般遵循的原则是:先判断绝对值符号中式子的正负,再根据法则去掉绝对值符号.单个绝对值的问题一般比较简单,但是有的题目会同时出现多个绝对值或多重绝对值,这样就使题目变得复杂了.下面介绍几类有关绝对值的化简求值问题,供大家参考.一、含单个绝对值问题一个题目中只含有一个绝对值是最基础的题目,此时只需考虑去绝对值符号的条件,即对于任意数|a |:(1)当a >0时,|a |=a ;(2)当a =0时|a |=0;(3)当a <0时;|a |=-a .同学们在解题时应根据题设条件或挖掘隐含条件,确定绝对值符号里代数式的正负.若题目对含绝对值代数式的字母没有限制条件,须运用分类讨论的方法来解答.例1若|x |=3,|y |=2,且|x -y |=y -x ,求x +y 的值.分析:此题中|x |=3,可知x =±3;|y |=2可知y =±2.由题中|x -y |=y -x 可知y ≥x .由此可以推断,当y =2时,x 可以为±3,此时x +y =-1或5;当y =-2时,x 只能为-3,此时x +y =-5.最后综合所有情况即可得解.解:∵|x |=3,∴x =±3;同理可得y =±2,∵|x -y |=y -x ,∴y ≥x ,①当y =2时,x =-3,x +y =-1.②当y =-2时,x =-3,则x +y =-5.综合①②得x +y 的值可能是-1、-5.评注:求解此题是利用|x -y |≥0挖掘了隐含条件y ≥x ,然后确定x 和y 的可能值,简化了分类讨论的种类.同学们在求解过程中一定要仔细观察,充分挖掘题目中的隐含条件.二、含多个绝对值问题有些含有绝对值的题目中往往不止一个含绝对值的代数式,可能是两个、三个甚至是更多个含绝对值的代数式,通过“+”“-”“×”“÷”等运算符号连接.此时,去绝对值符号就需要先找出每个绝对值的零点值,再把全体实数分段,然后在每一实数段中化去绝对值符号,最后分类讨论去绝对值的结果.例2化简:|3x +1|+|2x -1|.分析:此题含有两个绝对值,要想去绝对绝对值的化简求值问题的几种类型及解法解析盐城市新洋初级中学聂玉成19数学篇值符号就要将绝对值符号内的数或式与“0”比较,然后逐个去掉绝对值符号.令3x +1=0得x =-13,同理,令2x -1=0得x =12.所以,当x 取不同的值时,两个绝对值的正负是不同的,需要分类讨论来解答.x 的取值分布如图所示:---解:令3x +1=0,得x =-13,令2x -1=0,得x =12,所以,实数轴被-13和12分为如图所示的三个部分.当x <-13时,3x +1<0,且2x -1<0,则原式=-(3x +1)+[-(2x -1)]=-5x ;当-13≤x ≤12时,3x +1≥0,且2x -1≤0,则原式=(3x +1)+[-(2x -1)]=x +2;当x >12时,3x +1>0,且2x -1>0,则原式=(3x +1)+(2x -1)=5x ;综上所述,当x <-13,原式=-5x ;当-13≤x ≤12,原式=x +2;当x >12,原式=5x .评注:此题含有两个绝对值,即含有两个零点(x =-13和x =12),在去绝对值符号时需要借助“分类讨论思想”分情况解答.特别是第二种情况,去绝对值符号时两个代数式是一正一负,务必要注意符号问题.三、含多重绝对值问题有些较为复杂的问题中含有多重绝对值符号,即绝对值符号中还有绝对值符号,我们称这种形式为多重绝对值.在求解多重绝对来解答问题.例3已知x <-3,化简:|3+|2-|1+x |||.分析:这是一个含有多重绝对值符号的问题,在求解时需要根据“由内而外”的原则逐层去绝对值.首先根据x 的范围判断出1+x <0,所以最里层绝对值|1+x |=-(1+x ).第二层|2-|1+x ||可以转化为|2-[-(1+x )]|=|3+x |.因为x <-3,所以3+x <0,即|2-|1+x ||=-(3+x ).最外层|3+|2-|1+x |||可转化为|3+[-(3+x )]|=|-x |.这样根据x 的取值范围一步步利用绝对值的代数意义即可化简.解:①最内层:∵x <-3,∴1+x <-2<0,∴|1+x |=-(1+x ),②第二层:|2-|1+x ||=|2-[-(1+x )]|=|2+(1+x )|=|3+x |,∵x <-3,∴3+x <0,∴|3+x |=-(3+x ),∴|2-|1+x ||=-(3+x ),③最外层:|3+|2-|1+x |||=|3+[-(3+x )]|=|-x |,∵x <-3,∴-x >3>0,∴|-x |=-x ,∴|3+|2-|1+x |||=-x ,综合①②③可得|3+|2-|1+x |||化简后为-x .评注:此题数值比较简单,但含有多重绝对值符号.在去绝对值符号时要由内而外逐层将3个层次的绝对值符号内部的数或式同“0”作比较,大于等于“0”的直接去绝对值;小于“0”的一定要添加“-”.绝对值是中学数学中的一个重要概念,常与其他知识结合起来考查.同学们只要牢牢掌握去绝对值的基本方法,结合“由内而解题指南。
高中数学常见题型解法归纳 绝对值常考题型的解法
高中数学常见题型解法归纳 绝对值常考题型的解法【知识要点】一、去绝对值常用的有两种方法.方法一:公式法 0||000xx x x xx方法二:平方法 如:||x a = 所以22x a .(平方时必须保证两边都是非负数) 二、||x a >||x a x a x a a x a 或三、重要绝对值不等式:||||||||||||a b a b a b -≤-≤+使用这个不等式可以求绝对值函数的最值,先要确定是使用左边还是右边,如果两个绝对值中间是“-”号,就用左边,如果两个绝对值中间是“+”号,就使用右边.再确定中间的“±”号,不管是“+”还是“-”,总之要使中间是常数.四、解绝对值不等式常用的方法是零点讨论法和数形结合法.五、求绝对值()|||x b |f x x a =+±+的最值,常用重要绝对值不等式求解,或者利用数形结合求解.【方法讲评】 题型一 解含一个绝对值的不等式 解题步骤直接利用公式||x a>||x a x a x a a x a 或解答,当然也可以使用零点讨论法和数形结合,但是直接使用公式法最简单.【例1】已知关于x 的不等式:12≤-m x 的整数解有且仅有一个值为2.(1)求整数m 的值;(2)在(1)的条件下,解不等式:m x x ≥-+-31.(2)即解不等式431≥-+-x x【点评】解含一个绝对值的不等式,一般利用公式法解答,解答含两个绝对值的不等式,一般利用零点讨论法.【反馈检测1】已知函数2()|1|f x x =-.(Ⅰ)解不等式()22f x x ≤+;(Ⅱ)设0a >,若关于x 的不等式()5f x ax +≤解集非空,求a 的取值范围.题型二解含两个绝对值的不等式 解题步骤 一般使用零点讨论法和数形结合法求解. 【例2】已知函数()12f x x x =+-。
(Ⅰ)求不等式()6f x ≤-的解集;(Ⅱ)若存在实数x 满足()2log f x a =,求实数a 的取值范围.【解析】(Ⅰ)()1,1,1231,10,1,0.x x f x x x x x x x -<-⎧⎪=+-=+-≤≤⎨⎪->⎩则不等式()6f x ≤-等价于1,16x x <-⎧⎨-≤-⎩或10,316x x -≤≤⎧⎨+≤-⎩或0,1 6.x x >⎧⎨-≤-⎩ 解得5x ≤-或7x ≥.故该不等式的解集是{5x x ≤-,或}7x ≥.(Ⅱ)若存在实数x 满足()2log f x a =,即关于x 的方程()2log f x a =在实数集上有解,则2log a 的取值范围是函数()f x 的值域.由(Ⅰ)可得函数()f x 的值域是(],1-∞,∴2log 1a ≤,解得02a <≤.【点评】对于形如||||ax b cx d e +++>的不等式,一般分三种情况分类讨论.注意讨论每一种情况时,要和讨论的标准求交集,最后的结果要求并集,即“小分类求交,大综合求并”.【反馈检测2】已知函数()|21||23|.f x x x =++-(1)求不等式6)(≤x f 的解集;(2)若关于x 的不等式()1f x a <-的解集非空,求实数a 的取值范围.题型三求绝对值函数的最值 解题步骤直接使用重要绝对值不等式||||||||||||a b a b a b -≤-≤+求解,也可以利用数形结合求解.【例3】已知函数()|1||3|f x x x =-++.(1)求x 的取值范围,使()f x 为常数函数.(2)若关于x 的不等式()a 0f x -≤解集不是空集,求实数a 的取值范围.(2)方法一:如图,结合(1)知函数()f x 的最小值为4,∴实数a 的取值范围为4a ≥.方法二: |1||3||x 1(x 3)|x x -++≥--+∴|1||3|4x x -++≥,【点评】(1)关于x 的不等式()0f x a -≤解集不是空集,即关于x 的不等式()0f x a -≤有实数解,即至少存在一个实数使得不等式成立,所以它是有解问题.即左边绝对值函数的最小值小于等于a.(2)不等式的恒成立和存在性问题有时很容易弄混淆,所以要理解清楚.()f x a 恒成立等价于max (x)f a ,()f x a 有解等价于min (x)f a ,()f x a 恒成立等价于min (x)f a ,()f x a 有解等价于 max (x)f a .【反馈检测3】已知函数()|2||23|f x x a x =-++,()|1|2g x x =-+.(1)解不等式|()|5g x <;(2)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.高中数学常考题型解法归纳及反馈检测第34讲:绝对值常考题型的解法参考答案【反馈检测1答案】(Ⅰ){|13}x x -≤≤;(Ⅱ)[4,]+∞.【反馈检测1详细解析】(Ⅰ)()22f x x ≤+,即2|1|22x x -≤+,所以22122,1(22),x x x x ⎧-≤+⎪⎨-≥-+⎪⎩ 由2122x x -≤+,解得13x -≤≤;而21(22)x x -≥-+的解集为R . 所以原不等式的解集为{|13}x x -≤≤.【反馈检测2答案】(1)}21|{≤≤-x x ;(2)3a <-或5a >.【反馈检测2详细解析】(1)原不等式等价于313222(21)(23)6(21)(23)6x x x x x x ⎧⎧>-≤≤⎪⎪⎨⎨⎪⎪++-≤+--≤⎩⎩或或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--≤⎩ 解得322x <≤或1322x -≤≤或112x -≤<- 即不等式的解集为}21|{≤≤-x x(2)4|)32()12(||32||12|=--+≥-++x x x x 4|1|>-∴a 3a ∴<-或5a >.【反馈检测3答案】(1)(2,4)-(2)1a ≥-或5a ≤-.。
关于绝对值的几种题型及解题技巧
关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。
即0≥a 。
但是,绝对值里面的数值可以是正数也可以是负数。
怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。
所以,0≥a ,而a 则有两种可能:o a 和0 a 。
如:5=a ,则5=a 和5-=a 。
合并写成:5±=a 。
于是我们得到这样一个性质:a很多同学无法理解,为什么0 a 时,开出来的时候一定要添加一个“负号”呢?a -。
因为此时0 a ,也就是说a 是一个负数,负数乘以符号就是正号了。
如2)2(=--。
因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。
例如:0 b a -,则)(b a b a --=-。
绝对值的题解始终围绕绝对值的性质来展开的。
我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。
绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a >0)(2) |a|= 0 (a=0) (代数意义)a 0 a 0 0=a a - 0 a-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0);(7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|一:比较大小典型题型:【1】已知a 、b 为有理数,且0 a ,0 b ,b a ,则 ( )A :a b b a -- ;B :a b a b -- ;C :a b b a --;D :a a b b --这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。
绝对值问题的解法
绝对值问题的解法可以根据具体的情况采用不同的方法。以下是几种常见的解法:
1. 利用定义法:绝对值的定义是一个数与零的距离,即|a| = a, 当a ≥ 0;|a| = -a, 当a < 0。因此,对于给定的绝对值问题,可以根据定义直接计算出绝对值的值。
2. 利用性质法:绝对值具有一些特性,如|a| = |-a|,即绝对值的值与其符号无关;|a| = |b|,当且仅当a = b或a = -b。根据这些性质,可以通过对等式进行变形或化简,来求解绝 对值问题。
绝对值问题的解法
3. 利用分段函数法:绝对值问题可以用分段函数的形式表示。例如,|x - a| = b,可以分 为两种情况讨论:当x - a ≥ 0时,有x - a = b;当x - a < 0时,有x - a = -b。通过解这两个 方程,可以得到绝对值问题的解。
4. 利用图像法:绝对值函数的图像是一个以原点为对称中心的V形曲线。通过观察图像, 可以确定绝对值函数在不同区间上的取值范围,从而解决绝对值问题。
需要注意的是,绝对值问题的解可能有多个解或无解,具体取决于问题的条件和约束。在 解题过程中,要注意对不等式进行合理的变形和化
含绝对值不等式的解法1
方法一:等价于 不等式组
| ax b | n | ax b | m
方法二:几何意义
-m
-n 0 n
m
n ax b m,或 m ax b n
推广 a f(x) b a f(x) b或-b f(x) a
题型二:不等式n<| ax + b | <m (m>n>0) 的解集
∴原不等式的解集为{x | x<-2或x>-1}.
解题反思:
1、采用了整体换元。
2、归纳型如(a>0)
| f(x)|<a, |f(x)|>a 不 等式的解法。
| f(x)|<a | f(x)|>a
-a<f(x)<a
f(x)<-a或 f(x)>a
变式例题:型如 | f(x)|<a, |f(x)|>a的不等式中
题型四:含多个绝对值不等式的解法
练习4 解不等式 x+1 - x-3 2
解不等式
x2 x3 7
2x 4 3x 3 7
3.解不等式:| x 2 || x 1| 3
x 2
三、例题讲解
① -1 ② 3 ③
例2 解不等式|x +1| + |3-x| >2 + x.
解析原不等式变形为| X +1| + |X -3| > 2 + X.
不等式解集为 x x≥-1
推广 f x g x f x2 g x2
题型三:不等式 的解集|f(x)|> |g(x)| 练习3 解不等式 | x 2 || x 1|
四、练习
2.解不等式 x 9 x 1
解: x 9 x 1
x 92 x 12
七年级数学专题-绝对值问题的几种解法
小结:
• 这节课你有什么收获?
一、直接推理法
说明: 本题是直接利用有理数加法法则和有理数乘法法则确定字母符号
二、巧用数轴法
说明:本题是通过数轴,运用数形结合的方法确定字母的大小顺序, 从而达到去掉绝对值的目的.
三、零点分段法
说明:本题是求两个绝对值和的问题.解题的关键是如何同时 去掉两个绝对值符号
四、分类讨论法
练习:
思路点拨 解本例的关键是利用绝对值的几何意义确定括号内每个式子的 取值范围
绝对值问题几种解法
• 绝对值是初中代数中的一个基本概念, 在竞赛中经常会遇到含有绝对值符号 的问题,同学们要注意知识的创新运 用, 掌握好方法,顺利解决这些问 题.
知识回顾
• 1.去绝对值的符号法则: • 2.绝对值基本性质 • ①非负性:
• 3.绝对值的几; |a-b|表示数a 、数 b的两点 间的距离.
绝对值方程(组)的几种解法
绝对值方程(组)的几种解法带有绝对值的方程(组),一般都是通过划分区间,去掉绝对值,分段讨论求解.但对于一些特殊的绝对值方程(组),采取特殊方法,就可以避免一般方法的复杂运算.本文介绍的几种特殊解法,供读者参考.一、利用绝对值定义在解题时,利用|a |≥0,把方程(组)变形,简化,然后求其解.例1 解方程组:⎩⎨⎧-=+=-++(2)42|1|(1) 3|2||1|y x y x 解:由(2),|1|+x ≥0,⎩⎨⎧=--+=-++∴-=-∴≥≥-∴(4).0)2(2|1|(3) 3)2(|1|:.2|2|.2,042y x y x y y y y 原方程变形为(3)×2+(4)得:|x +1|=2.解得:.3,121-==x x代入(3)得:y =3. ∴方程组的解为:⎩⎨⎧=-=⎩⎨⎧==.3,3 ,3,12211y x y x 二、利用不等式性质将方程适当变形,利用不等式公式中等号成立的条件,求方程(组)的解.例2 解方程:.|4||2||6|4224-=-+--x x x x解:由绝对值不等式知,若a 、b 为实数,则|a +b |≤|a |+|b|, (1)由于|,4||)2()6(||2||6|4224224-=++--≥++--x x x x x x λ因为(1)式中等号成立的充要条件是a ·b ≥0,所以,0)2)(6(224≥+--x x x:,3,0)3()2(2222解得≥∴≥-+x x x.33-≤≥x x 或 三、利用复数模长公式适当引入复变量代换,把实数问题转化为复数问题,然后利用复数模长公式的特性,求得方程(组)的解.例3 解方程22|2042644|222+-=++-++x x x x x x将原方程变形得:(2).22|204244|(1)|,|||||||.221)1(||,4)2(||,5)12(||,4)2(,5)12(.224)2(5)12(|2222121222212222212122222+-≤++-++∴-≤-+-=+-=-++=++=++=++=+-=++-++x x x x b x x z z z z x x x z z x z x z i x z i x z x x x x 又则设 由于(1)式当且仅当z 1、z 2共线且方向相同时等号成立.若(2)式等号成立,有:,42512x x +=+解得x =2. ∴方程的解为x =2.四、利用|a |2=a 2(a ∈R )在解方程(组)时,注意到a ∈R 时,有|a |2=a 2,可以去掉绝对值,把方程(组)简化.例4 解方程:321=--x x 解:由根式定义知:0≤x ≤1 设],2,0[,sin 2πθθ∈=x 则原方程化为:32|cos sin |=-θθ 上式两边平方得:,972sin ,922sin 1==-θθ .18249,.18249,1824922cos 1sin ,2942cos 2是原方程的解经检验即±=±=±=-=∴±=∴x x θθθ 五、利用函数性质把方程和函数联系在一起,利用函数的性质,可以直接求解.例5 解方程组:⎩⎨⎧=+=+(2) .10||2||5(1) ,6||2||y x y x 解:分别以-x 、-y 及同时以-x 、-y 作代换(1)、(2)均不变,知它们的图象关于x 轴、y 轴和原点对称.因此,设x ≥0,y ≥0得:⎪⎩⎪⎨⎧==⎩⎨⎧=+=+.25,1:.1025,62y x y x y x 解得 依x 轴、y 轴及原点对称,可得另三组解:⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧-==.25,1 ;25,1 ;25,1y x y x y x。
绝对值方程的解法
绝对值方程的解法绝对值方程是一种在数学中常见的方程类型,其中含有绝对值符号。
它们的解法相较于其他方程类型略有不同,需要通过考虑绝对值的两种可能取值情况来确定解的范围。
本文将介绍两种常见的解绝对值方程的方法:图像法和代数法。
一、图像法图像法是一种直观且易于理解的解绝对值方程的方法。
它通过绘制绝对值函数的图像,观察函数与坐标轴的交点来确定方程的解。
例如,考虑以下绝对值方程:|2x - 3| = 5首先,我们需要将方程两边的绝对值符号去除,并考虑两种可能的情况:情况1:2x - 3 = 5解这个方程得到 x = 4。
情况2:2x - 3 = -5解这个方程得到 x = -1。
因此,绝对值方程 |2x - 3| = 5 的解为 x = 4 和 x = -1。
图像法通过绘制绝对值函数 y = |2x - 3| 和 y = 5 的图像,观察它们的交点来验证解的正确性。
在图像中,我们可以看到2个交点分别对应方程的两个解。
二、代数法代数法是另一种解绝对值方程的常见方法。
它通过代数运算和数学推理,直接得到方程的解。
考虑以下绝对值方程:|2x - 3| = 5代数法中的基本思路是考虑绝对值的两种可能取值情况,并将方程转化为两个无绝对值符号的方程来求解。
情况1:当 2x - 3 为正数时,即 2x - 3 = 5解这个方程得到 x = 4。
情况2:当 2x - 3 为负数时,即 2x - 3 = -5解这个方程得到 x = -1。
因此,绝对值方程 |2x - 3| = 5 的解为 x = 4 和 x = -1,与图像法的结果一致。
在代数法中,我们将绝对值去除后得到两个方程,并分别解这两个方程。
通过这种方式,我们可以直接得到方程的解,而无需绘制图像。
总结起来,解绝对值方程的方法有图像法和代数法两种。
图像法通过绘制绝对值函数的图像,观察函数与坐标轴的交点来确定方程的解。
代数法通过考虑绝对值的两种可能取值情况,并将方程转化为两个无绝对值符号的方程来求解。
七年级绝对值最大值最小值解法
七年级绝对值最大值最小值解法一、绝对值的基本概念。
1. 定义。
- 绝对值表示数轴上一个数所对应的点与原点的距离。
例如,|3| = 3,表示3这个点到原点的距离是3;| - 5|=5,表示 - 5这个点到原点的距离是5。
- 用数学式子表示为:| a|=a(a≥0) - a(a < 0)二、求绝对值表达式的最大值和最小值的常见类型及解法。
(一)简单的绝对值表达式。
1. 类型一:| x|形式。
- 对于y = | x|,因为绝对值是非负的,所以y=| x|≥0。
- 最小值:当x = 0时,y取得最小值0;没有最大值,因为x可以取任意实数,| x|可以无限大。
2. 类型二:| x - a|形式。
- 对于y=| x - a|,它表示数轴上x所对应的点到a所对应的点的距离。
- 最小值:当x=a时,y取得最小值0;没有最大值。
(二)含有多个绝对值的表达式。
1. 类型一:y=| x - a|+| x - b|(a < b)形式。
- 几何意义:y=| x - a|+| x - b|表示数轴上一点x到a点和b点的距离之和。
- 最小值:当a≤ x≤ b时,y取得最小值| b - a|。
- 证明:当x < a时,y=(a - x)+(b - x)=a + b-2x,y随x的增大而减小;当x > b 时,y=(x - a)+(x - b)=2x-(a + b),y随x的增大而增大;当a≤ x≤ b时,y=(x - a)+(b - x)=b - a,此时y取得最小值| b - a|,没有最大值。
2. 类型二:y=| x - a|-| x - b|(a < b)形式。
- 几何意义:y=| x - a|-| x - b|表示数轴上一点x到a点和b点的距离之差。
- 最大值:当x≥ b时,y取得最大值| b - a|;最小值:当x≤ a时,y取得最小值-| b - a|。
- 证明:当x < a时,y=(a - x)-(b - x)=a - b;当a≤ x < b时,y=(x - a)-(b -x)=2x-(a + b),y在这个区间内的值介于-| b - a|和| b - a|之间;当x≥ b时,y=(x - a)-(x - b)=b - a。
七年级绝对值方程的7种解法
七年级绝对值方程的7种解法
1.完全分开法:
将绝对值方程分为两个等价的数学式,一个是原式,另一个是原式的
绝对值表达式,然后分别求解。
2.弹性分开法:
不用把绝对值方程分为两个等价的数学式,而是直接把两个部分弹性
分开计算,把绝对值表达式作为一组,把原式相当于一组,分别求解。
3.解析法:
解析法是将绝对值方程看作一个整体,把方程中绝对值变成乘积,也
就是将二次式全部写几次,然后把相同的项系数求和,再去解整个二
次式,最后就可以求得绝对值方程的解。
4.代入法:
把绝对值方程的解代入绝对值表达式中,然后求原式的值是否等于被
代入的值,看是否满足方程的等式,如果满足的话就说明绝对值方程
的组解求出了。
5.图解法:
将构成绝对值方程的绝对值表达式图示出来,然后找到两个组解,分
别代入原式中求解。
6.记号法:
使用记号法在组解的符号上做一个合理的假定,然后通过检验来求解绝对值方程的两个组解。
7.减法法:
利用原式的另一属性(减去y的绝对值),将绝对值方程中的绝对值表达式分成两组:y与减去y的绝对值,再同时解两个一次方程组,最后就可以求得绝对值方程的组解。
含绝对值的解与不等式求解
含绝对值的解与不等式求解绝对值函数在数学中具有重要的应用价值,尤其是在解方程和不等式问题上。
本文旨在探讨含绝对值的解以及如何求解不等式。
一、含绝对值的方程解法对于形如|a|x + b| = c的绝对值方程,需要分别讨论x的取值范围,并找出满足条件的解。
下面将介绍两种常用解法。
1.1 分类讨论法当a为正数时,绝对值函数为增函数,因此可以将方程化简为两个线性方程来求解。
考虑到x的取值情况,可以得到以下两个方程:a*x + b = c x >= 0;-a*x - b = c x < 0。
解出以上两个方程可得到两组解,分别代入原方程中验证,得到最终的解集。
当a为负数时,绝对值函数为减函数。
同样可以将方程化简为两个线性方程来求解,但此时每个方程对应的x的取值范围相反:-a*x + b = c x >= 0;a*x - b = c x < 0。
解出以上两个方程可得到两组解,分别代入原方程中验证,得到最终的解集。
1.2 代数法求解对于一元绝对值方程|a|x + b| = c,可以将方程分解为两个方程:a*x + b = c 或 a*x + b = -c。
解出以上两个方程的解集分别为S1和S2,则原方程的解集为S1 ∪ S2。
二、含绝对值的不等式解法对于形如|a|x + b| < c的绝对值不等式,同样需要根据a的正负情况进行分类讨论。
2.1 分类讨论法当a为正数时,绝对值函数为增函数,可以将不等式化简为两个线性不等式:a*x + b < c x >= 0;-a*x - b < c x < 0。
解出以上两个不等式可得到两个解集,分别为S1和S2。
由于题目要求不等式的解集,因此需要求得S1 ∪ S2的交集。
当a为负数时,绝对值函数为减函数,将不等式化简为以下两个线性不等式:-a*x + b < c x >= 0;a*x - b < c x < 0。
高中数学绝对值不等式的解法
-2
1 2
3
巩固练习:
解下列不等式:
1 1 (1) | x | 4 2
(3) | 5 x 4 | 6 (5)1 | 3 x 4 | 6
2 1 ( 2) | x | 3 3 (4) | 3 2 x | 7
(6) | x 3 x | 4
2
(7) | 3 2 | 1
2017/4/20
②
①
-m -n 0 n m 题型3: 形如n<| ax + b | <m (m>n>0)不等式
等价于不等式组
①
n ax b m, 或 m ax b n
推广: | f(x) | <g(x), | f(x) | >g(x)
2017/4/20 南粤名校——南海中学
3 x 4, 或 1 x 0 .
原不等式的解集是 {x | 1 x 0, 或3 x 4}.
2017/4/20 南粤名校——南海中学
解不等式 3<|3-2x|≤5 .
解法3:3 | 3 2 x | 5 3 | 2 x 3 | 5
3 2 x 3 5, 或 5 2 x 3 3
2 3 4
这是解含绝对值不等式的四种常用思路
1.探索:不等式|x|<1的解集。 方法一: 利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1 0Байду номын сангаас1
所以,不等式|x|<1的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。 方法二: 利用绝对值的定义去掉绝对值符号, 需要分类讨论 ①当x≥0时,原不等式可化为x<1
绝对值的解法和技巧
绝对值的解法和技巧
- 去绝对值符号:根据绝对值的基本性质去掉绝对值符号,是解决绝对值问题的常用策略。
- 添加绝对值符号:利用$a^2=∣a∣^2$,把关于$a$的问题转化关于为∣a∣的问题,可以达到出奇制胜的效果。
- 运用绝对值的几何意义:∣a∣是数轴上表示数$a$的点与原点的距离,∣x-a∣是数轴上表示数$x$的点与表示数$a$的点的距离。
运用绝对值的几何意义,可以使绝对值问题得到巧解。
- 运用绝对值的非负性:∣a∣≥0,即∣a∣是一个非负数,运用绝对值的非负性解有关绝对值问题,也是一种常用的策略方法。
- 运用绝对值的不等式性质:绝对值问题常用到两个重要不等式,∣a∣-∣b∣≤∣a+b ∣≤∣a∣+∣b∣和∣∣a∣-∣b∣∣≤∣a±b∣。
- 绝对值性质与整数性质相结合:一个整数,绝对值就是本身;一个负数,绝对值就是它的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值问题的解法
绝对值是初中代数中的重点内容,也是复习的难点,深刻的理解绝对值的概念,牢固地掌握绝对值的性质,是解决绝对值问题的关键,现将绝对值有关性质总结如下:
⑴若a>0,则∣a∣=a; 若 a=0, 则∣a∣=a, 若 a<0, 则∣a∣= - a。
⑵∣a∣≧0,即绝对值的非负性。
⑶∣a∣+∣b∣=0,则a=0,b=0。
⑷∣a∣=m,则a=m或a=-m。
下面举例说明绝对值问题的解法。
一、运用绝对值概念:
例1、若x<-2,则y=∣1-∣x+1∣∣等于()。
(A)2+x (B) -2-x (C) x (D) –x
解:∵x<-2, ∴1+x<0
∴∣1+x∣=(1+x)=-1-x
于是y=∣1-(-1-x)∣=∣2+x∣
又∵2+x<0,∴y=-(2+x)=-2-x,故选( B )。
二、平方法:
例2、已知实数 a满足∣1-a∣=1+∣a∣, = 。
解:原式两边平方得:
1-2a+ a 2 =1+2∣a∣+ a 2
∵∣a∣=-a,即a≤0
∴∣a-1∣=1-a
三、分类讨论法:
例3、若ab>0,则∣a∣/a+ ∣b∣/b- ∣ab∣∕ab的值等于。
解:∵ab>0,∴a、b同号。
⑴若a、b同正,则∣a∣=a,∣b∣=b,∣ab∣=ab
∴∣a∣/a+ ∣b∣/ b-∣ab∣/ab=1+1-1=1。
⑵若a、b同负,则∣a∣=-a,∣b∣=-b,∣ab∣=ab,∴∣a∣/a+∣b∣/b-∣ab∣/
ab=-1-1-1=-3。
综上所述,本题答案为1或-3。
四、应用非负数性质:
例4、若∣x-y+2∣与∣x+y-1∣=0
∵ x+y-1=0
x-y+2=0
∴ x=-1/2
y=3/2
∴x/y=-3。
五、零点分界法:
例5、化简∣x-1∣+∣1-2x∣-∣x+2∣。
解:令∣x-1∣=0,∣1-2x∣=0,∣x+2∣=0,得x=1,x= 1/ 2 ,x=-2。
以-2,1/2,1为界,将数轴分为四段。
⑴当x≤-2时,原式=1-x+1-2x+x+2=4-2x,
⑵当-2<x≤1/2时,原式=1-x+1-2x-(x+2)=-4x,
⑶当1/2<x≤1时,原式=1-x+2x-1-(x+2)=-2,
⑷当x>1时,原式=x-1+2x-1-(x+2)=2x-4。
六、整体运算法:
例6、解方程 -6x+3+∣x-3∣=0,
解:原方程变为 (X-3)2 +∣x-3∣-6=0
即∣x-3∣2 +∣x-3∣-6=0
分解因式得:(∣x-3∣+3)(∣x-3∣-2)=0
∵∣x-3∣+3﹥0,∴∣x-3∣-2=0
∴x=1或 x=5
练习题:
1.已知∣a+1∣+a+1=0,∣b-1∣=b-1,求∣a-b∣-∣a-2∣-∣b+3∣的值。
2.方程∣12x-1∣-1=2的解的个数是()。
(A)1个;(B)2个;(C)3个(D)4个。
3.方程x-2+∣x-3∣=1的实数解个数为()
(A)2个(B)3个 (C)4个 (D)无数个
4.设a 、b、 c为非零有理数,则a/∣a∣+b/∣b∣+c/∣c∣+ab/∣ab∣+bc/∣bc∣+ac/∣ac∣+abc/∣abc∣的值等于()。
以上内容只是我个人的一些拙见,不到之处还望各位同仁提出宝贵意见和建议,为我们的共同进步做好良好的铺垫。
2014、11、6、。