二维核磁共振简明原理及图谱解析上
二维NMR谱原理及解析
碳谱与氢 谱的对比
氢谱不足
不能测定不 含氢的官能 团
对于含碳较多的 有机物,烷氢的 化学环境类似, 而无法区别
碳谱补充
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
2.2
2.0
1.8
1.6
1.4
1.2
ppm
1D 谱 分辨率可通过提高外磁场强 度和增加谱图的维数而提高. nD NMR (n=2,3,4)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
一维核磁共振氢谱
1D NMR--脉冲序列和原理示意图
D1
核磁共振氢谱
1H NMR是应用最为广泛的核磁共振波谱。
JBC=7 Hz
B,C是磁不等价的核
JAB JAC
Hc C B
A
A
*C
*CH
*CH2 H2
*CH3 H3 H2 H1 C
H1 C C C
H1
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
H-12C H-13C
H-13C x100
105 Hz
B0
Be
原子核实际感受到的磁场: B = (1-s) B0 S:化学位移常数
化学位移
分子中的原子并不是孤立存在,它不仅在相互间发生作用也同周围环 境发生作用,从而导致相同的原子核却有不同的核磁共振频率.
化学位移
自旋-自旋偶合
Larmor
E B0
频率
e.g. B0=11.7 T,
w(1H)=500 MHz w(13C)=125 MHz 化学位移 ~ B0 » kHz 自旋-自旋偶合» Hz-kHz
二维核磁共振谱的原理
二维核磁共振谱的原理
二维核磁共振谱的原理是利用傅里叶变换将化学位移、耦合常数等核磁共振参数展开在二维平面上。
这样,在一维谱中重叠在一个频率坐标轴上的信号分别在两个独立的频率坐标轴上展开,从而减少了谱线的拥挤和重叠,提供了自旋核之间相互作用的信息。
具体来说,二维核磁共振谱技术的基本原理可以用二维傅里叶变换来解释。
当样品置于两个垂直的外磁场中时,样品中的原子核会在这两个磁场的作用下产生多重共振信号。
通过调节两个外磁场的频率,可以得到关于样品内部核之间相互作用的二维核磁共振谱数据。
第四章 二维核磁共振谱
第四章二维核磁共振谱4.1二维核磁共振的概述1.什么是二维谱二维核磁共振(2D NMR)方法是有Jeener 于1971年首先提出的,是一维谱衍生出来的新实验方法.引入二维后,减少了谱线的拥挤和重叠,提高了核之间相互关系的新信息.因而增加了结构信息,有利于复杂谱图的解析.特别是应用于复杂的天然产物和生物大分子的结构鉴定,2DNMR是目前适用于研究溶液中生物大分子构象的唯一技术.一维谱的信号是一个频率的函数,记为S(ω),共振峰分别在一条频率轴上.而二维谱是两个独立频率变量的信号函数,记为S(ω1,ω2),共振峰分布在由两个频率轴组成的平面上.2D-NMR的最大特点是将化学位移,偶合常数等参数字二维平面上展开,于是在一般一维谱中重叠在一个频率轴上的信号,被分散到两个独立的频率轴构成的二维平面上.,同时检测出共振核之间的相互作用.原则上二维谱可以用概念上不同的三种实验获得,(如图 4.1),(1).频率域实验(frequency- frequency) (2).混合时域(frequency-time)实验(3). 时域(time-time)实验.它是获得二维谱的主要方法,以两个独立的时间变量进行一系列实验,得到S(t1,t2),经过两次傅立叶变换得到二维谱S(ω1,ω2).通常所指的2D-NMR均是时间域二维实验.图4.1 2D-NMR 三种获得方式2.二维谱实验二维谱实验中,为确定所需的两个独立的时间变量,要用特种技术-时间分割。
即把整个时间按其物理意义分割成四个区间。
(如图所示)图4.2 一般二维谱实验(1)预备期:预备期在时间轴上通常是一个较长的时期,使核自旋体系回复对平衡状态,在预备期末加一个或多个射频脉冲,以产生所需要的单量子或多量子相干。
(2)在t1开始时由一个脉冲或几个脉冲使体系激发,此时间系控制磁化强度运动,并根据各种不同的化学环境的不同进动频率对它们的横向磁化矢量作出标识。
(3)在此期间通过相干或极化的传递,建立检测条件。
第三章 二维核磁谱解析ppt课件
从NOESY 谱可以判断分子组装:
从NOESY 谱可以判断分子组装:
通过氢谱也可以识别,因为前者结构中两个- Ph 是等价的 ,化学位移相同,而后者不同。
从NOESY 谱可以判断分子组装:
从NOESY 谱可以判断分子组装:
H1ROESY 光谱清楚地显示了环糊精内腔的H-3, H-5 质子与 呋喃环质子的NOE 相关峰(峰A, B, C, D, E, F), 表明呋喃环 进入了环糊精的空腔 . 图中呋喃环上的质子 (HF5,HF4)与环糊 精空腔质子(H-3)的较强相关峰(A, C), 强于质子(HF5, HF4)与 环糊精空腔质子 (H-5) 的相关峰 (B, D); 这些质子相关峰的强 弱说明了取代基呋喃环更靠近环糊精的质子H-3, 即呋喃环位 于环糊精的第二面羟基.同时在谱图中我们能看到, 呋喃环质 子HF3 与H-3 之间存在较弱的相关峰(E), 以及HCH2 与H-3 的弱相关峰 (F),这进一步说明了呋喃环是从环糊精第二面羟 基进入了另外一个环糊精的空腔, 如图4b 所示
COS Y 谱中的对角线把 COSY 谱分为两个部分 . 因为常见
COSY 谱的对角线从左下到右上, 所以COSY 谱的这两部 分就是左上和右下. 由于COSY 谱中的相关峰是沿着对角线 对称分布的, 四此 COSY 谱中两个部分所含的信息相同, 只分析其中的任一部分即可.
3.3 NOESY 谱和ROESY谱 NOESY 谱和ROESY 谱都属于NOE 类相关谱. 这俩种 二维谱的原理和效果有些差别,主要根据所研究的有机化合 物选择.但是这两种二维谱的外形和解析方法是一样的. 在测定常规核磁共振氢谱之后, 如果化合物的结构中有 两个H,它们之间的空间距离比较近(小于5X10-10 m) ,照 射其中一个H的峰组时测定氢谱. 与该H相近的另外一个H的 峰组面积会变化,这就是NOE 效应. 做NOE 差谱,把后面 测得的氢谱减去原来的 ( 常规)氢谱,面积有变化的地方就 会出峰,这就可以发现NOE 效应. 上述的方法是用一维谱的 方式测定NOE 效应. 如果一个化合物中有若干成对的氢原子 空间距离相近,需要照射若干次, 这样显然不方便. NOE 类 的二维谱则是通过一张 NOE 类的二维谱找到 - 个化合物内所 有空间距离相近的氢原子对.
二维核磁谱解析方法
二维核磁共振二维傅立叶变换核磁共振(2D-FT-NMR)是八十年代发展起来的核磁共振新技术。
二维谱是将NMR提供的信息,如化学位移和偶合常数,氢化学位移和碳化学位移等在二维平面上展开绘制成的图谱。
二维谱可分为同核化学位移相关谱和异核化学位移相关谱前者如1H-1H COSY谱,13C-13C COSY谱,后者则为各种13C-1H COSY谱等。
一、1H-1H COSY谱氢-氢相关谱(1H-1H COSY谱)是二维谱中最常用的。
在氢-氢相关谱上的横轴和纵轴均设定成为氢的化学位移,两个坐标轴上则画有通常的一维谱。
(1)对角峰与相关峰下面是乙酸乙酯的1H-1H COSY谱•在相关谱中,位于对角线的峰叫做对角峰如图中信号3•因相邻两原子间或有远程偶合关系的原子间的偶合而引起的,出现在对角线两侧对称的位置上的峰叫做相关峰。
如图中a和a’(2)偶合关系的确定偶合关系的确定有四种方式:▪A方式:从信号2向下引一条垂线和相关峰a相遇,再从a向左划一水平线和信号1相遇,则可确定信号1和2之间存在着偶合关系。
▪B方式:先从信号2向下划一垂线和a相遇,再从a向右划一水平线至对角峰[1],再由[1]向上引一垂线至信号1,即可确定偶合关系。
▪C方式:按照与B方式相反方向进行。
▪D方式:从1H-1H COSY谱的高磁场侧解析时,除C方式外,也常常采用D 方式。
即从1向下引一条垂线,通过对角峰[1]至a’,再从a’向左划一条水平线,即和1的偶合对象(2)的对角峰[2]相遇,从[2]向上划一垂线至信号2即可确定。
应用1H-1H COSY谱解析化合物的结构就是基于分子中相互偶合的氢之间在谱中会出现相关峰,出现相关峰的质子之间可以是间隔3个键的邻偶,也可以是间隔4个键以上的远程偶合,特别是偶合常数较小的远程偶合,在一维氢谱中有时很难观察到,因而成为1H-1H COSY谱的一个优势。
N H HO O COOH12345678H8H7H5H3在该化合物的二维1H-1H COSY谱中,H-7和H-8的相关峰最强,H-5和H-7的相关峰强度次之,H-5和H-8的相关峰最弱,这也说明两个质子之间的偶合常数越大,相关峰越强,两个原子之间的偶合常数越小,相关峰越弱,这也是1H-1H COSY谱的普通规律。
二维核磁
•如今二维NMR实验类型已经难以数计, 但是可以将它们主要地分为基于偶合的相 关转移谱和基于动力学过程的极化转移谱 两大类。
在NMR中,横向磁化强度总与相干相联系,纵向磁化强度 总与极化相联系。 二维谱一定与磁化强度的转移有关,要么是横向磁化强度 的转移或相干转移,例如化学位移相关谱COSY等,要么是 纵向磁化强度的转移或极化转移,例如化学位移交换谱 EXSY等。 二维谱的设计关键就是如何实现预定目标的相干转移谱或 极化转移谱。
尽管3D NMR谱的分辨率有所提高, 但解释较大的三维异核NMR谱时,仍存 在含糊性,因此,人们希望通过增加维 数进一步提高分辨率,随之出现了4D NMR谱,4D NMR谱常常是说明2D NMR谱的方法。4D NMR试验可以看成 是由三个2D NMR实验所组成。新的4D NMR技术仍在不断发展,并越来越广泛 的应用于蛋白质及核酸研究的报道。
13C-1H化学位移相关谱
13C-1H化学位移相关谱是把化
合物分子中的单键偶合(1JCH)的1H信 号与13C信号相关联,对于信号的确 认非常有效。它与1H-1H COSY一样 是应用最广泛和最重要的两个二维 实验技术 。
常规的13C-1H COSY可以得到 直接键合的碳和氢之间的偶合关 系(1JCH)。从其COSY谱得到的1H 谱线的归属,根据相互关系(1JCH 交叉峰),就可找到与之相连的13C信 号。反之,从一个已知的13C信号, 通过它的交叉峰也可找到与之相 连的1H信号。
相比,信噪比的提高就有了一个飞跃。
虽然HMQC实验成功率很高,但是它无法判定季 碳的化学位移。异核多重键相关谱(HMBC)实验弥补了 这一缺点。HMBC脉冲序列的基础仍然是HMQC实验, 只不过长程偶合常数比单键偶合常数小很多而已。 异核单量子相关谱(HSQC)实验是一种在演化期只涉 及单量子相干的逆检测开核相关实验。HSQC的图谱质 量要略差于HMQC谱。但是,HSQC谱在F1维的分辨率 要比HMQC谱高,这是因为在多量子谱中,量子数越大, 谱分辨率越差,尤其在高场仪器中。HSQC实验在三维 NMR中得到比HMQC实验广得多的应用。
二维核磁共振谱精简2
HMQC、HSQC反映的是 1JCH耦合, HMBC谱和COLOC则 对应于长程耦合nJCH 。
2019/12/3
35
Problem 3
从2D图中取出某一个谱 峰(F1或F2 )所对应相 关峰的1D断面图,对检 测一些弱小的相关峰很有 用。
投影图
是1D谱形式,相当于宽 带质子去偶氢谱,可准 确确定各谱峰的化学位 移值。
截面图
12
J分解谱
1. 同核J分解谱
一维谱中谱峰往往严重重叠,造成谱线裂分不 能 清楚分辨, 耦合常数不易读出。
二维核磁共振谱概述
什么是二维核磁共振谱?
一维核磁共振谱: 时域信号(FID信号)FT 频域谱(峰强度 vs 频率)
二维核磁共振谱:
是有两个时间变量,经两次傅利叶变换得到 的两个独立的频率变量的谱图。一般用第二个时 间变量 t2 表示采样时间,第一个时间变量 t1 则是 与 t2 无关的独立变量,是脉冲序列中的某一个变 化的时间间隔。
2019/12/3
30
2,3-二溴丙酸的HD-COSY谱
与COSY45o和90o谱比较, HD-COSY谱呈现出F2域峰宽 (保留JHH耦合), F1域峰窄 (宽带去耦)的细条状谱峰。
2019/12/3
31
2019/12/3
三环癸烷衍生物 的HD-COSY谱
F2域峰宽(保留JHH耦 合), F1域峰窄(宽 带质子去耦),化学 位移定标不同造成对 角峰反转,交叉峰由 于F1域去耦而变窄, 使其覆盖面变小,有 利于图谱解析,可以 清楚地显示出HJ与HI 、 HH、 HD、 HC 、 HA 的耦合。
二维核磁共振谱课件
脉冲-傅里叶变换核磁共振波谱仪的问世使同位素丰度 低、灵敏度低的同位素的核磁共振测定得以实现。核磁 共振二维谱的出现开创了核磁共振波谱学的新时期。对 鉴定有机化合物结构来说,解决问题更客观、可靠,而 且大大地提高了所能解决 的难度和增加了解决问题途径 的多样性。由于二维谱的脉冲序列不断涌现,有人称之 为“自旋工程”。 为了能对二维谱有一个比较深入的认识,以便能较好地 识谱,将阐述脉冲序列和二维谱的理论。
F S F和S相对2πν是对称分布的,此处2πν为横向磁化矢量平均的转动角速 2πν 2πν 度,相应于该核化学位移值。 随着时间的增加,F和S散开的角度也增大,到DE终点c时由于绕x’轴 的180º脉冲的作用,F和S的前后位置相互颠倒,在d时刻,F处于2πν之 后,S处于2πν之前,但F比S旋转快;随着旋转,F和S逐渐向中心(2w) 靠拢,在第二个DE中发生变化恰是第一个DE中发生的逆过程。在第 二个DE的终点e,F、S和2 πν会聚在一起,形成一个回波,即自旋回 波.这个过程也可称为重聚集。 当样品混有蛋白质、高聚物时,采用自旋回波可保留样品信号,消去大分 子的信号。因大分子的T2小,经过若干次自旋回波之后,其信号消失,以 后的自旋回波仅反映样品(小分子)的信号。 ·
矢 量一直沿着y‘轴方向,与13C 相 连的氢有两个磁化矢量将从Y ’ 轴方向开始,分别以2π ·1JCH/ 的角速度沿顺时针、反时针方 向旋转。到(c)点时α,β均转动 了 2π /2,亦即α,β二磁化矢量分 别沿X ‘和- X ’轴方向。与12C相连的氢的磁化矢量仍沿Y ‘轴。对1H 施加180º X ‘脉冲,沿Y ’轴的磁化矢量转到- Y ’轴,沿± X ‘轴的磁 化矢量保持不动。紧接着就施加对13C的180 X ‘脉冲, α,β的旋转方向改 变(e点)。在(f)点,与12C相连的氢的磁化矢量会聚于Y ’轴,而与13C相 连的氢的磁化矢量沿着-Y ’轴方向。经90 X ‘脉冲的作用( g点),与12C 相连的氢的磁化矢量沿Z轴方向,与13C相连的氢的磁化矢量则沿-Z轴。
核磁课件 二维谱
Two-dimentional NMR spectra
1
1971年J. Jeener 首次提出了二维核磁共振的概念;Ernst教 授进行了大量卓有成效的研究,推动了二维核磁共振的发展, 再加上他对脉冲-傅立叶变换核磁共振的贡献,获1991年诺 贝尔化学奖 提供相互偶合的观察核之间的相关关系信息 研究分子与分子之间相互作用 确定复杂分子(如生物分子)的结构,了解生物分子在溶液 状态时的空间结构(X-单晶衍射无法做到)
13
H-H二维谱需进行对称处理,去掉不对称的噪声峰。
H-H COSY二对称处理前后的谱图 H-H COSY, TOCSY ;HMQC, HSQC; HMBC
14
2.1、1H-1H COSY
• H-H COSY (H-H correlated spectroscopy) 同核位移相关谱
15
1H-1H COSY谱中的相关峰表示与该峰相交的两个峰之间有 自旋-自旋偶合(J-Coupling)存在。
9
10
11
二. 化学位移相关谱 (COSY)
Two-Dimesional Chemical Shift Correlation Spectroscopy
COSY作用:给出不同化学位移吸收峰之间的空间相关性。 包括同核COSY(通常为H-H耦合)和异核COSY(通常为H-C耦合)。 给出的信息:可以获得H-H之间的2J和3J耦合信息,甚至长程耦合信
通常在化学结构上,两个峰之间有自旋-自旋偶合表示产生 该峰的两个原子之间相隔的化学键数在三键以下。(当它们 之间有双键或三键存在时,四键或五键之间的原子也会有J偶 合存在)
相关峰的强弱(高低)与偶合常数J 值的大小有关,J 值越大相 关峰越强;当偶合常数(J 值)很小时,一维谱上可能表现 不出峰的偶合裂分,但二维谱上仍可能表现出相关峰。
二维核磁共振谱精简2
2019/11/28
17
同核J 分解谱
2019/11/28
化学位移
J 偶 合
18
丙烯酸丁酯的同核J分解谱
2019/11/28
19
2. 异核J分解谱
谱信息: w2: 全去偶谱 →化学位移 dC w1: 谱线裂分 → 偶合常数JCH
(直接相连的氢原子耦合裂分产生)
CH3 ---四重峰,CH2---三重峰,CH ---双重峰。 由于DEPT等测定碳原子级数的方法能代替异核J 谱,且检 测速度快,操作方便,因此异核J 谱较少应用。
2019/11/28
30
2,3-二溴丙酸的HD-COSY谱
与COSY45o和90o谱比较, HD-COSY谱呈现出F2域峰宽 (保留JHH耦合), F1域峰窄 (宽带去耦)的细条状谱峰。
2019/11/28
31
2019/11/28
三环癸烷衍生物 的HD-COSY谱
F2域峰宽(保留JHH耦 合), F1域峰窄(宽 带质子去耦),化学 位移定标不同造成对 角峰反转,交叉峰由 于F1域去耦而变窄, 使其覆盖面变小,有 利于图谱解析,可以 清楚地显示出HJ与HI 、 HH、 HD、 HC 、 HA 的耦合。
12
3
4
1 32 4
2019/11/28
36
13C 化学位移
1H 化 学 位 移
C,H COSY谱
2019/11/28
37
13C 化学位移
4
6
2
1H 化 学 位 移
2019/11/28
38
2, 3-二溴代丙酸F1域宽带去耦C,H COSY谱(a)与常规C,H COSY谱(b)比较 c,d为平行于F1域取出的CH2和CH的2张投影图,可以看出投影图(c)中CH2和CH之 间的3JHH耦合已消除,但本身的偕氢2JHH耦合仍然保留,信号强度和分辨率提高。
二维核磁共振谱()
4-2 基本原理
I≠0的原子核具有核磁矩,在一定条件下可以发生 核磁共振。由于是大量原子核的行为,可从宏观的角度 来讨论。
宏观磁化强度矢量(macroscopic magnetization vector)M为单位体 积内N个原子核磁矩μi的矢量和:
但却同时都发生了共振。
为满足 B12F
B1必须很强。同时B1的作用时间也应该很短。
类似于 B0 ,在旋转坐标系中M绕x'轴
转动的角速度Ω可用下式描述
B1
设B1的作用时间,也就是脉冲的宽度为tp,则M在
tp时间间隔内转动的角度θ为: t p B1t p
设θ=90°(这样的脉冲叫做90°脉冲),此时
当ν−ν0=1/tp时, C(ν−ν0)为0
ν
以氢谱而论,一般tp<10μs,因此1/tp>105Hz,频谱 非常宽。当取核磁谱图中心为ν0 ,在谱图中所可能出现 的ν−ν0小于二分之一谱宽,对氢谱来说,仅约5ppm。 设所用仪器为500MHz,5ppm仅对应2500Hz,它远远小
于105Hz。相应于核磁谱图,ν−ν0相距ν0 较近。 C(ν−ν0) 实际上近似等于C(ν0)。即各种氢核虽然共振频率不同, 但受射频作用的强度近似相等,这对于定量测定是很
resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution".
他获得2002年诺贝尔化学奖另一半的奖金。
波谱分析课件:第4章 二维核磁共振谱1
同核二维J分解氢谱
异核二维J分解碳谱
4.2.1 同核二维J分解氢谱
脉冲序列为
同核AX体系的自旋回波示意图
紫草素的部分1H-NMR谱和二维J分解氢谱
Hax
7
Heq O H
5 1 4 10 11
a b
Hax
3
H3eq 3.69ddd
H
9
H O
H H 1
Heq
Hz 20 10 F1 10 20
二维核磁共振的关键是引入了第二个时间变量:演化期t1
。当样品中核自旋被激发后,它以确定频率进动,并且这 种进动行为将延续一段时间。表征这一特性的是横向弛豫 时间T2。对液体来说,T2一般为几秒。
通过检测期可以记录演化期 t1内核自旋的行为:在演化期 内从t1 = 0 开始,用某个固定的时间增量t1逐步延迟时 间t1进行一系列实验,每一个t1产生一个单独的FID,得 到Ni个FID。这样获得的信号表示成两个时间变量t1和t2 的函数S(t1, t2),再经两次Fourier变换,一次对t1, 一次对t2,得到以两个频率为函数的二维核磁共振谱S( F1, F2)。
• 断 面 图
20 0 20 Hz H3ax 4.08 dd (a) 4.2 4.1 4.0 3.9
(b)
4.2 H7ax 3.72 ddd
4.0
3.8
F2
3.6
3.4
3.2 ppm
H3eq
H7eq 3.42 ddd
3.8 3.7 360MHz
1
3.6 H NMR
3.5
3.4
3.3 ppm
化合物2的同核二维J分解氢谱 (a)部分1H-NMR谱 (b) 堆积图 (c) 投影图 (d) 断面图
二维核磁共振谱解读
核磁共振谱(NMR)是一种非常强大的分析技术,用于确定物质的结构和确认分子的组成。
二维核磁共振谱(2D NMR)是一种在峰区分辨率和化学位移上比传统核磁共振谱更高的技术。
二维核磁共振谱提供了更多的信息,具有两个独立的谱图轴。
下面是对二维核磁共振谱解读常见的一些方面:化学位移轴(x轴):二维核磁共振谱通常有两个化学位移轴。
一个位移轴表示一个维度上的化学位移值,通常以ppm(部分百万)为单位。
这个轴上的峰表示不同化学环境中的核的吸收。
耦合常数轴(y轴):二维核磁共振谱的第二个轴通常是相邻核之间的耦合常数。
这个轴上的峰表示不同氢原子之间的相互作用。
化学位移交叉峰(cross-peaks):二维核磁共振谱中最重要的信息是化学位移交叉峰。
这些交叉峰出现在两个化学位移轴的交叉点上,表示两个核之间的相互作用。
通过分析交叉峰的位置和强度,可以推断出化学结构的一些重要特征。
耦合常数交叉峰(coupling cross-peaks):除了化学位移交叉峰,二维核磁共振谱还可以显示耦合常数交叉峰。
这些峰出现在耦合常数轴上,表示不同核之间的耦合常数。
通过分析这些交叉峰,可以确定分子中不同核之间的耦合关系。
脉冲序列(pulse sequences):为了获得二维核磁共振谱,使用了特定的脉冲序列。
这些序列涉及一系列的脉冲和延迟,用于激发和检测核自旋的信号。
不同的脉冲序列可以提供不同的信息。
通过解读二维核磁共振谱,可以确定分子的结构、化学环境和相互作用。
这对于有机化学、药物研发、材料科学等领域非常重要。
但是需要指出的是,对于具体的二维核磁共振谱解读,需要具备相关的化学知识和实践经验。
核磁二维谱
基本原理
一维核磁谱的信号是一个频率的函数,共振峰分 布在一个频率轴(或磁场)上,可记为S(ω)。
二维谱信号是二个独立频率(或磁场)变量的函 数,记为S(ω1,ω2),共振信号分布在两个频率轴组 成的平面上。也就是说2D NMR将化学位移、偶合常 数等NMR参数在二维平面上展开。
3
二维谱共振峰的名称
对角峰:它们处在坐标F1=F2的对角线上。对角峰在 F1或F2上的投影得到常规的一维偶合谱或去偶谱。
交叉峰:交叉峰也称为 2 1
34
5
相关峰(F1≠F2),在 对角线两侧并对称,和
对角峰可以组成一个正
F1
方形,由此可推测这两
组核存在偶合关系。
O
CH3 CH2
54
CH2 CH2
32
C
CH3
1
F2
4
同核化学位移相关谱
1H检测的异核化学位移相关谱:两个不同核的频率 通过标量偶合建立起来的相关谱。应用最广泛的是1H13C COSY。
11
13C-1H COSY
12
1H检测的异核多量子相关谱(HMQC)
常规的13C检测的异核直接相关谱,灵敏度低,样品的 用量较大,测定时间较长;
HMQC(异核多量子相关谱)技术很好地克服了上述缺 点,HMQC实验是通过多量子相干,检测1H信号而达到间 接检测13C的一种方法;
有机波谱分析
二维核磁谱(2D-NMR)
二维核磁共振波谱法
➢ 二维核磁共振(2D-NMR)是Jeener于1971年提出, 是一维谱衍生出来的新实验方法;
➢ 可将化学位移、偶合常数等参数展开在二维平面 上,减少了谱线的拥挤和重叠;
➢ 提供的HH、CH、CC之间的偶合及空间的相互作用, 确定它们之间的连接关系和空间构型。
二维核磁共振谱概述 ppt课件
ppt课件
2
二维谱的表现方式
等高线图中最中心的圆圈 表示峰的位置,圆圈的数 目表示峰的强度。
等高线图
ppt课件
3
化学位移相关谱
同核位移相关谱
异核位移相关谱 NOE
ppt课件
4
同核位移相关谱
1H-1H
COSY ,COSY是correlated spectroscopy的缩写。
交叉峰或 相关峰 对角峰或 自相关峰
ppt课件 7
3
1
4
5
6
ppt课件 2-己酮 H-HCOSY
8
1
1 234 56 7
23
56
7
4
3 2
H H
H 4 5 6 7 C=C-O-CH2-CH2-CH2-CH3
1
ppt课件
9
ppt课件
10
ppt课件
11
异核位移相关谱
C-H COSY 是13C 和1H 核之间的位移相关谱。 它反映了13C和1H 核之间的关系。
二维核磁共振谱概述
什么是二维核磁共振谱?
二维核磁共振谱:
是有两个时间变量,经两次傅利叶变换得到 的两个独立的频率变量的谱图。一般用第二个时 间变量 t2 表示采样时间,第一个时间变量 t1 则是 与 t2 无关的独立变量,是脉冲序列中的某一个变 化的时间间隔。
ppt课件
1
二维谱的分类
J分解谱 J Resolved Spectroscopy, d-J 谱 同核 (homonuclear), 异核(heteronuclear) 化学位移相关谱 Chemical Shift Correlation Spectroscopy, d- d 谱 同核耦合, 异核耦合, NOE 和化学交换 多量子谱 Multiple Quantum Spectroscopy
核磁共振波谱-二维谱(研)
18
异核-J分解谱
横坐标类似于 13C 的质子宽带去 偶谱,反映了碳 的化学位移;纵 坐标反映了 C 原 子的裂分情况
19
4.4.3 常见二维核磁共振谱的原理及解析
(1)化学位移相关谱
同核化学位移相关谱(Homonuclear correlation) ①通过化学键:COSY, TOCSY, 2D-INADEQUATE。 ②通过空间:NOESY, ROESY(Rotating-frame Overhauser Effect SpectroscopY)。 异核化学位移相关谱(Heteronuclear correlation) ①强调大的偶合常数:1H-13C –COSY ②强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)
有机波谱解析 | 核磁共振波谱 | 氢谱 |
二维核磁共振谱:是两个独立频率变量的信号函数,记为S(ω1,ω2)。采用不 同的脉冲序列技术,得到图谱中一个坐标表示化学位移,另一个坐标 表示偶合常数,或另一个坐标表示同核或异核化学位移,这类核磁图 谱称作二维核磁共振谱。
6
7
引入二维后,减少了谱线的拥挤和重叠,提高了核 之间相互关系的新信息.因而增加了结构信息,有 利于复杂谱图的解析.特别是应用于复杂的天然 产物和生物大分子的结构鉴定,2DNMR是目前适 用于研究溶液中生物大分子构象的唯一技术.
25
•
①识别溶剂峰: 化合物1H中共有12组氢的信号峰,其中δ 7.26为溶剂CDCl3未被 完全氘代的质子信号峰。在二维COSY谱中可以看到该溶剂峰不与其它任何质子 相关(红色方框标注)。 ②识别杂质峰: δ 6.30, 5.50, 4.95, 2.35, 2.15的谱线矮小且与其它谱线的 峰面积无比例关系,二维COSY谱中可以看到δ 2.49, 2.47两处的质子信号未见 与其它任何质子相关(绿色方框标注),因此可认为这些信号是杂质峰引起的 。 ③化学位移分区:扣除溶剂峰和杂质峰后,剩余的7组氢信号的峰面积比从低场 至高场分别为1:1:2:2:2:2:12。低场部分(δ 7.0-8.0)共有三组质子信 号峰,应该属于芳环上的质子信号。低场区三条谱线较难进行归属,可借助二 维1H-1H-COSY进行识别。高场部分(δ 2.0-5.0)有四组质子信号峰,应该属于 饱和碳上的质子信号。其中δ 2.25为单峰,含有12个质子,应该是与杂原子相 连的甲基(CH3),可以确定为氮原子上的两个甲基的质子H(7)信号;δ 2.45, 2.75处的谱线均裂分为双重峰,J=18Hz,应该是与杂原子相连的亚甲基质子(X-CH2-),可以确定为与氮原子相连的亚甲基质子H(6)信号。由于亚甲基的两 个质子为化学不等价,发生同碳质子的耦合裂分,故耦合常数较大(J=18Hz) ,表现出两组dd峰;δ 4.50为单峰,含有2个质子,应该是与杂原子相连的亚甲 基质子(-X-CH2-),可以确定为与氧原子相连的亚甲基质子H(5)信号。