完全平方公式和平方差公式法习题(内含答案)

合集下载

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。

)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。

)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。

)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。

)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。

)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。

)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。

)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。

)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。

)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。

)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。

)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。

)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。

解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。

2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。

第八章第三节完全平方公式与平方差公式专题练习(附答案及解析)

第八章第三节完全平方公式与平方差公式专题练习(附答案及解析)

第八章第三节完全平方公式与平方差公式专题练习p1-7一、选择题(本大题共24小题,共72.0分)1. 如果x 2-(m-1)x+1是一个完全平方式,则m的值为()A. -1B. 1C. -1或3D. 1或32. 计算(x+3)•(x-3)正确的是()A. x 2+9B. 2xC. x 2-9D. x 2-63. 如果4x 2-kx+25是一个完全平方式,那么k的值是()A. 10B. ±10C. 20D. ±204. 下列各式中可以运用平方差公式的有()①(-1+2x)(-1-2x)②(ab-2b)(-ab-2b)③(-1-2x)(1+2x)④(x 2-y)(y 2+x)A. 1个B. 2个C. 3个D. 4个5. 已知a+b=3,则a 2-b 2+6b的值为()A. 6B. 9C. 12D. 156. 如图,在边长为的正方形中,剪去一个边长为的小正方形,将余下的部分剪开后拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于的恒等式为()A. B.C. D.7. 已知x+ =7,则x 2+ 的值为()A. 51B. 49C. 47D. 458. 若等式(x-4)2=x 2-8x+m 2成立,则m的值是()A. 16B. 4C. -4D. 4或-49. 下列各式,能用平方差公式计算的是()A. (a-1)(a+1)B. (a-3)(-a+3)C. (a+2b)(2a-b)D. (-a-3)210. 若x 2+2(m-3)x+16是完全平方式,则m的值是( )A. -1B. 7C. 7或-1D. 5或111. 下列各式中,能用平方差公式计算的有()①(a﹣2b)(﹣a+2b);②(a﹣2b)(﹣a﹣2b);③(a﹣2b)(a+2b);④(a﹣2b)(2a+b).A. 1个B. 2个C. 3个D. 4个12. 下列各式中,能用平方差公式计算的有()①(a﹣2b)(﹣a+2b);②(a﹣2b)(﹣a﹣2b);③(a﹣2b)(a+2b);④(a﹣2b)(2a+b).A. 1个B. 2个C. 3个D. 4个13. 下列计算正确的是()A. (﹣x﹣y)2=﹣x 2﹣2xy﹣y2B. (4x+1)2=16x 2+8x+1C. (2x﹣3)2=4x 2+12x﹣9D. (a+2b)2=a 2+2ab+4b214. 下列计算正确的是()A. (﹣x﹣y)2=﹣x 2﹣2xy﹣y 2B. (4x+1)2=16x 2+8x+1C. (2x﹣3)2=4x 2+12x﹣9D. (a+2b)2=a 2+2ab+4b 215. 下列各式是完全平方式的是()A. B. C. D.16. 在多项式x 2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A. xB. 3xC. 6xD. 9x17. 下列各式中,不能用平方差公式计算的是()A. (2x-y)(2x+y)B. (-x+y)(x-y)C. (b-a)(b+a)D. (x-y)(-y-x)18. 计算(x 4+1)(x 2+1)(x+1)(x-1)的结果是()A. x 8+1B. x 8-1C. (x+1)8D. (x-1)819. 下列各题中,能用平方差公式的是()A. (a-2b)(-a+2b)B. (-a-2b)(-a-2b)C. (a-2b)(a+2b)D. (-a-2b)(a+2b)20. 如果多项式x 2+mx+16是一个完全平方式,则m的值是()A. ±4B. 4C. ±8D. 821. 若x+y=5,x-y=3,则x 2-y 2的值是()A. 8B. 15C. 2D. 422. 计算(a+2b)2的结果是()A. a 2+4b 2B. a 2+2ab+2b 2C. a 2+4ab+2b 2D. a 2+4ab+4b 223. 若4a 2-2ka+9是一个完全平方的展开形式,则k的值为()A. 6B. ±6C. 12D. ±1224. 已知x+y=7,xy=-8,则x 2+y 2=()A. 49B. 65C. 33D. 57二、填空题(本大题共32小题,共96.0分)25. 若a+b=3,ab=2,则(a-b)2= ______ .26. 已知2a 2+2b 2=10,a+b=3,则ab= ______ .27. 若a 2-(b-c)2有一个因式是a+b-c,则另一个因式是a-b+ ______ .28. 是一个完全平方式,则正整数的值是.29. 若是一个完全平方式,则等于.30. 计算:( x+2)( x-2)= .如图,E,H,G在正方形的边上,DE交GH于点O,∠GOD=45°,AB=6,GH= ,则DE的长为.31. 如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形.这一过程所揭示的乘法公式是______ .32. 已知a+b=3,ab=2,则a 2+b 2的值为______ .33. 用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(a-b)2= ______ (化为a、b两数和与积的形式)34. (3a+3b+1)(3a+3b-1)=899,则a+b= ______ .35. 若x-y=2,xy=4,则x 2+y 2的值为______ .36. 若x 2-mxy+9y 2是完全平方式,则m=37. 计算:已知:a+b=3,ab=1,则a 2+b 2= .38. 计算:已知:a+b=3,ab=1,则a 2+b 2= .39. 若4a 2﹣(k﹣1)a+9是一个关于a的完全平方式,则k= .40. 如果a 2+ma+9是一个完全平方式,那么m=_________.41. 若9 是完全平方式,那么m=_______.42. 计算:(-1)(+1)= 。

平方差公式和完全平方公式(习题及答案)

平方差公式和完全平方公式(习题及答案)

平⽅差公式和完全平⽅公式(习题及答案)平⽅差公式和完全平⽅公式(习题)例题⽰范例1:计算:23(1)(1)2(1)a a a -+---+.【操作步骤】(1)观察结构划部分:23(1)(1)2(1)a a a -+---+①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第⼀部分:a -和a -符号相同,是公式⾥的“a ”,1和-1符号相反,是公式⾥的“b ”,可以⽤平⽅差公式;第⼆部分:可以⽤完全平⽅公式,利⽤⼝诀得出答案.(3)每步推进⼀点点.【过程书写】解:原式2223()12(21)a a a ??=---++??223(1)242a a a =----2233242a a a =----245a a =--巩固练习1. 下列多项式乘法中,不能⽤平⽅差公式计算的是()A .()()x y y x ---+B .()()xy z xy z +-C .(2)(2)a b a b --+D .1122x y y x --- ??2. 下列各式⼀定成⽴的是()A .222(2)42x y x xy y -=-+B .22()()a b b a -=-C .2221124a b a ab b ??-=++D .222(2)4x y x y +=+3. 若2222(23)412x y x xy n y +=++,则n =__________.4. 若222()44ax y x xy y -=++,则a =________.5. 计算:①112233m n n m --- ??;②22()()()y x x y x y -++;③22(32)4x y y ---;④2()a b c +-;⑤296;⑥2112113111-?.6. 运⽤乘法公式计算:①2(2)(2)(2)x y x y x y -+-+;②22(1)2(24)a a a +--+;③(231)(231)x y x y +--+;④3()a b -;⑤222233m m +-- ? ?;⑥2210199-.思考⼩结1. 在利⽤平⽅差公式计算时要找准公式⾥⾯的a 和b ,我们把完全相同的“项”看作公式⾥的“_____”,只有符号不同的“项”看作公式⾥的“_____”,⽐如()()x y z x y z +---,_______是公式⾥的“a”,_______是公式⾥的“b ”;同样在利⽤完全平⽅公式的时候,如果底数⾸项前⾯有负号,要把底数转为它的______去处理,⽐如22()(_______)a b --=2. 根据两⼤公式填空:+(_______)+(_______)b )22(2【参考答案】巩固练习1. C2. B3. ±34. -25. ①22149n m - ②44x y -+ ③2912x xy +④222 222a ab b bc ac c ++--+ ⑤9 216⑥1 6. ①242xy y --②267a a -+- ③224961x y y -+- ④322333a a b ab b -+- ⑤83m ⑥400 思考⼩结1. a ,b ,(x -z ),y ,相反数,a +b2. 2ab ,2ab ,4ab。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题一.单选题1•下列各式添括号正确的是()2. (l + y)d-y) = ()3•下列计算结果为Iab-Cr-Iy 的是(4.(-5√+4⅛2)( ) = 25/-16庆,括号内应填()6.多项式15∕7ΓH 2 +5〃,死一20〃円F 各项的公因式是()D. 5mn 2 7.下列多项式中,能用平方差公式分解因式的是()&化简(—3)2 -X(X-6)的结果为()9 •下列多项式能用完全平方公式分解的是(10•计算(3"-址)(-加- %)的结果是()11•如果X 2+(,H-I)X+ 9是一个完全平方式,那么m 的值是(12•若么处 是三角形的三边之长,贝IJ 代数式√÷2bc -c 2-∕r 的值(二.解答题13. 讣算:(1) (-3x 2-5y)(3x 2-5y):(2) (9X 2+1)(1-3Λ∙)(-3X -1)・14. 因式分解.(1 ) 2m(x 一 y) 一 3〃 (X - y) A. -A e — >= —(y -A) B.x-y = _(X + y)C. 10 一〃ι = 5(2 一加)D. 3 —2z∕ = —(2a — 3)A.l + y 2B.-ι-rC.1 -y 2D.-l + y 2A. ("-b)2B ∙(-α-∕√ C.-(" + b)2 D.-(α-Z√ A.5Λ2 ÷4∕?2 B. 5√-4∕?2 C. -5/-劲2 D. -5Π2+4/?25•下列计算正确的是()A. (-A - y)2 = -X 2 一 2Q - y 2B.G∏÷2∕?)2 =W 2÷4H 2C. (一3x + y)2 = 3Λ2 _ 6xy + y 2D.丄 x +5 = iχ2+5x + 25 A. 5/zz/zA .∏2+(→)2 B.5〃厂-20〃〃? C.-x D ∙-F+9A.6Λ-9B.-12x+9C.9D.3x + 9A. .v -x+1c ∙"2+"+l D.-σ2+ 庆-2ab A.∕22C 2 +9Λ2B.b 2c 2-3aC.-h 2c 2-9a 2D.-9α2+fe 2c 2 A.7B.-7C.-5或 7D.—5 或 5 A •小于0B •大于0C •等于0D •以上三种情况均有可能(2)-18√+12<r-2</15.用提公因式法将下列各式分解因式:(1 ) -4Π½2^∖2a2b-4ab :(2) (/ -") + C(U -b):(3 ) (3a一 4ft)(7" —Sb) + (Ila一 1 ”)(7“ 一Sb)・16.分解因式:(1)4Λ-2-4X+1:(2)4宀20肋+ 25几(3)9(α-b)2+42(α-b) + 49:(4)(x-2y)2 + 8ΛT ・17.分解因式:(1 ) a】(a_b) + b】(b_a):(2)x2 -y2 ^2x-2y;(3)x4-16/•18.先化简,再求值:a(a-2) - (a+l) (a - 1)■其中G =-丄219•先阅读下列因式分解的过程,再回答所提出的问题:1 + .¥ + X(X +1) + X(X +1)2=(1+ X)[1+ X + X(Λ∙+Γ)J=(1+ X)2(1+Λ)= d + √.(1)±述分解因式的方法是________ ,共应用___________ 了次;(2)若分解1÷A∙÷Λ∙(X÷1)÷X(Λ÷1)2÷..→Λ∙(X÷1)201∖则需应用上述方法________ 次,结果是(3)分解因式:1 ÷A∙÷X(X + 1) + X(X÷I)2 + ∙∙∙ + x(Λ∙ + ∖)n ( H为正整数)・三、填空题20•已知=-3, x+y = 2,贝IJ代数式x2y÷√的值是_____________ ・21•若√7巨+ //_% + 1 = 0,贝IJa = ________ , b = __________ .22.____________________________________________________ 已知(/?? 一* = 40,(W ^n)2 = 4000 ,则m2 + n2的值是 _______________________________________ ・23.己知a-b = 4,ab = —2,则Cr + 4ub + Iy的值为_________ ・24.计算(4 + √7)(4-√7)的结果等于____________ .25.计算:("一b)(α + b)(/ +Z?2)= ________ .参考答案1.答案:D解析:-x-y = -(x+y),故A错误:x-y = -{-x + y)t故B错误;易知C错误.故选D.2.答案:C解析:本题考查平方差公式•由平方差公式可得(i+y)(i->')=ι2-r = ι-r.故选c∙3.答案:D解析:(a -by =cι2 -2ab + b~,{-a-by =(a + b)2 =a2 +2ah + b2 ,-(a + b)2 =-cι2 - 2ab - b~ ,-(a - bγ =-a2+2αZ?-"'.故选 D.4.答案:C解析:∙.∙(-5c, +4⅛2)(-5α2-4b2) = (5α2 -4/,)(5,, + 4h2) = 25α4-16fe4,.∖括号内应填-5a2 -Ab2 . 故选C.5.答案:D解析:(-V- y)2 = X2 + 2xy + y2 ,故 A 错误;(∕n + 2n)2≈m2 + 4mn+ 4zι2,故 B 错误;(-3 A + y)2 = 9X2-6xy, + y2» 故 C 错误:GX+ 5∣ =∙^F+5x + 25,故 Dl匸确.故选 D.6.答案:C解析:多项式15∕√7Γ+5AH2Π-2O∕H V中,各项系数的最大公约数是5,各项都含有的相同字母是加,”,字母m的最低次数是2,字母n的最低次数是1,所以各项的公因式是5m2n .故选C.7.答案:D解析:A选项,/与(_方)2符号相同,不能用平方差公式分解因式,故A选项错误:B选项,5m2-20nu j=5m(m-4n),不能用平方差公式分解因式,故B选项错误;C选项,F与尸符号相同,不能用平方差公式分解因式,故C选项错误:D选项,-X2+9=-A-2+32,两项符号相反,能用平方差公式分解因式,故D 选项正确.故选D.8.答案:C解析:(X- 3)2 - X(X - 6) = x2 - 6.r + 9 - A2 + 6x = 9.故选 C.9.答案:B解析:A,C.D项不符合完全平方式的形式,故不能用完全平方公式分解因式:B项,1-2A + A∙2 =(x-l)2,能用完全平方公式分解因式.故选B.10.答案:D解析:(3a—bc)(-bc — 3a) = -(3a-bc)(3a+be) = -9a2 + b2c2 .故选 D.11.答案:C解析:TX2 +(Zn-I)X+ 9是一个完全平方式,伽—l)x = ±2 ∙ X - 3 ,.■-加一1 = ±6,.∙. m = 一5或7 ,故选:C.12.答案:B解析:a2 + TbC-C2— b2 =Cr - ^b I—2lκ' + c2) = Cr — (h — c)2 = [a + (b —c)][t∕ —(b — c)] = (a + h-C)(U + c-b) ,因为三角形的任意两边之和大于第三边,所+ h-c>0, a + c-b>O,因此原式大于0•故选B.13.答案:(1) (-3√ -5y)(3x2 -5y)=(-5>,- 3X2 ) (-5 V + 3Λ2)= (-5y)2-(3A-2)2=25V2-9Λ4.(2) (9∕+I)(1-3Λ)(-3Λ∙-T)=(-3X÷1)(-3X-1)(9Λ∙2+1)=[(-3X)2-12](9√+1)=(9X2-1)(9√+1)=(^)2-I2= 81√-L解析:14•答案:(I)(X-y)(2π∕+ 3/?)⑵略解析:15・答案:(1) -4a3b2 + ∖2a2b-4ab=-(Aah ∙ Crh - Aah ∙ Sa + 4")= -4πb(∕b-3d +1)・(2) (C -+ C(U-b)= a(a-b) + c(a-h)=(a - h)(a + c).(3 ) (3d - 4b)C7a一Sb) + (IkI 一 1 ”)(7“ 一 8/?) =(7 a—8b)(3“ — 4b+ Ila一∖2b)= (7α-8b)(14α-16b)=2(7"-8历(7“-8方)= 2(7d-8b)2.解析:16.答案:(1) 4f —4Λ÷ 1 = (2Λ*-1)-・(2 ) 4O2-20ah + 25b2 = (Ia -5b)2 .(3)9(α-b)2+42(α-b) + 49= [3(a-b) + l]2=(3a — 3b + 7)~・(4)(x-2>y+8小=X2 - 4xy + 4y2 + SXy=x2 +4x}* + 4y2= (x + 2y)1・解析:17.答案:(1) a2(a-b) + b2(b-a)=Cr (U - b) - b' (U — b)=(U _ b)^a2 _ ZΛ)=(U一b)(a一b)(a + b)=(U- b)2 (a + b).(2)x2-y2+2A∙-2y=(X2-√) + (2x-2y)= (x + y)(x-y) + 2(x-y)= (x-y)(x+y + 2).(3)Λ4-16∕=(-)2-(<√)2= (x2+4√)(x2-4y2)= (x2 + 4y2)(A∙ + 2y)U- 2y).解析:18.答案:化简得-2a+l ;2解析:19.答案:(1)提公因式法;2(2)2018:(l÷x)2°,9(3) 1 + X + X(X +1) + X(X +1)2÷・・・ + X(X + Ir= (l + x)[l + x + xα + l)+ x(x + Γ)2+-. + x(Λ∙ + l)^r=(1+ X)2[1+Λ∙+Λ∙(X +1)+ X(X+1)2+…+ x(x + iy,'2J• • ♦= (l + x)n+1.解析:20.答案:-6解析:因为x = -3, x + y = 2,所以X2y + x)2 = Xy(X + y) = -3×2 = -6 .21.答案:-2 1解析:∙.∙√<∕ + 2 + 0-l)2 =0 , /. α + 2 = O.1=0, α = -2,b = l22.答案:2020解析:(m-n)2 =m2 -2mn + n2= 40,(∕n + n)2 = m2 + 2tnn+n2 = 4000 ,两等式相加,得2(异 + “2 ) = 4040 ,所以m2 + I r = 2020 .23.答案:4解析:∙.t a-b = 4,Ub = -2, Cr +b' =(a_b)‘ +2ab =42+2×(-2) = 12, .,.a2 +4nb+b2= 12+4×(-2) = 4.故答案为4.24.答案:9解析:根据平方差公式得,原式=4? - (J7)2=16 - 7=9.25.答案:a -Z?4解析:原式= (Cr -Z>2)(α2+⅛2) = α4-^4.。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题(含答案)1[1] 2

平方差公式与完全平方公式试题(含答案)1[1] 2

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差,完全平方公式练习(有答案)

平方差,完全平方公式练习(有答案)
(2)(x+3)(x-5)=x2-2x-15.(3)(2a+1)(a-2)=2a2-4a+a-2=2a2-3a-2.
(4)(x+2)(x2-x-4)=x·x2+x(-x)+x·(-4)+2x2+2·(-x)+2×(-4)=x3-x2-4x+2x2-2x-8=x3+x2-6x-8.
7.解:(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)=4x2+2xy-2xy-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2.
=a2-9 =4a2-9b2
3. (1+2c)(1-2c) 4. (-x+2)(-x-2)
=1-4C2=x2-42
5. (2x+ )(2x- ) 6. (a+2b)(a-2b)
=4x2- 1/4 =a2-4b2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
=4a2-25b2=4a2-9b2
1、(a+b)(a-b)(a2+b2)
=(a2-b2)(a2+b2)
=a4-b4
2、(a+2)(a-2)(a2+4)
=(a2-4)(a2+4)
=a4-16
3、(x- )(x2+ )(x+ )
=(x2-1/4)((x2+ )=x4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y) 2、(y-x)(-x-y)
10.在(ax2+bx-3)(x2- x+8)的结果中不含x3和x项,则a=,b=

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式和完全平方公式(含参二)(人教版)(含答案)

平方差公式和完全平方公式(含参二)(人教版)(含答案)

平方差公式和完全平方公式(含参二)(人教版)一、单选题(共10道,每道10分)1.已知,则的值分别为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方差公式2.若,则的值为( )A.-4B.4C.8D.±4答案:D解题思路:试题难度:三颗星知识点:平方差公式3.若是一个完全平方式,则的值为( )A.±4B.±2C.4D.2答案:B解题思路:试题难度:三颗星知识点:完全平方公式4.若是一个完全平方式,则的值为( )A. B.±3yC. D.3y答案:B解题思路:试题难度:三颗星知识点:完全平方公式5.若是一个完全平方式,则的值为( )A.6或-3B.8或-2C.8D.-5或3答案:B解题思路:试题难度:三颗星知识点:完全平方公式6.若是完全平方式,则为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式7.若,则的值为( )A.2B.-2C.-4D.±2答案:B解题思路:试题难度:三颗星知识点:完全平方公式8.若,则的值分别为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:完全平方公式9.计算的结果是( )A.0B.1C.-1D.2 004答案:B解题思路:试题难度:三颗星知识点:平方差公式10.计算的结果为( )A.27 501B.29 501C.39 601D.49 501答案:C解题思路:试题难度:三颗星知识点:完全平方公式。

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式和完全平方公式基础拔高练习(含答案)平方差公式◆基础训练1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.-2005×2007的计算结果为()A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b)C.(b+2a)(b-8a)D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98(2)21241(4)1007×993(5)12×11(6)-19×20353531×3(3)-2.7×3.344(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a -2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)-1-(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)◆综合应用8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.19.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),个中a=-.310.运用平方差公式计算:(1)11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.-2-2005;(2)99×101×10 001.2006◆拓展晋升13.若a+b=4,a2-b2=12,求a,b的值.完整平方公式◆基础训练1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计较:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.以下计较精确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算成效为1-2ab2+a2b4的是()A.(-1+ab2)2B.(1+ab2)2C.(-1+a2b2)2D.(-1-ab2)28.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-110.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2-3-111(4)(a+b)2(5)(-a-b)2(6)(-a+)2352(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-122n)2(10)1012(11)1982(12)19.9211.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.◆综合应用13.若(a+b)2+M=(a-b)2,则M=_____.14.(a-b)2=8,ab=1,则a2+b2=_____.15.x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径削减4cm后,这个圆的面积削减几何平方厘米?◆拓展提升17.已知x+111=3,试x2+2和(x-)2的值xxx-4-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式和平方差公式法习题(内含答案)二次根式的运算知识点
知识点一:二次根式的乘法法则:,即两个二次根式相乘,
根指数不变,只把被开方数相乘.
要点诠释:在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非
负数;(在本章中,如果没有特别说明,所有字母都表示非负数)
(1)该法则可以推广到多个二次根式相乘的运算:
(3)若二次根式相乘的结果能写成的形式,则应化简,如.
,即积的算术平方根知识点二、积的算术平方根的性质
等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a 移到根号外面.
(3)作用:积的算术平方根的性质对二次根式化简
(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式②利用积的算术平方根的性质
③利用(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式
移到根号外
④被开方数中每个因数指数都要小雨2
(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简
知识点三、
二次根式的除法法则:
把被开方数相除.
要点诠释:,即两个二次根式相除,根指数不变,
(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b
的取值范围应特别注意,其中
,因为b 在分母上,故b 不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
知识点四、商的算术平方根的性质
,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.
(2)步骤①利用商的算术平方根的性质
② a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化
(3)被开方数是分数或分式可用商的算术平方根的性质对二次根式化简
知识点五:最简二次根式
1. 定义:当二次根式满足以下两条:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
把符合这两个条件的二次根式,叫做最简二次根式. 在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.
要点诠释:
(1)最简二次根式中被开方数不含分母;
(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能
为1次.
2. 把二次根式化成最简二次根式的一般步骤:
(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成
分数;
(2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;
(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;
(5)化去分母中的根号; (6)约分.
3. 把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法. 实际
上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方
的因数或因式.
知识点六、同类二次根式
1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次
根式就叫做同类二次根式.
要点诠释:
(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,
再看被开方数是否相同;
(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的
因式无关.
2. 合并同类二次根式
合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的
方法与整式加减运算中的合并同类项类似)
要点诠释:
(1)根号外面的因式就是这个根式的系数;
(2)二次根式的系数是带分数的要变成假分数的形式;
(3)不是同类二次根式,不能合并
知识点七、二次根式的加减
二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并. 对于没有合并的二次根式,仍要写到结果中.
在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号
法则仍然适用.
二次根式加减运算的步骤:
(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;
(3)合并同类二次根式.
知识点八、二次根式的混合运算
要点诠释:二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.
(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;
(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;
(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个
非同类最简二次式之和或差,或是有理式.
规律方法指导
二次根式的运算,主要研究二次根式的乘除和加减.
(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:
;;
(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式. 通常应先将二次
根式化简,再把同类二次根式合并.
二次根式运算的结果应尽可能化简.。

相关文档
最新文档