水厂部分构筑物计算说明书
净水自来水厂各池体构筑物及加药量设计计算书(完整版)
净水自来水厂各池体构筑物及加药量设计计算书(完整版)竖流折板反应池(多通道)一、已知条件1、反应池设计水量Q108000m3/d校核水量Q1120000m3/d2、反应池分两组,每组设计水量为54000m3/d0.625m3/s 每组校核水量Q160000m3/d0.6944444m3/s 二、设计采用数据1、第一能级区:峰速V10.2~0.3m/s能耗G100秒-12、第二能级区:峰速V20.1~0.2m/s能耗G50秒-13、第三能级区:峰速V30.05~0.1m/s能耗G25秒-1三、设计水力计算1、第一能级区水力计算设t1=5.5minv1=0.3m/s,采用相对折板40.3则F= 2.083333333m2采用A1= 1.7mB1= 1.7m流速为0.22m/s当t1= 5.5minL1=71.36678201mL1由20个反应室构成20则每室水深H1= 3.5683391取 4.6m折板计算峰距定为0.28 mm谷距定为0.56mm峰值断面与平均断面之比为0.667谷值断面与平均断面之比为1.333故峰值流速Va0.324394464m/s故谷值流速Vb0.162197232m/s渐放段水头损失ha0.50.00201m渐缩段水头损失hb0.10.0046m一个缩放的水头损失h0=ha+h b0.0066m 考虑到折板构造及安装因素实际h值增加15%0.0076m 折板一个波长l=680mm折板高度H=1700mm则每格有渐缩和渐放个数为 2.5所以每格损失h010.0189088331室进入到2室是从两边隔墙顶形成堰流并转下£=1.8堰宽 1.7堰顶水深 1.4所以流速0.262605042m/s 水头损失h020.006333191m由2室进入3室是由孔口流入的,并且转上转下£=3.0孔口尺寸采用1.6*1.2 1.7 1.43孔口处流速为0.262605042m/s通过孔口水头损失h030.010555318m所以每格的总水头损失0.029464151m第一能级区的总水头损失hⅠ0.547061748m547.060.033957 Array第一段G值计算16110.426126.92685111.7912109S-1Gt1=36891.0996按容积计算停留时间7.090133333min2、第二能级区水力计算设t2=4minv2=0.15m/s,采用平行折板40.15则F= 4.166666667m29.4采用A1= 1.7m B1= 3.6m流速为0.102m/s当t1=10minL1=61.2745098mL1由15个反应室构成15则每室水深H1= 4.08496732取4m每一道转弯为两个145°组成,水头损失应小于一个直角,采用£=0.6h0=0.000319266mh=0.000367156m折板一个波长l=680mm折板高度H=1020mm则每格有渐缩和渐放个数为 1.5所以每格损失h010.000550733m1室进入到2室是从两边隔墙顶形成堰流并转下£=1.8堰宽 1.7堰顶水深 1.4所以流速0.262605042m/s水头损失h020.006333191m 由2室进入3室是由孔口流入的,并且转上转下£=3.0孔口尺寸采用1.6*1.2 1.7 1.43孔口处流速为0.262605042m/s 通过孔口水头损失h030.010555318m所以第二能级区的总水头损失0.132813749m5.1第二段G值计算46.87081481S-1Gt1=0按容积计算停留时间9.792min3、第三能级区水力计算设t2=4minv2=0.15m/s,采用平行折板40.1则F= 6.25m2采用A1=2mB1= 3.6m流速为0.087m/s当t1=9minL1=46.875mL1由10个反应室构成10则每室水深H1= 4.6875取 3.9m孔口尺寸采用1.6*1.2223孔口处流速为0.15625m/s通过孔口水头损失h020.003736846m第三能级区的总水头损失hⅠ0.037368463m 37.3680.033957第三段G值计算1100.4642 33.17324528.43062371S-1Gt1=0按容积计算停留时间7.488min按容积计算的总停留时间T24.37013333分钟总水头损失h0.71724396min 总GT87867.72719。
污水处理厂计算说明书
流程图污水处理流程图平流沉砂池厌氧池卡式氧化沟二次沉淀池进水出水污泥处理泥饼外运上 清 液 回 流一.构筑物计算平流沉砂池1.1设计参数最大设计流量:Q=360L/s 1.2设计计算(1)沉砂池长度:设平流沉砂池设计流速为v=0.25 m/s ,停留时间t=40s ,则沉砂池水流部分的长度(即沉砂池两闸板之间的长度):L =v*t=0.25*40=10m (2)水流断面面积:A= ==1.44m 2(3)池总宽度:设n=2 格,每格宽b=1.2m ,则B=n*b=2*1.2=2.4m (未计隔离墙厚度,可取0.2m )(4)有效深度:h 2=A/B =1.44/2.4=0.6m(5)沉砂室所需的容积:V=V —沉砂室容积,m 3X —城市污水沉砂量,取3 m 3砂量/105m 3污水 T —排泥间隔天数,取2d ;K z —流量总变化系数,取1.4代入数据得:V=86400* 0.36*2*3/(1.4*105)=1.333 m 3则每个沉砂斗容积为V '=V/(2*2)=1.333/(2*2)=0.333m 3。
(6)沉砂斗的各部分尺寸:设斗底宽a 1=0.5 m ,斗壁与水平面的倾角为55°,斗高h 3ˊ=0.5m ,则沉砂斗上口宽: a=2* h 3ˊ/tg55°+a 1=2*0.5/1.428+0.5=1.2m沉砂斗的容积:V 0 = (h 3ˊ/6)*(2*a^2+ 2*a* a 1+ 2a 1^2)=0.5/6*(2*1.2^2+ 2*1.2* 0.5+ 2* 0.5^2)=0.382m3 (略大于V '=0.35)这与实际所需的污泥斗的容积很接近,符合要求;(7)沉砂室高度:采用重力排砂,设池底坡度为0.06,坡向砂斗长 L 2=(L-2*a)/2=(10-2*1.2)/2=(10-2*1.2)/2=3.8m , h 3 = h 3ˊ+0.06 L 2=0.5+0.06*3.8=0.728m池总高度:设沉砂池的超高为h1=0.2m ,则H= h1+h2+h3=0.2+0.6+0.728=1.528m (8)进水渐宽及出水渐窄部分长度:进水渐宽长度 L 1=(B-2*B 1)/tan 1α=(2.4-2*1.0)/(tan20°)=1.1m 出水渐窄长度 L 3= L 1=1.1m (9)校核最小流量时的流速: 最小流量为Q m in =360/1.4=257l/s ,则V m in = Q m in /A=0.257/1.44=0.178m/s 〉0.15m/s 符合要求沉砂池采用静水压力排砂,排出的砂子可运至污泥脱水间一起处理。
给水厂设计计算说明书
设计说明与计算书第1章设计水质水量与工艺流程的确定1.1 设计水质水量1.1.1原水水质及水文地质资料ss最高/(mg/L) 700最大时变化系数1.251原水水质情况序号名称最高数平均数备注1 色度40 152 pH值7.8 7.23 DO溶解氧11.2 6.384 BOD5 2.5 1.15 COD 4.2 2.46 其余均符合国家地面水水源Ⅰ级标准2河流水文特征最高水位----------m,最低水位----------m,常年水位-----------m气象资料历年平均气温-----------,年最高平均气温--------,年最低平均气温-----------。
年平均降水量:-----------,年最高降水量----------,年最低降水量-----------。
常年风向-----------,频率--------。
历年最大冰冻深度20cm3 地质资料第一层:回填、松土层,承载力8 kg/cm2,深1~1.5m;第二层:粘土层,承载力10kg/cm2,深3~4m;第三层:粉土层,承载力8kg/cm2,深3~4m;地下水位平均在粘土层下0.5m。
1.1.2、设计水量设计人口6.1万人均用水量标准(最高日)200L/d工厂A(万立方米/d)0.4工厂B(万立方米/d)0.7工厂C(万立方米/d)0.9工厂D(万立方米/d)1.4一般工业用水占生活用水% 195第三产业用水占生活用水%90Qd=1.067×﹝(200×6.1×(1+1.95+0.9)/1000+0.4+0.7+0.9+1.4﹞=86400立方米/d1.1.3、分析原水水质显著特点为ss含量较高,水量变化较小,故在后续工艺设计中会针对上述两个特点做出设计,以求实现工艺的优化。
1. 2 给水处理流程确定1.2.1 给水处理工艺流程的选择给水处理工艺流程的选择与原水水质和处理后的水质要求有关。
一般来讲,地下水只需要经消毒处理即可,对含有铁、锰、氟的地下水,则需采用除铁、除锰、除氟的处理工艺。
水工建筑物计算说明书
文档可能无法思考全面,请浏览后下载!《水工建筑物》课程设计计算说明书1 / 30文档可能无法思考全面,请浏览后下载!前言 (3)第一章基本资料及数据设计 (4)1.1基本资料 (4)1.1.1工程概况 (4)1.1.2地形地质资料 (4)1.2设计数据 (4)1.2.1设计参数表 (4)1.2.2筑坝材料 (5)1.2.2.1防渗料场 (5)1.2.2.2堆石料场 (6)1.2.2.3反滤过渡料场 (7)第二章枢纽布置 (7)2.1工程等级及建筑物级别 (7)2.1.1水利枢纽建筑物组成 (7)2.1.2工程规模 (7)2.2各组成建筑物的选择及布置 (8)2.2.1挡水建筑物 (9)2.2.2泄水建筑物 (9)2.2.3输水隧洞 (9)第三章土坝设计 (9)3.1坝型选择 (9)3.2坝体剖面设计 (10)3.2.1坝坡 (10)3.2.3坝顶宽度 (10)3.2.3坝顶高程 (10)3.3确定防渗料及坝壳堆石料的填筑标准 (13)3.4大坝防渗体 (13)第四章渗流计算 (13)4.1渗流计算应包括以下内容 (13)4.2渗流计算情况选择 (13)4.3渗流分析的方法 (13)4.4计算断面及公式 (14)第五章坝坡稳定的计算 (15)5.1计算方法 (15)5.2滑弧计算 (17)第六章细部构造设计 (20)6.1护坡设计 (20)6.2坝顶设计 (20)6.2.1坝顶排水 (20)6.2.2坝面排水 (21)6.2.3坝顶盖面 (21)6.3反滤过渡层 (21)第七章地基处理及两岸的连接 (22)7.1土石坝地基处理的目的 (22)0 / 30文档可能无法思考全面,请浏览后下载!7.2地基防渗处理 (22)7.3坝体与岸坡的连接 (22)结论 (23)总结与体会 (24)参考文献 (25)1 / 30文档可能无法思考全面,请浏览后下载!前言水工建筑物课程设计是一门基础课程,此次课程设计是在我们学习了《水工建筑物》课程后,为了使我们能够达到学以致用,更好的领会课程的要求而安排的一个重要课程设计,是培养我们综合素质和工程实践能力的一个教学过程。
水厂设计计算书
设计计算书第一节、水量计算该水厂设计产水量为 18500 m ³/d 自用水系数 10%水厂的井水量为 Q=18500(1+0.1)=20350 m ³/d=847.92h /m 3=0.24s m /3第二节、混凝1.混凝剂药剂的选用根据任务书,选取药剂为三氯化铁,三氯化铁的投加量选取为10㎎/L ,其特点为:三氯化铝的混凝效果受温度影响小,絮粒较密实,适用原水的pH 值约在6.0--8.4之间。
药剂投加方式干式与湿式的优缺点的比较:投加方式一般有重力投加和压力投加,大多数情况下水厂采用压力投加,本设计采用水射器投加方式。
如下图:混凝剂的湿式投加系统如下图:2、加药间的设计计算设计要求:加药间尽量设置在投药点的附近;加药间和药剂仓库可根据具体情况设置机械搬运设备;加药管可以采用塑料管、不锈钢或橡皮管,溶药用的给水管选用镀锌钢管,排渣管采用塑料管;加药间要有室内冲洗设施,室内地面要有5‰的坡度坡向集水坑;加药间要通风良好,冬季有保温措施;加药间与仓库连在一起,仓库储量按最大投加期间的1~3个月的用量计算。
3、溶液池容积 n b Q a W ⨯⨯⨯=4171= 21041792.84710⨯⨯⨯ =1.02m 3 取1.5 m 3式中:a —混凝剂(三氯化铁)的最大投加量(mg/L ),本设计取10mg/L ; b —溶液浓度,一般取5%-20%,本设计取10%;Q —处理水量,本设计为847.92h /m 3 n —每日调制次数,一般不超过3次,本设计取2次。
溶液池采用矩形钢筋混凝土结构,设置2座,一备一用,保证连续投药。
单池尺寸为L ×B ×H=1.5×1.0×1.6,高度中包括超高0.3m ,沉渣高度0.3m ,置于室内地面上。
溶液池实际有效容积:1W = L ×B ×H=1.5×1.0×1.0=1.5m 3,满足要求。
自来水厂设计说明书
第一章设计基本资料和设计任务1.1 设计基本资料近期规模1万m3 /d.水处理构筑物按照近期处理规模进行设计.水厂的主要构筑物分为1组。
第二章水厂工艺方案的确定2.1 设计基本资料水处理构筑物类型的选择,应根据原水水质,处理后水质要求、水厂规模、水厂用地面积和地形条件等,通过技术经济比较确定.初步选定方案如下:取水→一级泵站→管式静态混合器→竖井式絮凝池→斜管沉淀池→重力无阀滤池→清水池→二级泵房→用户↑消毒剂第三章水厂各个构筑物的设计计算3.1 一级泵站1.一泵房吸水井水厂地面标高0.000m,河流洪水位标高为-1.000m,枯水位标高为-6.000m,设计一泵站吸水井底标高为-8.000m,进水管标高为-7.000m,一泵站吸水井顶标高为0.500米,宽为6m,长度20m,分为两格。
2.一泵房一泵房底标高为-9.000m,一泵房顶标高为6.500m.3.2 混凝剂的选择和投加设计原则:溶液池的底坡不小于0.02,池底应有直径不小于100mm的排渣管。
池壁需设超高,防止搅拌溶液时溢出。
设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以上或半地下为宜,池顶宜高出地面1.0m左右,以减轻劳动强度,改善操作条件。
溶解池一般采用钢筋混凝土池体来防腐。
已知条件:水厂构筑物设计流量Q=10000m3/d根据原水水质及水温,参考有关水厂的运行经验,选精致硫酸铝为混凝剂。
最大投加量为30mg/L,精致硫酸铝投加浓度为10%。
采用计量投药泵投加。
计算过程:1.溶液池容积W1W1=uQ/(417bn)式中:u—混凝剂(精致硫酸铝)的最大投加量,30mg/L;Q—处理的水量,416.67m3/h;b—溶液浓度(按商品固体重量计),10%;n—每日调制次数,2次。
所以: W1=30×416.67/(417×10×2)= 1.5 m3溶液池容积为2 m3 ,有效容积为1.5 m3,有效高度为1m,超高为0.3m,溶液池的形状采用矩形,长×宽×高=1.5×1.0×1.3m.置于室内地面上,池底坡度采用0.03.溶液池旁有宽度为1.5m工作台,以便操作管理,底部设放空管。
(完整word版)自来水厂设计—计算书
目录第一部分说明书3第一章净水厂厂址选择3第二章处理流程选择及说明 4第一节岸边式取水构筑物8第二节药剂投配设备10第三节机械搅拌澄清池10第四节普通快滤池11第五节消毒间12第六节清水池14第七节送水泵站14第三章水厂的平面布置16第一节水厂的平面布置要求 16第二节基本设计标准16第三节水厂管线16第四节水厂的高程布置17第四章排泥水处理20第一节处理对象20第二节处理工序20第二部分计算书21第一章岸边式取水构筑物21第一节设计主要资料21第二节集水间计算21第三节泵站计算22第二章混凝设施26第一节药剂配制投加设备26第三章机械搅拌澄清池计算 35第一节第二反应室35第二节导流室35第三节分离室36第四节池深计算37第五节配水三角槽38第六节第一反应室39第七节容积计算40第八节进水系统40第九节集水系统41第十节污泥浓缩斗42第十一节机械搅拌澄清池,搅拌机计算43第四章普通快滤池计算48第一节设计参数48第二节冲洗强度48第三节滤池面积及尺寸49第五节配水系统49第六节洗砂排水槽50第七节滤池各种管渠计算51第八节冲洗水泵52第五章消毒处理54第一节加氯设计54第二节加滤量计算54第三节加氯间和氯库54第六章清水池计算56第一节清水池有效容积56第二节清水池的平面尺寸56第三节管道系统56第四节清水池布置56第七章送水泵站58第一节流量计算58第二节扬程计算58第三节选泵58第四节二级泵房的布置59第五节起重设备选择59第六节泵房高度计算60第七节管道计算60第八章给水处理厂的总体布置61第一节平面布置61第九章泥路计算64第一节泥、水平衡计污泥处理系统设计规模64第二节排泥水处理构筑物设计计算67结束语73致谢74参考文献75第一部分说明书第一章净水厂厂址选择净水厂一般应设在工程地质条件较好、地下水位底、承载力较大、湿陷性等不高、岩石较少的地层,以降低工程造价和便于施工.水厂还应考虑防洪措施,同时尽量把水厂设在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。
给水厂设计计算说明书
设计说明与计算书第1章设计水质水量与工艺流程的确定1.1 设计水质水量1.1.1原水水质及水文地质资料ss最高/(mg/L) 700最大时变化系数 1.251序号名称最高数平均数备注1 色度40 152 pH值7.8 7.23 DO溶解氧11.2 6.384 BOD5 2.5 1.15 COD 4.2 2.46 其余均符合国家地面水水源Ⅰ级标准2水文地质及气象资料河流水文特征最高水位----------m,最低水位----------m,常年水位-----------m气象资料历年平均气温-----------,年最高平均气温--------,年最低平均气温-----------。
年平均降水量:-----------,年最高降水量----------,年最低降水量-----------。
常年风向-----------,频率--------。
历年最大冰冻深度20cm3 地质资料第一层:回填、松土层,承载力8 kg/cm2,深1~1.5m;第二层:粘土层,承载力10kg/cm2,深3~4m;第三层:粉土层,承载力 8kg/cm2,深3~4m;地下水位平均在粘土层下0.5m。
1.1.2、设计水量设计人口6.1万人均用水量标准(最高日)200L/d工厂A(万立方米/d)0.4工厂B(万立方米/d)0.7工厂C(万立方米/d)0.9工厂D(万立方米/d)1.4一般工业用水占生活用水% 195第三产业用水占生活用水%90Qd=1.067×﹝(200×6.1×(1+1.95+0.9)/1000+0.4+0.7+0.9+1.4﹞=86400立方米/d1.1.3、分析原水水质显著特点为ss 含量较高,水量变化较小,故在后续工艺设计中会针对上述两个特点做出设计,以求实现工艺的优化。
1. 2 给水处理流程确定1.2.1 给水处理工艺流程的选择给水处理工艺流程的选择与原水水质和处理后的水质要求有关。
青岛理工毕业设计给水厂计算说明书
前言水厂设计和其他工程设计一样,一般分为两个阶段进行:扩大初步设计和施工图纸设计。
对大型的和复杂的工程,在扩初设计之前,往往还需要进行工程可行性研究或所需特定的的试验研究。
可行性研究时提出工程建设的科学依据,主要内容包括:(1)城市概况和供水现状分析;(2)工程目标;(3)工程方案和评价;(4)投资估算和资金筹措;(5)工程效益分析。
同时还应提供环境影响评价以及可能出现的问题等。
扩初设计是在可行性基础上进行的,内容和要求比可行性研究更具体一些。
在扩初设计阶段,首先要进一步分析调查和核实已有资料。
所需资料包括:地形,地质,水文,水质,地震,气象,编制工程概算所需资料、设备、管配件的价格和施工定额,材料、设备供应状况,供电状况,交通运输状况,水厂排污问题等。
需要时,还应参观了解类似水厂的设计、施工运行经验。
在此基础上,可提出几种设计方案进行技术经济比较,这里提供的方案比较是在可行性研究所提出大方案下的具体方案比较。
最后确定水厂位置,工艺流程,处理构筑物型式和初步尺寸以及其他生产和辅助设施等,并初步确定水厂平面位置和高程布置。
第一章设计原始资料1.1华南某市(B市)概况B市位于中国广东省中南部,珠江三角洲西部。
全境位于北纬21°27′~22°51′,东经111°59′~113°15′之间。
面积9418平方千米( 市区129平方千米 ) 。
供水人口为市区68万,现为省辖市。
属南亚热带海洋性季风气候,年均降水2000毫米,年均温21.8℃。
平原为主,河流有西江等。
B市为广东南部交通枢纽。
1.2自然概况1.2.1地形地貌B市地势西北高,东南低,北部、西北部山地丘陵广布,东部、中部、南部河谷、冲积平原、三角洲平原宽广,丘陵、台地错落其间,沿海砂洲发育,组成错综复杂的多元化地貌景观。
全市山地丘陵4400多平方公里,占46.13%。
其中B市区由西江、潭江形成的三角洲平原面积达500平方公里。
净水自来水厂各池体构筑物及加药量设计计算书(完整版)
竖流折板反应池(多通道)一、已知条件1、反应池设计水量Q108000m3/d校核水量Q1120000m3/d2、反应池分两组,每组设计水量为54000m3/d0.625m3/s 每组校核水量Q160000m3/d0.6944444m3/s 二、设计采用数据1、第一能级区:峰速V10.2~0.3m/s能耗G100秒-12、第二能级区:峰速V20.1~0.2m/s能耗G50秒-13、第三能级区:峰速V30.05~0.1m/s能耗G25秒-1三、设计水力计算1、第一能级区水力计算设t1=5.5minv1=0.3m/s,采用相对折板40.3则F= 2.083333333m2采用A1= 1.7mB1= 1.7m流速为0.22m/s当t1= 5.5minL1=71.36678201mL1由20个反应室构成20则每室水深H1= 3.5683391取 4.6m折板计算峰距定为0.28 mm谷距定为0.56mm峰值断面与平均断面之比为0.667谷值断面与平均断面之比为1.333故峰值流速Va0.324394464m/s故谷值流速Vb0.162197232m/s渐放段水头损失ha0.50.00201m渐缩段水头损失hb0.10.0046m一个缩放的水头损失h0=ha+h b0.0066m 考虑到折板构造及安装因素实际h值增加15%0.0076m 折板一个波长l=680mm折板高度H=1700mm则每格有渐缩和渐放个数为 2.5所以每格损失h010.0189088331室进入到2室是从两边隔墙顶形成堰流并转下£=1.8堰宽 1.7堰顶水深 1.4所以流速0.262605042m/s水头损失h020.006333191m由2室进入3室是由孔口流入的,并且转上转下£=3.0孔口尺寸采用1.6*1.2 1.7 1.43孔口处流速为0.262605042m/s通过孔口水头损失h030.010555318m所以每格的总水头损失0.029464151m第一能级区的总水头损失hⅠ0.547061748m547.060.033957 Array第一段G值计算16110.426126.92685111.7912109S-1Gt1=36891.0996按容积计算停留时间7.090133333min2、第二能级区水力计算设t2=4minv2=0.15m/s,采用平行折板40.15则F= 4.166666667m29.4采用A1= 1.7mB1= 3.6m流速为0.102m/s当t1=10minL1=61.2745098mL1由15个反应室构成15则每室水深H1= 4.08496732取4m每一道转弯为两个145°组成,水头损失应小于一个直角,采用£=0.6h0=0.000319266mh=0.000367156m折板一个波长l=680mm折板高度H=1020mm则每格有渐缩和渐放个数为 1.5所以每格损失h010.000550733m1室进入到2室是从两边隔墙顶形成堰流并转下£=1.8堰宽 1.7堰顶水深 1.4所以流速0.262605042m/s水头损失h020.006333191m由2室进入3室是由孔口流入的,并且转上转下£=3.0孔口尺寸采用1.6*1.2 1.7 1.43孔口处流速为0.262605042m/s通过孔口水头损失h030.010555318m所以第二能级区的总水头损失0.132813749m5.1第二段G值计算46.87081481S-1Gt1=0按容积计算停留时间9.792min3、第三能级区水力计算设t2=4minv2=0.15m/s,采用平行折板40.1则F= 6.25m2采用A1=2mB1= 3.6m流速为0.087m/s当t1=9minL1=46.875mL1由10个反应室构成10则每室水深H1= 4.6875取 3.9m孔口尺寸采用1.6*1.2223孔口处流速为0.15625m/s通过孔口水头损失h020.003736846m第三能级区的总水头损失hⅠ0.037368463m37.3680.033957第三段G值计算1100.464233.17324528.43062371S-1Gt1=0按容积计算停留时间7.488min按容积计算的总停留时间T24.37013333分钟总水头损失h0.71724396min总GT87867.72719。
净水厂设计计算说明书
一、工程概述1.1设计任务及要求给水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。
课程设计的内容是根据所给资料,设计华东地区某给水厂设计,要求对初步方案进行设计,对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图、管线布置图、绿化施工图和某个单项处理构筑物(澄清池或过滤池)的单体图(包括平面图、剖面图,达到施工图深度)及设备选型,并简要写出一份设计计算说明书。
1.2基本资料1.2.1 工程概况本设计为华东地区某城市给水工程设计,水厂规模:日处理水量20 万吨。
设计中采用位于城市西南的河流上游作为水源地。
城市土壤种类为亚粘土。
地下水位深度6 m。
冰冻线深度0.2m。
年降水860mm。
城市最高气温38℃,最低气温-6℃,年平均气温15℃。
主导风向为冬季西北风,夏季东南风。
城区起伏较小,城市西南部预留水厂用地9.138公顷,地势平坦,高程为83.00m。
预留地平面图如下:高位冲洗水箱的容积1.2.2 地面水源(1)流量最大流量620 m³/s;最小流量230 m³/s(2)最大流速2.1 m/s(3)水位最高水位(1%)79.00m,常水位77.00m,最低水位(97%)75.00m,河岸地质条件良好,河槽平坦,最低处高程为72.00m。
1.2.3 源水水质资料编号名称单位分析结果1 浑浊度度平均17NTU;雨季高峰42NTU2 色度度183 总硬度度114 碳酸盐硬度度75 非碳酸盐硬度度76 PH值77 细菌总数个/毫升25008 大肠菌群个/升68二、设计计算2.1水厂规模:根据资料,水厂日处理水量20万m3/d,考虑到水厂自用水量,要乘以安全系数K=1.05。
则净水处理构筑物总设计流量:Q=1.05⨯20=21万m 3/d=8750m 3/h=2.43 m 3/s2.2总体设计2.2.1确定给水处理厂工艺流程根据水源水质和《生活饮用水卫生标准》(GB5749-2006)及《生活饮用水卫生规范》,根据设计的相关原始资料如水厂所在地区的气候情况、设计水量规模、原水水质和水文条件等因素,通过调查研究,参考相似水厂的设计运行经验,经技术经济比较确定采用地表水净化工艺:水厂以地表水作为水源,工艺流程如下图所示:2.2.2处理构筑物及设备型式选择 2.2.2.1取水构筑物1.取水构筑物位置选择取水构筑物位置的选择,应符合城市总体规划要求,从水源水质考虑,水质应该良好,取水构筑物应选择在水质良好的河段,一般设在河流的上游,从河床考虑,取水构筑物应设在凹岸,位置可选在顶冲点的上游或稍下游15~20m 主流深槽且不影响航运处。
污水处理厂构筑物计算书
第1章构筑物计算工艺流程图1.1设计流量总污水量为25000m3/d,选择变化系数为K Z=1.37,设计流量:Q max=K Z Q=1.37*0.405=0.555 (3-1)1.1格栅1.1.1设计说明格栅设在处理构筑物之前,用于阻截水中教导的悬浮物和漂浮物,回收部分纸浆纤维,保证了后续处理设施的正常运行。
格栅的截屋主要对水泵起保护作用,还可以去除部分悬浮物。
拟采用粗格栅,为了提高拦截悬浮物和漂浮物的效率,设有格栅(共两个,一备一用)、倾斜筛网,粗格栅在前,倾斜筛网在后。
1.1.2设计计算1、参数设定栅条断面取迎水面为圆形,栅条宽s=0.01m,栅条倾角α=600,栅条间隙b=25mm,过栅流速v=0.8m/s,栅前水深h=0.5m,设计流量K Z=1.36。
453.555.08.0025.060sin 555.0sin 0max ≈=⨯⨯⨯==bvh Q n α 1.84m 20tan 25.068.120111=-=-=tga B B l 490.081.928.060sin 025.001.031.84260sin 203420342=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯⨯=⋅⋅⎪⎭⎫ ⎝⎛=g v b s k h β2、计算(1)粗格栅间隙数n(3-2)式中:Q max ——最大设计流量,m 3/s ; α——格栅倾角,度; b ——栅条间隙,m ;h ——栅前水深,m ;v ——污水的过栅流速,m/s(2)栅槽宽度B采用φ10的圆钢为栅条s =0.01m6m 8.145025.05101.0)1(=⨯+⨯=+-=bn n s B (3-3)式中:s ——栅条宽度,m 。
(3)通过格栅的水头谁是h 2设进水渠道款B 1=0.5m(3-4)格栅采用原型断面,则β=1.79,阻力增大系数去=3.(3-5)式中:g ——重力加速度,m/s 2;k ——格栅受污染堵塞使水头损失增大的倍数,一般去3;β——阻力系数,其数值与格栅条的断面几何形状有关,去=取圆形栅条。
水厂构筑物计算
根据卡罗塞氧化沟工艺流程的特点,需要进行设计计算的污水处理构筑物包括中格栅、提升泵房、细格栅、沉砂池、Carrousel氧化沟、二次沉淀池、紫外线消毒池等。
1 泵前中格栅格栅是由一组平行的金属或塑料栅条制成,斜置在污水流经的渠道上或水泵集水井处,用以拦截污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。
根据《给水排水设计手册》(第05期.城镇排水),粗格栅栅条间距50~100mm,中格栅栅条间距为16~40mm,细格栅栅条间距为3~10mm。
格栅与水泵房的设置方式:中格栅——提升泵房——细格栅。
污水处理厂的进水中格栅按远期设计,即设计秒流量Q=1182L/s=1.182m3/s,设计中选择N=2组中格栅,每组格栅的设计流量为0.591m3/s。
1.设计参数根据《给水排水设计手册》(第05期.城镇排水),采用格栅栅条间隙b=20mm,格栅倾角为75°,过栅流速v2=0.9m/s。
图3-1 中格栅计算草图2.设计计算(1)栅条间隙数2sin bhv Q n α=式中 n ——格栅栅条间隙数(个);Q ——设计流量(m 3/s );α——格栅倾角(°) 本设计取75。
; b ——栅条间隙(m ); h ——栅前水深(m ); 2v ——过栅流速(m/s )。
()个419.065.002.075sin 591.0≈⨯⨯︒⨯=n(2)格栅槽宽度bn n S B +-=)1(式中 B ——格栅槽宽度(m );S ——每根格栅条的宽度(m );设计中取S =0.01m 。
22.14102.0)141(01.0=⨯+-⨯=B m(3)进水渠道渐宽部分的长度1112αtg B B l -=式中 1l ——进水渠道渐宽部分的长度(m ); 1B ——进水渠宽(m );B 1=1.00m ;1α——进水渠道渐宽部分的展开角度,一般可采用20°。
30.020200.122.11=︒⨯-=tg l m(4)栅槽与出水渠道连接处的渐窄部分长度15.0212==ll m(5)通过格栅的水头损失αβsin 2223/41gv b S k h ⎪⎭⎫ ⎝⎛=式中 1h ——水头损失(m );k ——系数,格栅受污物堵塞使水头损失增大的倍数,一般采用3; β——格栅条的阻力系数,其数值与格栅栅条的断面几何形状有关,栅条断面形状为迎水面为半圆形的矩形时83.1=β;g ——重力加速度。
水厂设计计算说明书5万吨
姓名:李国率班级:应化0902 学号:2009040901目录第一章前言.............................................................................................................................. 错误!未定义书签。
1.1 研究或设计的目的和意义 ......................................................................................... 错误!未定义书签。
1.1.1 总体目标 (2)1.1.2 具体目标 (2)第二章本论 (2)2.1.2 用水量计算 (2)2.2 水处理构筑物设计 (4)2.2.1 反应设备的计算 (4)2.2.2 沉淀设备的设计 (8)2.2.3 滤池工艺设计与计算 (13)2.2.4 反冲洗泵房工艺设计与计算 (25)2.2.5 加药间及药库 (28)2.2.6 清水池工艺设计与计算 (30)2.2.7 吸水井布置 (34)2.2.8 送水泵站工艺设计与计算 (34)2.3 水厂平面布置 (35)2.3.1 一般要求 (35)2.3.2 布置原则 (36)2.3.3 水厂的平面布置 (36)2.3.4 水厂高程布置 (36)第三章 (37)参考文献 (37)第一章前言1.1.1 总体目标按照工程实际的具体要求完成*****设计规模为1.0×105m3/d的城镇给水处理厂的工艺设计,包括工艺计算和图纸绘制两部分工作,计算成果达到扩大初步设计要求。
工艺选择和设计要能满足现行国家规范和标准的要求,经构筑物处理后的水即要保证城市用水量要求,又要满足出厂水达到《生活饮用水卫生标准》(GB5749-2006)的具体标准值。
1.1.2 具体目标1.完成设计说明书1份内容完整、方案合理、格式规范、论证合理、章节设置合理、层次分明、计算正确、文字通顺、图表清晰;2.完成工艺专业图1套图纸深度基本上达到初步设计要求、图面整洁、表达正确、布局合理、线条分明、尺寸标注规范;3.意义通过对水厂的设计,能在学习理论知识的同时,有效的将理论知识与生产实际相结合,在对水厂处理工艺和处理流程进行计算设计的同时,进一步掌握并熟练运用城镇给水处理厂工艺设计的相关理论知识和设计方法、程序、技巧等,并学会充分利用现今发达的网络资源进行辅助设计和资料查询,为今后走上工作岗位,能够胜任工作打下基础。
水厂设计计算说明书
净水处理构筑物设计计算宾川县二水厂工程的设计规模为2.0万m 3/d ,分两期实施。
一期工程规模为1.0万m 3/d 。
一期工程设计流量Q=2410.110000⨯=458.33 m 3/h=0.127 m 3/s 。
1.配水混合井配水井按二期设计,一次修建完成。
分为3格,每格均为正方形(2.0m ×2.0m ),有效水深2.0m ,保护高度0.5m 。
原水进入配水井中间一格后通过池壁底端的连通渠向两边均匀分流,并在外侧的两格装有推进式机械浆板混合装置,搅拌器直径0.68m ,外缘线速度4.6 m/s ,搅拌功率2.5Kw 。
向配水井内投加混凝剂后,经机械混合器快速混合,混合时间1min ,然后由配水井上端连接的DN400配水管向网格絮凝池均匀配水。
在浊度较低季节或水厂网格絮凝-斜管沉淀池检修时,可以超越网格絮凝-斜管沉淀池,投药后配水混合井直接配水到无阀滤池进行直接过滤。
]2.网格反应池 2.1设计数据(1)设计流量Q=0.127 m 3/s ; (2)反应时间t =12.5min ; (3)每个反应池有6个竖井;(4)过网流速分四档,分别为:0.25m/s ,0.19m/s ,0.10m/s ,0.07m/s ;2.2主要计算(5)平面尺寸反应池容积ϖ=Qt =0.127×12.5×60=95.25 m 3 反应池有效水深H ’=3.6 m反应池的总面积F =46.266.325.95'==H ϖm 2 反应池分6格,每格的面积f = 41.4646.266==F m 2 单格平面尺寸2.1 ×2.1m (6)反应池的总高度HH =H 1+H 2+ H 3H 1——排泥斗高度,取1.1m ; H 2——池中有效水深,取3.6m ; H 3——保护高,取0.4m ; H =1.1+3.6+0.4=5.10m根据泥斗尺寸验算斗底坡度为52.3°,排泥顺畅。
给水厂计算说明书
1.给水处理厂课程设计任务书一、目的和内容净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。
课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(应达到初步设计的深度),并简要写出一份设计计算说明书。
设计题目: 某市自来水厂工艺设计二、原始资料(1)水厂规模:11.6万m3/d(2)水源为河流地面水,原水水质分析资料如下:(3)厂区地形:(比例1:500, 按平坦地形和平整后的设计地面高程32.00m设计), 水源取水口位于水厂东北方向150m,水厂位于城市北面1 km。
(4)工程地质资料1)地质钻探资料土壤承载力:20 t/m2.2)地震计算强度为186.2kPa。
3)地震烈度为9度以下。
4)地下水质对各类水泥均无侵蚀作用。
(5)水文及水文地质资料10 历年三小时最大水m/3h 1.04位涨落地下水位:在地面以下1.8m(6)气象资料该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。
常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。
土壤冰冻深度:0.4m。
风向玫瑰图2 水厂选址厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。
在选择厂址时,一般应考虑以下几个方面:⑴厂址应选择在工程地质条件较好的地方。
一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。
⑵水厂应尽可能选择在不受洪水威胁的地方。
第四章 水厂各个构筑物的设计计算
第四章水厂各个构筑物的设计计算4.1.1混凝剂的选择和投加方式1、水厂单组构筑物设计流量Q=15750m3/d=656.25m3/h,根据原水水质及水温,参考有关水厂的运行经验以及聚合氯化铝的优点,选聚合氯化铝(PAC)为混凝剂。
水质上看并未发现原水被污染的迹象,也没有发现藻类或氟、铁、锰等元素超标。
因此,在本设计中的净水厂一期工程中,决定使用常规的净水工艺进行处理,并对工艺进行局部的改造。
暂不考虑预处理与深度处理构筑物的建设。
但在平面布置时为留有余地,以应对将来可能出现的水质标准提高与原水水质恶化。
1.2.6 本设计工艺流程的确定选择常规工艺主要是考虑到常规工艺运行技术与管理经验方面相当成熟,而且净水处理效果稳定,无论是在净水厂构筑物建造方面还是在投产后的运行管理方面都相对经济可靠,符合我国国情。
预期一期工程净水流程如下:原水——加药加氯间——澄清池——滤池——清水池——消毒——泵房——管网在絮凝池前(或澄清池)配水井、滤池前和滤后清水管设置加氯点。
一般情况下使用滤前加氯点和滤后加滤点防止原水中形成大量有机卤化物(T O X),当原水中有机物、藻类等含量过高时,使用配水井和滤后加滤点去除有机物,杀灭藻类,促进混凝。
二期工程拟建生物填料滤池,对原水进行预处理,本设计只对其池体体积部分做粗略计算,为该构筑物预留出建设用地。
2、投加方式的选择:①泵投加采用计量泵投加,不需另设计量设备。
②水射器投加采用水射器投加,设备简单,使用方便,溶液池高度不受太大的限制。
但水射器效率较低,且易磨损。
③高位溶液池重力投加将溶液池架高,利用重力将药液投入水泵压水管或混合设施入口处,这种投加方式安全可靠,但溶液池位置较高,适用于小型水厂。
结合考虑,采用计量泵投加混凝剂,采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统;水厂的药剂,除石灰外,大都采用湿投法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平流沉淀池设计
(1)设水厂自用水量为5%,
则设计水量为1.05d Q =1.05⨯18556.8=19484.643m /d =811.863m /d
2)沉淀池停留时间取 1.5T h =,单池容积Qt W=n = 811.86 1.5=608.8952
⨯mm/h 3)沉淀池水平流速取10v =。
沉淀池长为: 3.6 3.610 1.554L v T m =⨯⨯=⨯⨯=
4)有效水深取H=3m ,沉淀池表面积: 2T 811.86 1.5405.93H 3
Q A m ⨯=
==; 5)沉淀池宽为:405.93=7.5254A B m L ==,两个滤池:B 7.52b===3.76m 22 6)沉淀池有效水深为H +h H =有效超高=3+0.3=3.3m ,(取超高为0.3 m )
滤料选用双层滤料:石英砂和无烟煤
1)滤池面积及尺寸
滤池工作时间为24h ,冲洗周期为12h , 滤池实际工作时间为0.124T=24--0.62=23.8-1.2=22.6h 12
⨯⨯ 设滤池的正常滤速1v =9m/h 。
滤池面积2119484.64==95.79m T 922.6
Q F v =⨯ 每组滤池单格数为N=4,布置成单行排列。
每个滤池面积95.7923.954F f N =
== 采用滤池长宽比为7:3,滤池设计尺寸为7⨯3 实际滤速19484.6410.26/73422.6
Q v m h FT ===⨯⨯⨯ 校核强制流速410.2613.68/13
Nv v m h N ⨯===- 2)滤池高度
承托层高度:1450H mm =
滤料层高度:2750H mm =(其中无烟煤350mm ,石英砂400mm ) 滤层最大水深:31700H mm =
保护高度(超高):4300H mm =
故滤池总高度:123445075017003003200 3.2H H H H H mm m =+++=+++==
3)配水系统
①. 干管
取冲洗强度214/()q L s m =⋅
干管流量2114294/g q f q L s =⋅=⨯=
查阅资料,采用管径600g d mm =,(干管应埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.05/g v m s =
②. 支管
支管中心距离,采用0.25m 每池支管数:22756()0.25
j L n a ⨯===根 每根支管入口流量:g
j j q 294q ===5.25/n 56
L s 采用管径60j d mm =,支管始端流速 1.75/j v m s =
③. 孔眼布置
支管孔眼总面积与滤池面积之比K 采用0.25%
孔眼总面积220.25%210.052552500k F K f m mm =⋅=⨯== 采用孔眼直径:10k d mm = 每个孔眼面积2220.7851078.54k k f d mm π=
=⨯= 孔眼总数:52500668.79670()78.5
k k k F N f ===≈个 每个支管孔眼数k 670n =12.4113()54
k j N n ==≈个 每根支管孔眼布置成两排,与垂线呈45︒夹角向下交错排列 每根支管长度:()()1130.6 1.222
j g l B d m =-=-= 每排孔眼中心距 1.20.185111322
j k k l a m n ===⨯ ④. 孔眼水头损失
支管壁厚采用5mm δ=
流量系数0.67μ=
水头损失22
1114 3.5621029.8100.670.25k q h m g K μ⎛⎫⎛⎫==⨯= ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭ ⑤. 配水系统校核
支管长度与直径之比应不大于60,
1.220600.06
j
j l d ==< 孔眼总面积与支管总横截面积之比应小于0.5
2
0.05250.330.5560.7850.06k j j F n f ==<⨯⨯ 干管横截面积与支管总横截面积之比一般为1.75~2.0
2
20.7850.6 1.786560.7850.06
g
j j f n f ⨯==⨯⨯,在范围之内。
孔眼中心距应小于0.2, k a =0.185<0.2,符合要求
4)洗砂排水槽
洗砂排水槽中心距,采用0a =1.5, 32()1.5c n =
=根 取排水槽长度:06l m =
每槽排水量:000146 1.5126/q ql a L s ==⨯⨯=
采用三角形标准断面,槽中流速采用0v =0.6m/s
排水槽断面尺寸为:0.229m χ===,采用0.23m 排水槽底厚度采用0.05m δ=,砂层最大膨胀率:45%e = 砂层厚度:20.75H m =
洗砂排水槽顶距离砂面高度:
2 2.50.07545%0.75 2.50.230.050.075 1.04e H eH m χδ=+++=⨯+⨯++= 洗砂排水槽总平面面积:2000220.2362 5.52F l n m χ==⨯⨯⨯= 复算:洗砂排水槽总平面面积与滤池面积之比,一般小于25% 0 5.5226%25%21
F f ==≈ 5)滤池各种管渠计算
进水管总流量:33119484.64/0.226/Q m d m s == ①. 进水支管: 采用进水渠宽:10.5B m =,水深为0.5m 渠中流速:10.904/v m s = 各个滤池进水管流量320.2260.0565/4Q m d == 采用进水管直径2300d mm =,管中流速20.81/v m s = ②. 冲洗水
冲洗水总流量331421294/0.294/Q qf L s m s ==⨯== 采用管径3220d mm =,管中流速3 2.4/v m s = ③. 清水
清水总流量:3410.226/Q Q m s == 清水渠断面同进水渠断面 每个滤池清水管流量:3520.0565/56.5/Q Q m s L s === 采用管径:5350d mm = 管中流速:50.84/v m s =。