计量经济学异方差PPT课件

合集下载

《异方差的概念》PPT课件

《异方差的概念》PPT课件
不满足基本假定的情况,称为基本假定违背。
主要包括:
(1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关 (随机解释变量);
在进行计量经济学模型的回归分析时,必须对模型是否 满足基本假定进行检验,这种检验称为计量经济学检验。
第一节 异方差的概念
一、异方差的概念
对于模型
Yi 0 1X1i 2 X 2i k X ki ui
如果出现
Var
(ui
)


2 i
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为模型出现了异方 差性(Heteroskedasticity)。


异方差一般可归结为三种类型:
(1)单调递增型: i2随X的增大而增大; (2)单调递减型: i2随X的增大而减小; (3)复 杂 型: i2与X的变化呈复杂形式。
图5.1 异方差的类型
三、实际经济问题中的异方差性
例5.1:截面资料下研究居民家庭的储蓄行为
Yi 0 1Xi ui
Yi : 第i个家庭的储蓄额; Xi : 第i个家庭的可支配收入
高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小 高收入家庭随机误差项的方差明显大于低收入家 庭。
例5.2:截面资料下研究企业的成本函数
Yi 0 1Xi ui
Yi : 第i个企业的生产成本; Xi : 第i个企业的总产值

Y

X1
X2
X3
X
异方差性干扰
存在异方差时U的方差 协方差矩阵为:

计量经济学课件-异方差

计量经济学课件-异方差
计量经济学课件-异方差
PPT文档演模板
2020/12/8
计量经济学课件-异方差
PPT文档演模课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
3rew
演讲完毕,谢谢听讲!
再见,see you again
PPT文档演模板
2020/12/8
计量经济学课件-异方差

第五章异方差ppt课件

第五章异方差ppt课件

f
ˆ 2
2
w i (Yˆ ( ˆ1 ˆ2 X i ))( X i ) 0
ˆ2
wi xi* yi*
w
i
x
* i
2
ˆ1 Y * ˆ 2 X *
其中, X * w i X i , Y * w iYi
wi
wi
xi*
Xi
X
* i
,
yi*
Yi
Yi*
Econometrics 2005
将是不可靠的。
Econometrics 2005
13
5.3 异方差的检验
方法有 (1)图示法( X _ e2); (2)解析法:
戈德菲尔德-匡特检验 怀特检验 ARCH检验
Econometrics 2005
14
5.3.1 图示法及其类型
1. 异方差指u的方差随着x的变化而变化。 2. 故可以根据x-e2的散点图,对异方差是否
Y的预测值的精度降低;
2
(2)由于 i 难以确定, Y的方差也就难以确定, Y
的预测区间的确定也出 现困难;
2
(3)在 = ei2 /( n k )是 2的无偏的证明中用到了
2
同方差的假定,由于异 方差性,使得 = ei2 /( n k )
是有偏的。在此区间估 计基础上区间估计和假 设检验
基本思路:
(以二元回归为例Y:t 1 2 X2t 3X3t ut)
如果有异方差,则i2与解释变量有关系。:如
i2=0
1X2i
3 X3i
2
X
2 2i
4 X32i
5 X2i
X3i+vi
但是i2一般未知,用模型回剩归余ei2作为i2的渐进

《数学异方差》ppt课件

《数学异方差》ppt课件

R&D=1172.69+0.0238X2+ei
(1)
t=(1.0300)(2.3121) r2=0.2504
33
u
••
••
• •

••••
••
•• ••
••••••••••
•• •• •
• •

0
••
••••
••
••
•••
• •
•••••
•• •
• •
•• •
X •
••
• •

上图表明误差和解释变量X之间不是线性相关。
18
第十三章 异方差
三、帕克(Park)检验
如果存在异方差,则
2 i
可能与一个或多个解释变量系
统相关(可以用模型来刻画)。
帕克检验的步骤如下:
(1) 作普通最小二乘回归,不考虑异方差。
(2) 从原始回归方程中得残差 ei,并求其平方,再取对数形式。
(3) 利用原始模型中的一个解释变量做回归(如果有多个变量,我 们就做多个回归)。
15
第十三章 异方差
第三节 异方差的诊断
一、根据问题的性质
所考察问题的性质往往提供是否存在异方差的 信息。例如:我们考虑区域经济的发展问题。所 以在涉及不均匀单位的横截面数据中,异方差可 能是常有的情况,而不是例外。
二、残差的图形检验
在回归分析中,常常对拟合回归方程中的残差 进行分析,将残差对其相应的观察值描图(残差图)。
而是与Xi的平方成比例。
E(ui2 )
2 i
2
X
2 i
34
第十三章 异方差
情形2:误差方差与

计量经济学异方差性PPT课件

计量经济学异方差性PPT课件

(
n
2
c
k
,
n
2
性水
c k)
平 计
,查 算统计
F分* 量
布表 。




如果
F*
F
(n
2
c
k,
n
2
c
k)
则拒绝原假设,接受备择假设,即模型中的 24 第24页/共69页
(三)检验的特点
●要求大样本 ●异方差的表现既可为递增型,也可为递减型 ●检验结果与选择数据删除的个数C的大小有关 ●只能判断异方差是否存在,在多个解释变量 的情下,对哪一个变量引起异方差的判断存在 局限。
19
第19页/共69页
二、Goldfeld-Quanadt检验
作用:检验递增性(或递减性)异方差。
基本思想:将样本分为两部分,然后分别对两个 样
本进行回归,并计算两个子样的残差平方和所构 成
的比,以此为统计量来判断是否存在异方差。
(一) 检验的前提条件
1、要求检验使用的为大样本容量。
2、除了同方差假定不成立外,其它假定均满
差。
第32页/共69页
32
(三)ARCH 检验:1 = 2 = ... = p = 0 ;
2.参数估计并计算
H1
:
不全为零
j
对原模型作OLS估计,求出残差 et ,并计算
残差平方序列 et2,et21,..., et2p ,以分别作为对 σt2 ,σt21,...,σt2p 的估计。
同的方差,所以利用分析Y与X的相关图形,可以 初略地看到Y的离散程度与X之间是否有相关关系。
如果随着X的增加,Y的离散程度为逐渐增大(或
减小)的变化趋势,则认为存在递增型(或递减

第六章异方差的性质-PPT课件

第六章异方差的性质-PPT课件


(一)残差序列分析 (二)戈德菲尔德-夸特检验 (三)戈里瑟检验 (四)怀特检验



(一)残差序列分析
(a)
e
i
X k
(b)
eห้องสมุดไป่ตู้
i
X k
(c)
e
i
X k
(d)
e
i
X k
(e)
e
i
X k
(f)
e
i
X k
(二)戈德菲尔德-夸特检验


戈德菲尔德-夸特检验是最常用的异方差专门检 验方法之一。这种方法适合于检验样本容量较大 的线性回归模型的递增或递减型异方差性。 对于存在递增异方差模型,步骤:首先将样本按 X值的大小顺序将观测值排列,然后略去居中的C 个观测值,并将其余的(n-C)个观测值分成两组, 每组(n-C)/2个,分别对两个子样本进行回归, 并分别获得残差平方和,自由度都为(n-C)/2K-1。


普遍性:两类数据都有,横截面数据更多。 原因:
1.按照边错边改学习模型,人们在学习过程中,其行为误 2 差随时间而减少。在这种情形下,方差 i 会逐渐变小。 例如,随着打字练习小时数的增加,不仅平时打错的个 数而且打错的方差都有所下降。 2.随着收入的增长,人们有更多的备用收入,从而如何支 配他们的收入有更大的选择范围。因此,在作出储蓄对 收入的回归时,很可能发现,由于人们对其储蓄行为有 更多的选择, i2 与收入俱增。因此,以增长为导向的公 司比之于已发展定型的公司在红利支付方面也可能表现 更多的变异。
(二)戈德菲尔德-夸特检验
计算统计量:
F e
i2 2 i2
2 e i1 i1

《异方差教学》课件

《异方差教学》课件
White检验
基于最小二乘法的残差,通过构造统计量检验异方差的存在 性。该方法适用于多种类型的数据,尤其适用于面板数据。
非参数检验法
Park检验
利用数据中的信息,通过比较不同阶数的自回归模型对数据的拟合效果,判断 是否存在异方差。该方法不需要预设模型形式,较为灵活。
ARCH模型
利用自回归条件异方差模型进行异方差的检验,通过比较不同滞后阶数的模型 拟合效果,判断是否存在异方差。该方法适用于波动性较大的数据。
Box-Cox变换法
总结词
Box-Cox变换法是一种通用的修正异方 差的方法,通过选择适当的λ值进行变换 ,使数据的方差变得相等。
VS
详细描述
Box-Cox变换法是一种灵活的修正异方差 的方法,适用于不同类型的异方差数据。 通过选择适当的λ值进行变换,可以使数 据的方差变得相等,从而消除异方差的影 响。Box-Cox变换法的优点在于能够自动 选择最佳的λ值进行变换,使得数据的同 方差性得到最大程度的保持。在回归模型 中,可以使用Box-Cox变换法来处理因变 量的异方差问题。
PART 03
异方差的修正
对数变换法
总结词
对数变换法是一种常用的修正异方差的方法,通过取对数将异方差转化为同方差 。
详细描述
对数变换法适用于正态分布的异方差数据,通过取自然对数或对数变换,可以使 方差变得相等,从而消除异方差的影响。在回归模型中,可以使用对数变换法来 处理因变量的异方差问题。
平方根变换法
提出相应的解决策略。
PART 06
总结与展望
异方差研究的意义
揭示数据内在规律
异方差研究有助于揭示数据分布的内在规律,为数据分析和预测 提供更准确的模型。
提高统计推断的准确性

PPT-第7章-异方差-计量经济学及Stata应用

PPT-第7章-异方差-计量经济学及Stata应用
© 陈强,2015 年,《计量经济学及 Stata 应用》,高等教育出版社。
第 7 章 异方差 现实的数据千奇百怪,常不符合古典模型的某些假定。从本章 开始,逐步放松古典模型的各项假定。
7.1 异方差的后果
“条件异方差”(conditional heteroskedasticity) ,简称“异方差” (heteroskedasticity),是违背球型扰动项假设的一种情形,即条件
因此, (K 1)F (n K )R2 p (n K )R 2 (7.10) 1 R2
在大样本下,(n K )R2 与nR2并无差别,故LM 检验与F 检验渐 近等价。
如认为异方差主要依赖被解释变量拟合值 yˆi ,可将辅助回归改 为
e2 yˆ error
i
1 2i
i
(7.11)
然后检验H0 : 2 0 (可使用 F 或 LM 统计量)。
ˆFWLS无资格参加 BLUE 的评选。
FWLS 的优点主要体现在大样本中。如果ˆ2是 2的一致估计,
i
i
则 FWLS 一致,且在大样本下比 OLS 更有效率。
FWLS 的缺点是必须估计条件方差函数ˆ2 (x ),而通常不知道条 ii
件方差函数的具体形式。
如果该函数的形式设定不正确,根据 FWLS 计算的标准误可能 失效,导致不正确的统计推断。
方差Var(i | X )依赖于i ,而不是常数 2。
在异方差的情况下:
(1)OLS 估计量依然无偏、一致且渐近正态。因为在证明这些性质 时,并未用到“同方差”的假定。
(2) OLS 估计量方差Var( βˆ | X )的表达式不再是 2 ( X X)1,因为 Var(ε | X ) 2I 。使用普通标准误的t 检验、F 检验失效。

计量经济学 第五章 异方差 ppt课件

计量经济学 第五章 异方差 ppt课件
OLS回归。注意,上式中要保留常数项。求辅助回归式的可决系数R2。 ③White检验的零假设和备择假设是
H0:ut不存在异方差, H1:ut存在异方差。
10
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
7
5.4 异方差检验
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
Байду номын сангаас
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8

第4章 异方差.ppt

第4章 异方差.ppt

Y X
同方差假设为:D(i ) 2 , i 1, 2,L n ,如果出现
D(i
)


2 i
,
i 1, 2,L
n
即对不同的样本点,随机误差项的方差不再
是常数,而是各不相同,则认为出现了异方差。
信息系刘康泽
同方差性
密度
y
x
0 1xi
信息系刘康泽
6
Y
4
2
0
0
10
1 0 L 0



0 L
2 L
LL
0

L
0
0
L

n

令 DDT
用D-1左乘 Y X ,得

1
0
D
L

0
0L
2 L
LL 0L
0
0
L


n

D1Y D1 X D1
Y* X* *
20
30
X
信息系刘康泽
异方差性
密度
y
x
0 1xi
信息系刘康泽
300
Y
200
100
0 0
5000
10000
15000
20000
X
信息系刘康泽
6
4
2
0
-2
-4
-6
-8
200
400
600
800
1000
1200
1400
信息系刘康泽
第二节 异方差的后果
当出现异方差而又使用普通的最小二乘法,则会出现如下后果:

《异方差性》课件

《异方差性》课件

03
异方差性的后果
模型预测的准确性下降
异方差性会导致模型的预测值偏 离真实值,降低预测的准确性。
在异方差性存在的情况下,模型 的预测结果可能变得不可靠,因 为模型没有充分考虑到数据的不
确定性。
异方差性可能导致模型在预测新 数据时表现不佳,因为模型没有 充分学习到数据的内在结构和变
化规律。
模型推断的可靠性降低
详细描述
社会数据在不同群体之间的分布往往存在显著的差异,这种差异反映了不同群体之间的异方差性。这 种异方差性可能与社会经济地位、文化背景等多种因素有关,需要深入分析其产生的原因和影响。
社会数据的异方差性分析
总结词
异方差性对社会政策制定和实施具有重 要影响。
VS
详细描述
社会政策的制定和实施需要考虑不同群体 的差异和特点,而异方差性的存在为社会 政策的制定提供了重要的参考信息。通过 对异方差性的分析和研究,我们可以更好 地了解不同群体的需求和诉求,制定更为 公正和有效的社会政策。
总结词
金融数据的异方差性分析有助于提高投资策略的有效性。
详细描述
通过对金融数据的异方差性进行分析,投资者可以更好地 理解市场的波动规律和风险特征,从而制定更为有效的投 资策略。这种基于异方差性的投资策略能够更好地适应市 场的变化,提高投资的收益和风险控制能力。
社会数据的异方差性分析
总结词
社会数据在不同群体之间存在显著的异方差性。
平方根变换
当数据分布不均,特别是偏度较大时,平方根变换可以改善数 据的正态性。
Box-Cox变换
是一种通用的数据变换方法,通过选择一个适当的λ值,使数据 达到最佳的正态分布状态。
模型选择和调整
混合效应模型

计量经济学异方差精品PPT资料

计量经济学异方差精品PPT资料
随机误差项的方差并不随某一个解释变量观测值 的变化而呈规律性变化,呈现复杂型。
• 一般经验,对于采用截面数据作样本的 计量经济学问题,由于不同样本点上解
释变量以外的其他因素的差异较大,所 以往往存在异方差。
二、异方差性的后果 Consequences of Using OLS in the
Presence of Heteroskedasticity
V ar(i)E(i2)e ~ i2 最 好 在 大 样 本 条 件 下 (使 2用 .4 .7)
即 用 e ~ i2来 表 示 随 机 误 差 项 的 方 差 。
从而可进一步考察其与X的相关性及其具体的形式。
( 2 1 ) X - e ~ i 2 的 散 点 图 进 行 判 断
看是否形成一斜率为零的直线
问题在于如何获得随机误差项 (从总体带来的)的方差
• 问题在于如何获得随机误差项 (从总体带 WLS估计的Eviews软件的实现
以案例1为例:由于不知ei与Xi之间具体的函数关系。
i
来的)的方差 从而可进一步考察其与X的相关性及其具体的形式。
White1980年提出。 假设6:随机项满足正态分布
一般的处理方法:
2 任 意 选 择 c 个 中 间 观 测 值 略 去 . 经 验 表 明 , 略 去 数 目 c 的 大 小 , 大 约 相 当 于
样 本 观 测 值 个 数 的 1 .剩 下 的 n c 个 观 测 值 平 均 分 成 两 组 , 每 组 观 测 值 的 个 数 为 n c.
4
2
(3)对每个子样本分别进行OLS,并分别计算各自的残差平方和。
E
X
X
1
X
X
X
X

计量经济学第六章 异方差-PPT精品文档

计量经济学第六章 异方差-PPT精品文档

关 于 变 量 的 显 著 性 检 验 中 , 构 造 了 统 计 量 t

( 2 . 4 . 6 )
在该统计量中包含有随机误差项共同的方差,并且有 t统计量服从自由度为(n-k-1)的t分布。如果出现了 异方差性,t检验就失去意义。 其它检验也类似。
3、模型的预测失效
一方面,由于上述后果,使得模型不具有良好 的统计性质; 另一方面,在预测值的置信区间中也包含有随 机误差项共同的方差2。 所以,当模型出现异方差性时,参数OLS估计 值的变异程度增大,从而造成对 Y的预测误差变 大,降低预测精度,预测功能失效。
•例如,以某一行业的企业为样本建立企业生产函 数模型
Yi=Ai1 Ki2 Li3eI
产出量为被解释变量,选择资本、劳动、技术等 投入要素为解释变量,那么每个企业所处的外部 环境对产出量的影响被包含在随机误差项中。 由于每个企业所处的外部环境对产出量的影响程 度不同,造成了随机误差项的异方差性。
i = 1 , 2 , … , n i = 1 , 2 , … , n
同 方 差 性 假 设 为
如 果 出r ( ) i i
i = 1 , 2 , … , n
即对于不同的样本点,随机误差项的方差不再是 常数,则认为出现了异方差性。
2、异方差的类型 • 同方差性假定的意义是指每个i围绕其零平均

xi ˆ E ( ( E ( 1) E 1) i ) 1 2 x i
(2 .4 .2 )
(2)不具备最小方差性
由于
xi ˆ ) E( ˆ ) 2 E( var( x 2 i ) 2 1 1 1 i E( xi i ) ( xi2 ) 2
2
2 i
(2.4.3)

《异方差及其处理》课件

《异方差及其处理》课件
效地处理异方差问题。
数据清洗与处理
数据预处理
在处理异方差问题之前,需要对数据进行预处理,包括缺失值填充 、异常值处理、数据标准化等,以保证数据的完整性和一致性。
数据转换
对于某些特定的数据分布,可以使用数据转换的方法来处理异方差 问题,如对数转换、平方根转换等。
数据分层
对于具有分层结构的数据,可以使用分层抽样或分层模型的方法来处 理异方差问题,以更好地拟合数据并提高预测精度。
在社会领域的应用
社会调查数据分析
在社会调查数据分析中,异方差性问题常见,如态度、观 点、行为等变量的分布往往存在异方差现象。
人口统计学研究
在人口统计学研究中,年龄、性别、教育程度等变量的分 布可能存在异方差性,需要进行异方差性检验和处理。
社会学研究
在社会学研究中,异方差性可能影响对群体特征、社会现 象等的理解和解释,需要进行异方差性检验和处理以确保 研究的准确性和可靠性。
预测误差
异方差的存在可能导致预 测误差增大,降低模型的 预测精度。
统计推断失效
异方差的存在可能导致模 型的统计推断失效,如置 信区间和假设检验的结果 不准确。
02
异方差的检验
图示检验法
残差图
通过绘制实际观测值与预测值的残差 ,观察其随解释变量变化的趋势,判 断是否存在异方差。
箱线图
利用箱线图展示不同解释变量取值下 的残差分布情况,通过比较箱子的宽 度和位置,判断异方差的存在。
倒数变换法
总结词
倒数变换法是一种处理异方差的方法, 通过将响应变量取倒数,可以减小异方 差的影响。
VS
详细描述
倒数变换法适用于因变量为连续型且呈偏 态分布的情况。通过对原始数据取倒数, 可以使数据更接近正态分布,从而减小异 方差的影响。在回归分析中,可以使用倒 数变换后的数据作为因变量进行回归分析 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

看是否形成一斜率为零的直线
e~i2
e~i2
X 同方差
e~i2
X 递增异方差
e~i2
X 递减异方差
X 复杂型异方差
2、帕克(Park)检验与戈里瑟(Gleiser)检验
基本思想: 尝试建立方程:
e ~i2f(Xji)i 或 |e ~i |f(Xji)i
选择关于变量X的不同的函数形式,对方程进 行估计并进行显著性检验,如果存在某一种函 数形式,使得方程显著成立,则说明原模型存 在异方差性。
如果出现
Var(i)i2
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)。
二、异方差的类型
同方差性假定:i2 = 常数 f(Xi)
异方差时:
i2 = f(Xi)
异方差一般可归结为三种类型:
(1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
六、异方差的修正
基本思想:在获得关于随机扰动项的变动,及其 它们之间相互关系的更多信息条件下,通过一定 的数学变换,将这个随机扰动项转化成满足经典 假设的同方差的情形。
基本方法有二:
一是在知道随机扰动项相对波动大小的情况下,直接 对每个样本的随机扰动项进行加权,从而使它们的波 动幅度一样;
二是在知道了随机扰动项的波动,及各个随机扰动项 之间相关性的条件下,利用正定或半正定矩阵经过线 性变换,可以化成单位矩阵的逻辑,将随机扰动项转 化成满足经典假设条件。
②将序列中间的c=n/4个观察值除去,并将剩 下的观察值划分为较小与较大的相同的两个 子样本,每个子样样本容量均为(n-c)/2
③对每个子样分别进行OLS回归,并计算各自 的残差平方和
④在同方差性假定下,构造如下满足F分布的 统计量
F e ~ 2 2 i (n2 ck1 )~F (nck1 ,nck1 )
计量经济学异方差
基本假定违背:不满足基本假定的情况。主要 包括: (1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关
(随机解释变量); 此外: (5)模型设定有偏误 (6)解释变量的方差不随样本容量的增而收敛
有 充 分 认 识 扰 动 项 变 化 规 律 情 况 下 进 行 的 估 计 ,
因 而 准 确 度 会 大 打 折 扣 .
其 他 检 验 , 只 要 是 用 到 了 2 的 估 计 2 , 均 会 使 检 验 的 " 仪 器 " 失 效 .
五、异方差性的检验
• 检验思路:
由于异方差性就是相对于不同的解释变量 观测值,随机误差项具有不同的方差。那么:
似 估 计 量 ” , 用 e ~i 表 示 。 于 是 有
V a r (i) E (i2 ) e ~ i2
e ~ i yi(y i)0ls
几种异方差的检验方法:
1、图示法
(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型
趋势(即不在一个固定的带型域中)
( 2 ) X - e ~ i 2 的 散 点 图 进 行 判 断
2Wˆ

e~12




e~n2
这时可直接以 D 1 d { 1 / i |e ~ 1 a |1 / , |e ~ 2 g | ,, 1 / |e ~ n |}
作为权矩阵。
注意:
在实际操作中人们通常采用如下的经验 方法:
不对原模型进行异方差性检验,而是直接 选择加权最小二乘法,尤其是采用截面数据 作样本时。
Y i 0 1 X 1 i 2 X 2 i i
然后做如下辅助回归
e ~ i 2 0 1 X 1 i 2 X 2 i 3 X 1 2 i 4 X 2 2 i 5 X 1 i X 2 i i (*)
可以证明,在同方差假设下:
R2为(*)的可决系数,h为(*)式解释变量的个数, 表示渐近服从某分布。
从事农业经营 其他收入
从事农业经营 其他收入
人均消费
的收入
人均消费
的收入
支出
支出
地区
Y
X1
X2
地区
Y
X1
X2
北京
3552.1
579.1 4446.4 湖 北
2703.36
1242.9 2526.9
天津
2050.9
1314.6 2633.1 湖 南
1550.62
1068.8
875.6
四、异方差性的后果
计量经济学模型一旦出现异方差性,如果仍采 用OLS估计模型参数,会产生下列不良后果:
1、参数估计量非有效 OLS估计量仍然具有无偏性与一致性,但不具有有效性
因为在有效性证明中利用了 E(’)=2I
而且,在大样本情况下,尽管参数估计量具有 一致性,但仍然不具有渐近有效性。
• 直观解释:
1 f(Xj i)X2i

k
f(1Xji)Xk i
1 f(Xj i)
i
新模型中,存在
V (a f( 1 X jr ) i i) E (f( 1 X j) i i) 2 f( X 1 j) iE (i) 2 2
即满足同方差性,可用OLS法估计。
一般情况下: 对于模型
Y=X+
存在
E(μ )0
Co(μ v)E(μ μ )2W
w1


W


w2


wn

即存在异方差性。
W是一对称正定矩阵,存在一可逆矩阵D使得
W=DD’
用D-1左乘 Y=X+
两边,得到一个新的模型: D 1 Y D 1 X β D 1 μ Y *X *β μ *
在采用OLS方法时:
对较小的残差平方ei2赋予较大的权数, 对较大的残差平方ei2赋予较小的权数。
例如,如果对一多元模型,经检验知:
V (i a ) E ( ri) 2 i 2 f( X j) i 2
f(1Xji)Yi 0
f(1Xj i)1
f(1Xji)X1i 2
如果确实存在异方差,则被有效地消除了; 如果不存在异方差性,则加权最小二乘法 等价于普通最小二乘法
七、案例--中国农村居民人均消费函数
例4.1.4 中国农村居民人均消费支出主要由人 均纯收入来决定。
农村人均纯收入包括(1)从事农业经营的收入, (2)包括从事其他产业的经营性收入(3)工资性收 入、(4)财产收入(4)转移支付收入。
Ci=0+1Yi+I
将居民按照收入等距离分成n组,取组平均数为样 本观测值。
一般情况下,居民收入服从正态分布:中等收入 组人数多,两端收入组人数少。而人数多的组平均 数的误差小,人数少的组平均数的误差大。
所以样本观测值的观测误差随着解释变量观测值 的不同而不同,往往引起异方差性。
例4.1.3,以某一行业的企业为样本建立企业生产 函数模型
该模型具有同方差性。因为
E (μ *μ *)E(D 1 μ μ D 1)D 1E (μ μ )D 1
D 1 2Ω D 1D 1 2D D D 1 2I
β ˆ*(X *X *) 1X *Y *
(XD1D1X)1XD1D1Y (XW 1X)1XW 1Y
考察从事农业经营的收入(X1)和其他收入(X2) 对中国农村居民消费支出(Y)增长的影响:
lY n 0 1 lX n 1 2 lX n 2
表 4.1.1 中 国 2001 年 各 地 区 农 村 居 民 家 庭 人 均 纯 收 入 与 消 费 支 出 相 关 数 据 ( 单 位 : 元 )
Yi=Ai1 Ki2 Li3ei
被解释变量:产出量Y 解释变量:资本K、劳动L、技术A, 那么:每个企业所处的外部环境对产出量的影响被 包含在随机误差项中。
每个企业所处的外部环境对产出量的影响程度不 同,造成了随机误差项的异方差性。
这时,随机误差项的方差并不随某一个解释变量 观测值的变化而呈规律性变化,呈现复杂型。
注意:
辅助回归仍是检验与解释变量可能的组合的 显著性,因此,辅助回归方程中还可引入解释 变量的更高次方。
如果存在异方差性,则表明确与解释变量的 某种组合有显著的相关性,这时往往显示出有 较高的可决系数以及某一参数的t检验值较大。
当然,在多元回归中,由于辅助回归方程中 可能有太多解释变量,从而使自由度减少,有 时可去掉交叉项。
计量经济检验:对模型基本假定的检验
§4.1 异方差性
一、异方差的概念 二、异方差的类型 三、实际经济问题中的异方差性 四、异方差性的后果 五、异方差性的检验 六、异方差的修正 七、案例
一、异方差的概念
对于模型
Y i 0 1 X i i2 X 2 i k X k i i
如: 帕克检验常用的函数形式:
f(Xji) 2X je ii 或 ln e ~ i2 ) (ln 2lX n jii
若在统计上是显著的,表明存在异方差性。
3、戈德菲尔德-匡特(Goldfeld-Quandt)检验
G-Q检验以F检验为基础,适用于样本容量较大、 异方差递增或递减的情况。
G-Q检验的思想:
先将样本一分为二,对子样①和子样②分别 作回归,然后利用两个子样的残差平方和之比构 造“仪器”进行异方差检验。
由于该统计量服从F分布,因此假如存在递增 的异方差,则F远大于1;反之就会等于1(同方 差)、或小于1(递减方差)。
G-Q检验的步骤:
相关文档
最新文档