苏教版七年级数学下册知识点整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版七年级数学下册知识点整理
第七章 平面图形的认识(二)
一、知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。
同位角是“F ”型;
内错角是“Z ”型;
同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质: 判定定理 性质定理 条件
结论 条件 结论 同位角相等
两直线平行 两直线平行 同位角相等 内错角相等
两直线平行 两直线平行 内错角相等 同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-
6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算
幂(power)指乘方运算的结果。a n指将a自乘n次(n个a相乘)。把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:
am•a n=a m+n (同底数幂相乘,底数不变,指数相加)
am÷a n=a m-n (同底数幂相除,底数不变,指数相减)
(am)n=a mn (幂的乘方,底数不变,指数相乘)
(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)
a0=1(a≠0) (任何不等于0的数的0次幂等于1)
a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)
科学记数法:
把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.
复习知识点:
1.乘方的概念:
a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在n
n 叫做指数。
2.乘方的性质:
★(1)负数的奇次幂是负数,负数的偶次幂的正数。
★(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
第九章整式的乘法与因式分解
一、整式乘除法
单项式乘以单项式:
把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7
★注:运算顺序先乘方,后乘除,最后加减
单项式除以单项式:
把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式。
单项式乘以多项式:
就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc
★注:不重不漏,按照顺序,注意常数项、负号 .本质是乘法分配律。
多项式除以单项式:
先把这个多项式的每一项除以这个单项式,再把所得的商相加.
多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:
平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差. (a+b)(a-b)=a2-b2完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.
因式分解方法:
1、提公因式法. 关键:找出公因式
公因式三部分:
①系数(数字)一各项系数最大公约数;
②字母--各项含有的相同字母;
③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
注意:①提取公因式后各因式应该是最简形式,即分解到“底”;
②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法:①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方.
③x3-y3=(x-y)(x2+xy+y2) 立方差公式
3、十字相乘:(x+a)(x+b)=x2+(a+b)x+ab
因式分解三要素:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系:互逆变形;
因式分解是把和差化为积的形式,而整式乘法是把积化为和差
添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
第十章二元一次方程组
1.含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。