高考数学等差数列习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60

B .120

C .160

D .240

2.已知数列{}n a 的前n 项和为n S ,15a =,且满足

122527

n n

a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )

A .6-

B .2-

C .1-

D .0

3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62

10S S ,则34a a +=( )

A .2

B .3

C .4

D .5

4.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11

B .10

C .6

D .3

5.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( )

A .

13

15

B .

2335

C .

1117 D .

49

6.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8

B .13

C .26

D .162

7.已知数列{}n a 的前n 项和2

21n S n n =+-,则13525a a a a +++

+=( )

A .350

B .351

C .674

D .675

8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11

B .12

C .23

D .24

9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13

B .14

C .15

D .16

10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121

B .161

C .141

D .151

11.已知数列{}n a 的前n 项和为n S ,且()1

1213n n n n S S a n +++=+-+,现有如下说法:

①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0

B .1

C .2

D .3

12.已知等差数列{}n a 的前n 项和n S 满足:21<,则n 的最大值为( ) A .2m

B .21m +

C .22m +

D .23m +

13.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、

春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸

D .二丈二尺五寸

14.已知数列{}n a 的前项和2

21n S n =+,n *∈N ,则5a =( )

A .20

B .17

C .18

D .19

15.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .

53

B .2

C .8

D .13

16.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13

B .26

C .52

D .56

17.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <

18.若数列{}n a 满足121

()2

n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020

D .2021

19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )

A .3、8、13、18、23

B .4、8、12、16、20

C .5、9、13、17、21

D .6、10、14、18、22

20.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12

15

a b =( ) A .

3

2

B .

7059

C .

7159

D .85

二、多选题

21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4

n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n

= B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1

{

}n

S 为递增数列22.题目文件丢失!

相关文档
最新文档