高考数学等差数列习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
2.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
4.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11
B .10
C .6
D .3
5.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117 D .
49
6.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
7.已知数列{}n a 的前n 项和2
21n S n n =+-,则13525a a a a +++
+=( )
A .350
B .351
C .674
D .675
8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
B .12
C .23
D .24
9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13
B .14
C .15
D .16
10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
11.已知数列{}n a 的前n 项和为n S ,且()1
1213n n n n S S a n +++=+-+,现有如下说法:
①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0
B .1
C .2
D .3
12.已知等差数列{}n a 的前n 项和n S 满足:21<
B .21m +
C .22m +
D .23m +
13.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、
春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸
D .二丈二尺五寸
14.已知数列{}n a 的前项和2
21n S n =+,n *∈N ,则5a =( )
A .20
B .17
C .18
D .19
15.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .
53
B .2
C .8
D .13
16.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13
B .26
C .52
D .56
17.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <
18.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
20.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
二、多选题
21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n
= B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列22.题目文件丢失!