四川省成都市2016-2017学年高一数学下学期期末考试试题 理

合集下载

四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案

四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案

四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案1.直线 $xcos\theta+ysin\theta+a=0$ 和 $xsin\theta-ycos\theta+b=0$ 的位置关系是()A。

平行 B。

垂直 C。

重合 D。

与 $a,b,\theta$ 的值有关2.若 $a,b\in R$,且 $ab>0$,则下列不等式中,恒成立的是()A。

$a+b>2ab$ B。

$\frac{2}{\sqrt{2}}\sqrt{ab}\leq a+b$ C。

$a+\frac{1}{b}\geq 2$ D。

$a+\frac{1}{b}\geq 2\sqrt{ab}$3.一个空间几何体的三视图如图所示,则该几何体的体积为A。

$\frac{2\pi}{3}$ B。

$\frac{4\pi}{3}$ C。

$2\pi+\frac{2}{3}$ D。

$4\pi+\frac{2}{3}$4.在 $\triangle ABC$ 中,若 $\sin(A-B)=1+2\cos(B+C)\sin(A+C)$,则 $\triangle ABC$ 的形状一定是A。

等边三角形 B。

不含 $60^\circ$ 的等腰三角形 C。

钝角三角形 D。

直角三角形5.设 $a,b$ 是空间中不同的直线,$\alpha,\beta$ 是不同的平面,则下列说法正确的是A。

$a//b,b\perp\alpha$,则 $a\perp\alpha$ B。

$a\perp\alpha,b\perp\beta,\alpha//\beta$,则 $a//b$ C。

$a\perp\alpha,b\perp\beta,a//\beta,b//\beta$,则$\alpha//\beta$ D。

$\alpha//\beta,a\perp\alpha$,则 $a//\beta$6.设数列 $\{a_n\}$ 是首项为 $m$,公比为 $q(q\neq 1)$ 的等比数列,它的前 $n$ 项和为 $S_n$,对任意 $n\in N^*$,点$(a,S_{2n})$ 位于A。

高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)

高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)

专题2.6 对数及对数函数真题回放1. 【2017高考天津文第6题】已知奇函数在上是增函数.若,则的大小关系为 (A )(B )(C )(D ) 【答案】【考点】1。

指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,,再比较比较大小。

2.【2017高考全国卷文第9题】已知函数,则 A . 在(0,2)单调递增B .在(0,2)单调递减C .y =的图像关于直线x =1对称D .y =的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,,所以的图象关于直线对称,C 正确,D 错误;又(),在上单调递增,在上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数,,满足,恒有 ()f x R0.8221(l o g ),(l o g 4.1),(2)5a f b f cf =-==,,abca b c <<b a c <<c b a <<c a b <<C()2l o g5a f =0.822l o g 5,l o g 4.1,2()l nl n (2)fx x x =+-()f x ()f x ()f x ()f x (2)l n (2)l n()fx x x f x -=-+=()f x 1x =112(1)'()2(2)x f x x x x x -=-=--02x <<(0,1)[1,2)()f x x D ∀∈x D ∀∈()()fa x fb x +=-,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.3。

【2017高考全国卷文第8题】函数的单调递增区间是 A 。

B. C 。

D.【答案】D4。

【2015高考上海卷文第8题】 方程的解为 。

【答案】2【解析】依题意,所以, 令,所以,解得或, 当时,,所以,而,所以不合题意,舍去; 当时,,所以,,,所以满足条件,所以是原方程的解. 【考点定位】对数方程。

四川省成都七中2016-2017学年高二(上)期末数学试卷(理科)(解析版)

四川省成都七中2016-2017学年高二(上)期末数学试卷(理科)(解析版)

2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.设实数x,y满足,则μ=的取值范围是()A.[,2]B.[,]C.[,2]D.[2,]7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.2808.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42?B.z≤20? C.z≤50? D.z≤52?10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P 作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”,则6a+3×4=0,解得a=﹣2,故p是q成立的充要条件,故选:A2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样【考点】收集数据的方法.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大,按年级分层抽样,这种方式具有代表性,比较合理.故选:C.3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切 B.相交C.外切D.相离【考点】圆与圆的位置关系及其判定.【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.【考点】双曲线的简单性质.【分析】利用双曲线的离心率,转化求出a,b关系,即可求解双曲线的渐近线方程.【解答】解:双曲线的离心率为2,可得,即,可得,双曲线的渐近线方程为:y=±,即.故选:D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==,故选C6.设实数x,y满足,则μ=的取值范围是()A.[,2] B.[,]C.[,2]D.[2,]【考点】简单线性规划.【分析】根据不等式组画出可行域,得到如图所示的△ABC及其内部的区域.设P(x,y)为区域内一点,根据斜率计算公式可得μ=表示直线OP的斜率,运动点P得到PQ斜率的最大、最小值,即可得到μ=的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图所示的△ABC及其内部的区域其中A(1,2),B(4,2),C(3,1),设P(x,y)为区域内的动点,可得μ=表示直线OP的斜率,其中P(x,y)在区域内运动,O是坐标原点.运动点P,可得当P与A点重合时,μ=2达到最大值;当P与C点重合时,μ=达到最小值.综上所述,μ=的取值范围是[,2]故选:A7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.280【考点】排列、组合的实际应用.【分析】根据题意,分2步进行分析,①、先将5个人分成3组,分析可得有2种分组方法:分成2﹣2﹣1的三组或分成3﹣1﹣1的三组,分别求出每种情况的分组方法数目,由分类计数原理可得分组方法数目,②、将分好的3组对应三个班级,由排列数公式可得其方法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析,①、先将5个人分成3组,若分成2﹣2﹣1的三组,有=15种情况,若分成3﹣1﹣1的三组,有=10种情况,一共有15+10=25种分组方法;②、将分好的3组对应三个班级,有=6种方法,则一共有25×6=150种不同分派方法,故选:C.8.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是【考点】古典概型及其概率计算公式.【分析】利用等可能事件概率计算公式分别求解,能求出结果.【解答】解:∵柜子里有3双不同的鞋,随机地取2只,∴基本事件总数n==15,在A中,取出的鞋是成对的取法有3种,∴取出的鞋不成对的概率是:1﹣=,故A 正确;在B中,取出的鞋都是左脚的取法有=3种,∴取出的鞋都是左脚的概率为:,故B正确;在C中,取出的鞋都是同一只脚的取法有:=6,∴取出的鞋都是同一只脚的概率是p==;在D中,取出的鞋一只是左脚的,一只是右脚的,由题意,可以先选出左脚的一只有=3种选法,然后从剩下两双的右脚中选出一只有=2种选法,所以一共6种取法,∴取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是,故D错误.故选:D.9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42? B.z≤20? C.z≤50? D.z≤52?【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量z的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行z=2x+y后,z=1,不满足输出条件,应满足进行循环的条件,则x=1,y=1,第二次执行z=2x+y后,z=3,不满足输出条件,应满足进行循环的条件,则x=1,y=3,第三次执行z=2x+y后,z=5,不满足输出条件,应满足进行循环的条件,则x=3,y=5,第四次执行z=2x+y后,z=11,不满足输出条件,应满足进行循环的条件,则x=5,y=11,第五次执行z=2x+y后,z=21,不满足输出条件,应满足进行循环的条件,则x=11,y=21,第六次执行z=2x+y后,z=43,满足输出条件,故进行循环的条件可以为z≤42?,故选:A10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.【考点】频率分布直方图;茎叶图.【分析】由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,即可得出结论.【解答】解:由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,故选:B.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小【考点】椭圆的简单性质.【分析】连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.【解答】解:连接BD,AC设AD=t,则BD==∴双曲线中a=, e 1= ∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e 1减小∵AC=BD ∴椭圆中CD=2t (1﹣cosθ)=2c ∴c'=t (1﹣cosθ)AC +AD=+t ,∴a'=(+t ), e 2==∴e 1e 2=×=1 故选B .12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣1 【考点】椭圆的简单性质.【分析】通过已知条件,写出双曲线方程,结合已知等式及平面几何知识得出点M 是△F 1PF 2的内心,利用三角形面积计算公式计算即可.【解答】解:∵椭圆方程为+=1, ∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0), ∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0), ∵=,∴=,整理得:=5,化简得:5x=12y ﹣15,又∵,∴5﹣4y 2=20,解得:y=或y=(舍), ∴P (3,), ∴直线PF 1方程为:5x ﹣12y +15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是∃x0∈R,|x0|≥0.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定:∃x0∈R,|x0|≥0.故答案为:∃x0∈R,|x0|≥0.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.【考点】双曲线的简单性质.【分析】利用双曲线x2﹣my2=1的虚轴长是实轴长的3倍,列出方程求解即可.【解答】解:双曲线x2﹣my2=1的虚轴长是实轴长的3倍,可得:=3,解得m=.故答案为:.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8.【考点】圆的一般方程.【分析】x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2,根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积.【解答】解:x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8,故答案为6π+8.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是4+4.【考点】直线和圆的方程的应用.【分析】由圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,求得PC所在直线方程,与直线l求得交点P,再根据对称性可得r=2,由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,画出图形,通过图形观察,当两圆相内切时,求得最小值.【解答】解:根据圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,则PC所在直线的方程为x+y=1,与直线y=x+3联立求得P(﹣1,2),再根据对称性知过点P(﹣1,2)的两条切线必与坐标轴垂直,r=2;由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,如图所示,因此可设以点P(﹣1,2)为圆心,以R为半径的圆,即(x+1)2+(y﹣2)2=R2与圆C内切时,的最小值即为2R,由相切条件易知2R=2(|CP|+2)=2(2+2)=4+4.故答案为:4+4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?【考点】频率分布直方图.【分析】(1)根据频率=小矩形的高×组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可,运用取中间数乘频率,再求之和,计算可得平均数,求出众数即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案.【解答】解:(1)月收入在[3000,3500)的频率为0.0003×500=0.15;(2)从左数第一组的频率为0.0002×500=0.1;第二组的频率为0.0004×500=0.2;第三组的频率为0.0005×500=0.25;∴中位数位于第三组,设中位数为2000+x,则x×0.0005=0.5﹣0.1﹣0.2=0.2⇒x=400.∴中位数为2400(元)由1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400,样本数据的平均数为2400(元);众数是:=2250,和=2750;(3)月收入在[2500,3000)的频数为0.25×10000=2500(人),∵抽取的样本容量为100.∴抽取比例为=,∴月收入在[2500,3000)的这段应抽取2500×=25(人).18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)将甲、乙依次取到小球的编号记为(a,b),利用列出法求出基本事件个数和甲、乙两人成为好朋友包含的情况种数,由此能求出甲、乙两人成为“好朋友”的概率.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),求出基本事件个数,利用列举法求出丙抽取的编号能使方程a+b+2c=6成立包含的基本事件个数,由此能求出抽取的编号能使方程a+b+2c=6成立的概率.【解答】解:(1)将甲、乙依次取到小球的编号记为(a,b),则基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.记“甲、乙两人成为好朋友”为事件M,则M包含的情况有:(1,1),(2,2),(3,3),(4,4),共4个人,故甲、乙两人成为“好朋友”的概率为P(M)==.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),则基本事件有n=4×4×4=64个,记“丙抽取的编号能使方程a+b+2c=6成立”为事件N,当丙抽取的编号c=1时,工+子4,∴(a,b)分别为(1,3),(2,2),(3,1),当丙抽取的编号c=2时,a+b=2,∴(a,b)为(1,1),当丙抽取的编号c=3或c=4时,方程a+b+2c=6不成立.综上,事件N包含的基本事件有4个,∴.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)【考点】线性回归方程.【分析】(1)①根据公式求出和的值,求出回归方程即可;②根据b的值判断即可;(2)求出关于w的表达式,结合二次函数的性质求出w的最大值即可.【解答】解:(1)①依题意:==﹣20,=﹣=80+20×8.5=250,∴回归直线的方程为y=﹣20x+250;②由于=﹣20<0,则x,y负相关,故随定价的增加,销量不断降低.(2)设科研所所得利润为w,设定价为x,∴w=(x﹣4.5)(﹣20x+250)=﹣20x2+340x﹣1125,∴当时,w max=320,故当定价为8.5元时,w取得最大值.20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.【考点】直线和圆的方程的应用.【分析】(1)求出圆C的圆心和半径,整理直线方程为m(2x+y﹣7)+(x+y﹣4)=0,求出直线2x+y ﹣7=0,x+y﹣4=0的交点,判断它在圆内,即可得证;(2)由题意知,设点P(x,y)为弦AB的中点,连接CP,则CP⊥PQ,由平面几何知识可得点P的轨迹方程是以CQ为直径的圆,求得圆心和半径,注意运用中点坐标公式,再由当Q(3,1)是弦AB 的中点时,|AB|最小,运用勾股定理即可得到所求值.【解答】解:(1)证明:⊙C:x2+y2﹣2x﹣4y﹣20=0,即(x﹣1)2+(y﹣2)2=25,圆心C(1,2),半径r=5,又直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,化为m(2x+y﹣7)+(x+y﹣4)=0,由解得,则直线l恒过定点Q(3,1),由|CQ|==<5,可得Q在圆C内,则直线l与⊙C恒有两个交点;(2)由题意知,设点P(x,y)为弦AB的中点,由(1)可知CP⊥PQ,点P的轨迹方程是以CQ为直径的圆,线段CQ的中点为(2,),|CQ|=,则线段AB中点P的轨迹方程为;由圆的几何性质可知,当Q(3,1)是弦AB的中点时,|AB|最小.弦心距,⊙C的半径为5,可得|AB|min=2=4.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.【考点】直线与抛物线的位置关系.【解答】解:(1)设P(x,y)(x>0)是曲线C上任意一点,那么点P(x,y)满足:,化简得y2=4x(x>0).(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=λy+m,由得y2﹣4λy﹣4m=0,△=16(λ2+m)>0,于是①,又,②,又,于是不等式②等价于③,由①式,不等式③等价于m2﹣6m+1<4λ2④对任意实数λ,4λ2的最小值为0,所以不等式④对于一切π成立等价于m2﹣6m+1<0,即.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2,且m的取值范围为.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与椭圆的位置关系.【解答】解:(1)椭圆离心率,又,解得a=2,b=1,∴椭圆.(2)由已知AB必有斜率,设AB:y=k(x﹣n)(k≠0),A(x1,y1),B(x2,y2).联立.⇒k(x1﹣n)(x2﹣m)+k(x1﹣m)(x2﹣m)=0⇒2x1x2﹣(m+n)(x1+x2)+2mn=0⇒mn=4.(3)设E(x3,y3),F(x4,y4),因为,直线TM方程为:x=t(y﹣1),直线TN:3x﹣ty﹣t=0,联立,联立,所以E到直线TN:3x﹣ty﹣t=0的距离,,∴,(取等条件),λ的最大值为.。

2023-2024学年四川省成都市区县联考高一下学期7月期末调研考试数学试题(含解析)

2023-2024学年四川省成都市区县联考高一下学期7月期末调研考试数学试题(含解析)

2023-2024学年四川省成都市区县联考高一下学期7月期末调研考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.平面向量a=(m,2),b=(−2,4),若a//b,则m=( )A. −1B. 1C. −2D. 22.已知复数z满足(1+i)z=1−2i,则复数z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.将函数f(x)=sin2x的图象上所有的点向左平移π6个单位长度,得到的图象所对应的函数的解析式为( )A. y=sin(2x+π6)B. y=sin(2x+π3)C. y=sin(2x−π6)D. y=sin(2x−π3)4.已知非零向量a,b满足|a|=|b|,且a在b上的投影向量为12b,则向量a与向量b的夹角为( )A. 2π3B. π6C. π4D. π35.已知tanα=43,则cos2α=( )A. 725B. −725C. 255D. −2556.已知m,n是空间中两条不同的直线,α,β是空间中两个不同的平面,则下列说法正确的是( )A. 若m⊥α,n⊥α,则m//nB. 若m//n,n⊂α,则m//αC. 若α⊥β,m⊥α,则m//βD. 若m⊥α,m⊥n,则n//α7.已知梯形ABCO按斜二测画法得到的直观图为如图所示的梯形A′B′C′O′,且A′B′=1,O′A′=2,O′C′=4,现将梯形ABCO绕OA旋转一周得到一个几何体,则该几何体的体积为( )A. 14πB. 25πC. 28πD. 42π8.已知函数f(x)=A sin(ωx+φ)(其中A>0,ω>0,|φ|<π2)的部分图象如图所示,则下列说法错误的是( )A. 函数f(x)的最小正周期是πB. 函数f(x)的图象关于直线x=π3对称C. 函数f(x)的图象关于点(7π12,0)对称D. 函数f(x)在区间(3π4,π)上单调递增二、多选题:本题共3小题,共15分。

河北省衡水市高一数学下学期期末试卷 理(含解析)-人教版高一全册数学试题

河北省衡水市高一数学下学期期末试卷 理(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某市高一(下)期末数学试卷(理科)一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.93.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.805.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.246.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1627.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣39.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.2010.数列{a n}满足,则a n=()A.B.C.D.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为.14.若数列{a n}满足,则a2017=.15.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4=.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc(1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.2016-2017学年某某省某某市安平中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.【考点】83:等差数列.【分析】根据等差数列的定义,对所给的各个数列进行判断,从而得出结论.【解答】解:A,6,6,6,6,6常数列,公差为0;B,﹣2,﹣1,0,1,2公差为1;C,5,8,11,14公差为3;D,数列0,1,3,6,10的第二项减去第一项等于1,第三项减去第二项等于2,故此数列不是等差数列.故选:D.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9【考点】8F:等差数列的性质.【分析】由等差中项的性质,利用已知条件,能求出m,n,由此能求出m和n的等差中项.【解答】解:∵m和2n的等差中项是4,2m和n的等差中项是5,∴,解得m=4,n=2,∴m和n的等差中项===3.故选:B.3.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°【考点】HR:余弦定理.【分析】由已知及余弦定理可求cosA的值,结合X围A∈(0°,180°),利用特殊角的三角函数值即可得解A的值.【解答】解:在△A BC中,∵a2=b2+c2﹣bc,∴可得:b2+c2﹣a2=bc,∴cosA===,∵A∈(0°,180°),故选:A.4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.80【考点】85:等差数列的前n项和.【分析】由等差数列的通项公式,可得首项,再由等差数列的求和公式,计算即可得到所求和.【解答】解:等差数列{a n}中,a2=2,d=2,a1+d=2,解得a1=0,则S10=10a1+×10×9d=0+45×2=90.故选:C.5.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.24【考点】88:等比数列的通项公式.【分析】推导出a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,由等比数列通项公式列出方程组,求出,由此能求出S3.【解答】解:∵{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,∴a3a4=a2a5=﹣8,∴a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,∴,解得,∴S3===12.6.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.162【考点】81:数列的概念及简单表示法.【分析】0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.即可得出.【解答】解:由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选:B.7.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到S n=2n2+n.分n=1和n ≥2求出数列{a n}的通项,验证n=1时满足,所以数列{a n}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+a n=n(2n+1)=S n,即S n=2n2+n.当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.当n=1时也成立,∴a n=4n﹣1;∵b n==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣3【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】利用余弦定理列出关系式,再利用完全平方公式变形,把已知等式及cosB的值代入求出ac的值,原式利用平面向量的数量积运算法则变形,将各自的值代入计算即可求出值.【解答】解:∵在△ABC中,b2=ac,且a+c=3,cosB=,∴由余弦定理得:cosB=====,即ac=2,则•=﹣cacosB=﹣.故选:B.9.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.20【考点】HU:解三角形的实际应用.【分析】根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,根据正弦定理可得到BC的值.【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC=×sin30°=10.故选:A.10.数列{a n}满足,则a n=()A.B.C.D.【考点】8H:数列递推式.【分析】利用数列递推关系即可得出.【解答】解:∵,∴n≥2时,a1+3a2+…+3n﹣2a n﹣1=,∴3n﹣1a n=,可得a n=.n=1时,a1=,上式也成立.则a n=.故选:B.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【考点】HX:解三角形.【分析】结合三角形的内角和公式可得A+B=π﹣C,A+C=π﹣B,代入已知sin(A+B﹣C)=sin (A﹣B+C)化简可得,sin2C=sin2B,由于0<2B<π,0<2C<π从而可得2B=2C或2B+2C=π,从而可求【解答】解:∵A+B=π﹣C,A+C=π﹣B,∴sin(A+B﹣C)=sin(π﹣2C)=sin2Csin(A﹣B+C)=sin(π﹣2B)=sin2B,则sin2B=sin2C,B=C或2B=π﹣2C,即.所以△ABC为等腰或直角三角形.故选C12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°【考点】HR:余弦定理.【分析】先根据正弦定理把2R(sin2A﹣sin2C)=(a﹣b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C的值.【解答】解:△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sinB,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cosC==,∴角C的大小为30°,故选A.二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为120°.【考点】HR:余弦定理.【分析】直接利用余弦定理求出7所对的角的余弦值,求出角的大小,利用三角形的内角和,求解最大角与最小角之和.【解答】解:根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为:120°.14.若数列{a n}满足,则a2017= 2 .【考点】8H:数列递推式.【分析】数列{a n}满足a1=2,a n=1﹣,可得a n+3=a n,利用周期性即可得出.【解答】解:数列{a n}满足a1=2,a n=1﹣,可得a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2a5=1﹣=,…,∴a n+3=a n,数列的周期为3.∴a2017=a672×3+1=a1=2.故答案为:215.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4= 15 .【考点】89:等比数列的前n项和.【分析】由题意先求出公比,再根据前n项和公式计算即可.【解答】解:正项等比数列{a n}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为:15.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【考点】HX:解三角形.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc (1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.【考点】HT:三角形中的几何计算.【分析】(1)将2(a2﹣b2)=2accosB+bc化解结合余弦定理可得答案.(2)因为∠DAC=,所以AD=CD•sinC,∠DAB=.利用正弦定理即可求解.【解答】解:(1)由题意2accosB=a2+c2﹣b2,∴2(a2﹣b2)=a2+c2﹣b2+bc.整理得a2=b2+c2+bc,由余弦定理:a2=b2+c2﹣2bccosA可得:bc=﹣2bccosA∴cosA=﹣,∵0<A<π∴A=.(Ⅱ)∵∠DAC=,∴AD=CD•sinC,∠DAB=.在△ABD中,有,又∵CD=3BD,∴3sinC=2sinB,由C=﹣B,得cosB﹣sinB=2sinB,整理得:tanB=.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.【考点】8D:等比关系的确定;81:数列的概念及简单表示法.【分析】(1)分别令n=1,2,3,依次计算a1,a2,a3的值;(2)假设存在常数λ,使得{a n+λ}为等比数列,则(a2+λ)2=(a1+λ)(a3+λ),从而可求得λ,根据等比数列的通项公式得出a n+λ,从而得出a n.【解答】解:(1)当n=1时,S1=a1=2a1﹣3,解得a1=3,当n=2时,S2=a1+a2=2a2﹣6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3﹣9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.∴{a n+3}的首项为a1+3=6,公比为=2.∴a n+3=6×2n﹣1,∴a n=6×2n﹣1﹣3.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.【考点】8E:数列的求和.【分析】(1)由已知数列递推式可得a n+1=2a n,再由数列{a n}是等比数列求得首项,并求出数列通项公式;(2)把数列{a n}的通项公式代入数列,可得数列是递减数列,可知当n=9时,数列的项为正数,n=10时,数列的项为负数,则答案可求.【解答】解:(1)由a n+1=1+S n得:当n≥2时,a n=1+S n﹣1,两式相减得:a n+1=2a n,∵数列{a n}是等比数列,∴a2=2a1,又∵a2=1+S1=1+a1,解得:a1=1.得:;(2),可知数列是一个递减数列,∴,由此可知当n=9时,数列的前项和T n取最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【考点】HX:解三角形;HP:正弦定理;HR:余弦定理.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.【考点】8M:等差数列与等比数列的综合.【分析】(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;(2)求得=a n+b n=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)=a n+b n=2n﹣1+3n﹣1,则数列{}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得,由0<B+C<π,可求,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求X围0<b<2,进而可求a的取值X围.【解答】(本小题满分12分)解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值X围是.。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

四川省成都市2017-2018学年高二上学期期末调研考试数学(理)试题含解析

四川省成都市2017-2018学年高二上学期期末调研考试数学(理)试题含解析

四川省成都市 2017-2018 学年高二上学期期末调研考试 数学〔理〕试题一、选择题:本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一 项是符合题目要求的.1. 抛物线的准线方程是〔 〕A.B.C.D.【答案】A【解析】抛物线,满足,所以 ,则 .所以准线方程是.故选 A. 2. 从某中学甲班随机抽取 9 名男同学测量他们的体重〔单位:kg〕,获得体重数据如茎叶图 所示,对这些数据,以下说法正确的选项是〔 〕A. 中位数为 62 B. 中位数为 65 C. 众数为 62 【答案】C 【解析】∵由茎叶图得到所有数据从小到大排为 ∴中位数为 ,众数为 故选 C3. 命题“”的否认是〔 〕D. 众数为 64A. 不存在B.C.D.【答案】D学习文档 仅供参考【解析】命题的否认是故选 D4. 容量为 100 的样本,其数据分布在 ,将样本数据分为 4 组:,得到频率分布直方图如下图,则以下说法不正确的选项是〔 〕A. 样本数据分布在 C. 样本数据分布在 【答案】DB. 样本数据分布在的频数为 40的频数为 40 D. 估计总体数据大约有 10%分布在【解析】总体数据分布在的概率为故选 D5. “”是“为椭圆方程”的〔 〕A. 充分不必要条件 条件 【答案】BB. 必要不充分条件C. 充分必要条件D. 既不充分也不必要【解析】假设表示椭圆,则,且∴或者故是为椭圆方程的必要不充分条件故选 B 6. 已知函数A.B.C.【答案】D,假设在 D.上随机取一个实数 ,则的概率为〔 〕学习文档 仅供参考【解析】令得,即 ,由几何概型性质可知概率故选 D7. 在平面内,已知两定点 间的距离为 2,动点 满足.假设,则的面积为〔 〕A.B.C.D.【答案】B 【解析】由题可知点 的轨迹为椭圆,且∵∴ 为等边三角形,边长为 ∴ 的面积为 故选 B 8. 在 2017 年 3 月 15 日,某物价部门对本市 5 家商场某商品一天的销售额及其价格进行调查, 5 家商场的价格 与销售额 之间的一组数据如下表所示:由散点图可知,销售额 与价格 之间有较好的线性相关关系,且回归直线方程是,则〔 〕A.B. C. 40 D.【答案】C【解析】由题可知∵ ∴ 故选 C 点睛:此题看出回归分析的应用,此题解题的关键是求出样本中心点,根据样本中心点代入 求出的值,此题是一个基础题;求回归直线方程的一般步骤:①作出散点图〔由样本点是否学习文档 仅供参考呈条状分布来判断两个量是否具有线性相关关系〕,假设存在线性相关关系;②求回归系数; ③写出回归直线方程,并利用回归直线方程进行预测说明.9. 已知双曲线 :的左焦点为,右顶点为 ,过点且垂直于轴的直线与双曲线 相交于不同的两点 .假设 为锐角三角形,则双曲线 的离心率的取值范围为〔〕A.B.C.D.【答案】A【解析】双曲线右顶点为 ,左焦点为,,过点作垂直于轴的直线与双曲线相交于 两点,则∵假设 为锐角三角形,只要 为锐角,即∴,即即∴ 故选 A 点睛:解决双曲线的离心率的求值及范围问题其关键就是确立一个关于 的方程或不等式, 再根据 的关系消掉得到 的关系式,而建立关于 的方程或不等式,要充分利用双曲线 的几何性质、点的坐标的范围等. 10. 阅读如下图的程序,假设执行循环体的次数为 5,则程序中的取值范围为〔 〕A.B.【答案】DC.D.学习文档 仅供参考【解析】执行程序:;;;;,共执行了 5 次循环体,结束循环,所以.故选 D.11. 已知椭圆 :的右焦点为,点 在椭圆 上,假设点 满足且,则 的最小值为〔 〕A. 3 B.C.D. 1【答案】C 【解析】根据题意得: ,又因为.所以.故选 C.12. 设抛物线 :的焦点为,过点的直线与抛物线 相交于不同的两点 ,与抛物线 的准线相交于点 ,且.记与的面积分别为 ,则 〔 〕A.B. C. D.【答案】A【解析】抛物线的焦点为 F(,0),准线方程为 x=−,分别过 A. B 作准线的垂线,垂足分别为 D.E,连结 AD、BE、AF.学习文档 仅供参考genju设,直线 AB 的方程为,与联立消去 y,得,所以,∵|BF|=2,∴根据抛物线的定义,得|BF|=|BE|= +=3,解得 =.由此可得,所以|AD|= += ,∵△CAD 中,BE∥AD,∴.故选:A. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.假设为抛物线上一点,由定义易得;假设过焦点的弦 AB 的端点坐标为,则弦长为可由根与系数的关系整体求出,此题就是由韦达定理得到;假设遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到. 二、填空题〔每题 4 分,总分值 20 分,将答案填在答题纸上〕13. 假设直线为双曲线的一条渐近线,则 ______.【答案】1学习文档 仅供参考【解析】∵双曲线 ∴ ∴渐近线方程为∵直线为双曲线的一条渐近线∴ 故答案为 1 14. 某学校共有师生 2400 人,现用分层抽样的方法,从所有师生中抽取容量为 160 的样本, 已知从学生中抽取的人数为 150,那么该学校的教师人数为_______. 【答案】150【解析】试题分析:该校教师人数为 2400×(人).考点:分层抽样方法. 的值分别为 7,3,则输出的的值为_______.【答案】3 【解析】输入学习文档 仅供参考进入循环,,不满足执行循环,,不满足执行循环, 故答案为 3 16. 假设经过坐标原点 的直线与圆的轨迹方程为_______. 【答案】,满足 ,输出 相交于不同的两点 ,则弦 的中点【解析】设当直线 l 的方程为,与圆联立方程组,消去 y 可得:,由,可得 .由韦达定理,可得,∴线段 AB 的中点 M 的轨迹 C 的参数方程为,其中 ,∴线段 AB 的中点 M 的轨迹 C 的方程为:,其中.故答案为:.点睛:求轨迹方程的常用方法: 〔1〕直接法:直接利用条件建立 x,y 之间的关系 F(x,y)=0. 〔2〕待定系数法:已知所求曲线的类型,求曲线方程. 〔3〕定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的 轨迹方程.学习文档 仅供参考〔4〕代入(相关点)法:动点 P(x,y)依赖于另一动点 Q(x0,y0)的变化而运动,常利用代入法 求动点 P(x,y)的轨迹方程. 三、解答题 〔本大题共 6 题,共 70 分.解答应写出文字说明、证明过程或演算步骤.〕 17. 甲袋中有 1 只黑球,3 只红球;乙袋中有 2 只黑球,1 只红球. 〔1〕从甲袋中任取两球,求取出的两球颜色不相同的概率; 〔2〕从甲、乙两袋中各取一球,求取出的两球颜色相同的概率.【答案】〔1〕〔2〕 .【解析】试题分析:〔1〕先求出取出两球的种数,再根据分类和分步计数原理求出一只黑球 一只红球的种数,根据概率公式计算即可;〔2〕分为同是黑色,红色,根据分类和分步计数 原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.试题解析:〔1〕将甲袋中的 1 只黑球,3 只红球分别记为.从甲袋中任取两球,所有可能的结果有共 6 种.其中两球颜色不相同的结果有共 3 种.记“从甲袋中任取两球,取出的两球的颜色不相同”为事件 ,则∴从甲袋中任取两球,取出的两球的颜色不相同的概率为.〔2〕将甲袋中的 1 只黑球,3 只红球分别记为,将乙袋中的 2 只黑球,1 只红球分别记为从甲、乙两袋中各取一球的所有可能结果有共 12 种.其中两球颜色相同的结果有共5种记“从甲、乙两袋中各取一球,取出的两球的颜色相同”为事件 ,则∴从甲、乙两袋中各取一球,取出的两球的颜色相同的概率为 .18. 已知命题:假设关于的方程无实数根,则;命题:假设关于的方程有两个不相等的正实根,则 .〔1〕写出命题的否命题,并判断命题的真假;学习文档 仅供参考〔2〕判断命题“且”的真假,并说明理由. 【答案】〔1〕命题为真命题〔2〕命题“且”为真命题................试题解析:〔1〕解 :命题的否命题:假设关于的方程或.∵关于的方程有实根∴∵,化简,得,解得或∴命题为真命题.〔2〕对于命题:假设关于的方程. 无实数根,则化简,得,解得∴命题为真命题.对于命题:关于的方程. 有两个不相等的正实根,有,解得∴命题为真命题 ∴命题“且”为真命题. 19. 阅读如下图的程序框图,解答以下问题:有实数根,则学习文档 仅供参考〔1〕求输入的的值分别为 时,输出的 的值;〔2〕根据程序框图,写出函数 〔 〕的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.【答案】〔1〕见解析〔2〕 .【解析】试题分析:〔1〕根据输入的的值为 时,输出结果;当输入的的值为 2 时,输出结果;〔2〕根据程序框图,可得 ,结合函数图象及有三个互不相等的实数解即可求出实数的取值范围.试题解析:〔1〕当输入的的值为 时,输出的;当输入的的值为 2 时,输出的〔2〕根据程序框图,可得当 时,,此时 单调递增,且;当 时,;当 时,在 上单调递减,在上单调递增,且.结合图象,知当关于的方程有三个互不相等的实数解时,实数的取值范围为 .20. 已知以坐标原点 为圆心的圆与抛物线 :线 的准线相交于不同的两点 ,且.〔1〕求抛物线 的方程;学习文档 仅供参考相交于不同的两点 ,与抛物〔2〕假设不经过坐标原点 的直线与抛物线 相交于不同的两点 直线过轴上一定点 ,并求出点 的坐标.,且满足【答案】〔1〕〔2〕见解析.证明【解析】试题分析:〔1〕由 得; 〔2〕设直线的方程为,得 两点所在的直线方程为 ,进而根据长度求,与抛物线联立得,由得,进而利用韦达定理求解即可.试题解析:〔1〕由已知,,则 两点所在的直线方程为则,故∴抛物线 的方程为.〔2〕由题意,直线不与轴垂直,设直线的方程为,.联立消去,得.∴,,,∵,∴又,∴∴解得 或而 ,∴ 〔此时〕∴直线的方程为,故直线过轴上一定点.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多学习文档 仅供参考少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值 问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推 理,到最后必定参数统消,定点、定值显现.21. 一网站营销部为统计某市网友 2017 年 12 月 12 日在某网店的网购情况,随机抽查了该市 60 名网友在该网店的网购金额情况,如下表:假设将当日网购金额不小于 2 千元的网友称为“网购达人”,网购金额小于 2 千元的网友称 为“网购探者”.已知“网购达人”与“网购探者”人数的比例为 2:3.〔1〕确定的值,并补全频率分布直方图;〔2〕试根据频率分布直方图估算这 60 名网友当日在该网店网购金额的平均数和中位数;假 设平均数和中位数至少有一个不低于 2 千元,则该网店当日被评为“皇冠店”,试判断该网 店当日能否被评为“皇冠店”.学习文档 仅供参考【答案】(1)见解析〔2〕见解析【解析】试题分析:(1)由频数之和为 ,“网购达人”与“网购探者”人数的比例为 2:3,列出关于 的方程组,由此能求出的值,并补全频率分布直方图;〔2〕根据频率分布直方图分别计算平均数和中位数,再与题设条件做比较,即可判断.试题解析:(1)由题意,得化简,得,解得 ∴ 补全的频率分布直方图如下图:〔2〕设这 60 名网友的网购金额的平均数为, 则〔千元〕又∵,,∴这 60 名网友的网购金额的中位数为 1.5+0.3=1.8〔千元〕∵平均数,中位数,∴根据估算判断,该网店当日不能被评为“皇冠店”.22. 已知动点 到定点的距离和它到直线的距离的比值为常数 ,记动点的轨迹为曲线 . 〔1〕求曲线 的方程;〔2〕假设直线 :与曲线 相交于不同的两点 ,直线 :〔 〕与学习文档 仅供参考曲线 相交于不同的两点 ,且【答案】〔1〕〔2〕4..求以为顶点的凸四边形的面积的最大值.【解析】试题分析:〔1〕设,根据题意,动点 的轨迹为集合,得,化简求解即可;〔2〕联立 理求得消去,得 ,同理可得,利用两点距离公式及韦达定,由得,设两平行线间的距离为试题解析:〔1〕设,动点到直线 :根据题意,动点 的轨迹为集合,代入求解即可.的距离为,由此,得化简,得∴曲线 的方程为.〔2〕设联立消去,得.∴,学习文档 仅供参考∴,同理可得∵,∴又 ,∴ 由题意,以 设两平行线为顶点的凸四边形为平行四边形 间的距离为,则∵,∴则∵〔当且仅当〕,∴四边形的面积的最大值为 4.时取等号,此时满足学习文档 仅供参考学习文档 仅供参考。

四川省成都市2016级高中毕业班摸底测试数学理科试题(解析版)

四川省成都市2016级高中毕业班摸底测试数学理科试题(解析版)

四川省成都市2016级高中毕业班摸底测试数学理科试题(解析版)成都市2016级高中毕业班摸底测试数学试题(理科)本试卷分为卷一和卷二两部分,卷一至四页,满分100分;卷五至六页,满分60分。

全卷满分160分,考试时间120分钟。

卷一(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 $A=\{x\mid -2\leq x\leq 3\}$,$B=\{x\mid 1\leqx\leq 5\}$,$C=\{x\mid -1\leq x\leq 4\}$,$D=\{x\mid -4\leqx\leq -1\}$,则 $A\cap B\cap C\cap D$ 的值为()答案】B解析】分析:由不等式 $-2\leq x\leq 3$,$1\leq x\leq 5$,$-1\leq x\leq 4$,$-4\leq x\leq -1$ 求出的范围,得出集合$A=\{-2,-1,0,1,2,3\}$,$B=\{1,2,3,4,5\}$,$C=\{-1,0,1,2,3,4\}$,$D=\{-4,-3,-2,-1\}$,所以 $A\cap B\cap C\cap D=\{-1,-2\}$,故选B。

点睛:本题主要考查了不等式的解集及集合间的交集运算,属于容易题。

2.复数 $z=\mathrm{i}$(为虚数单位)在复平面内表示的点的坐标为()答案】A解析】分析:求出复数的代数形式,再写出在复平面内表示的点的坐标。

详解:复数 $\mathrm{i}$,所以复数在复平面内表示的点的坐标为 $(0,1)$,选A。

点睛:本题主要考查了复数的四则运算,以及复数在复平面内所表示的点的坐标,属于容易题。

3.若实数 $x,y$ 满足约束条件 $x+2y\leq 8$,$x\geq 0$,$y\geq 0$,则 $3x+4y$ 的最大值为()答案】D解析】分析:由已知线性约束条件,作出可行域,利用目标函数的几何意义,采用数形结合求出目标函数的最大值。

2016-2017年四川省成都七中实验学校高一(下)期中数学试卷和答案

2016-2017年四川省成都七中实验学校高一(下)期中数学试卷和答案

2016-2017学年四川省成都七中实验学校高一(下)期中数学试卷一、选择题:共12小题,每小题5分,共60分.每个小题只有一个正确答案. 1.(5分)已知a>b,c>d,且cd≠0,则()A.ad>bc B.ac>bd C.a﹣c>b﹣d D.a+c>b+d 2.(5分)若{a n}是等差数列,且a1=﹣1,公差为﹣3,则a8等于()A.﹣7B.﹣8C.﹣22D.273.(5分)二次不等式ax2+bx+1>0的解集为{x|﹣1<x<},则a+b的值为()A.﹣6B.6C.﹣5D.54.(5分)如果﹣1,a,b,c,﹣9成等比数列,那么()A.b=3,ac=9B.b=﹣3,ac=9C.b=3,ac=﹣9D.b=﹣3,ac=﹣9 5.(5分)在△ABC中,已知b=2,a=3,cos A=﹣,则sin B等于()A.B.C.D.6.(5分)下列各函数中,最小值为4的是()A.B.C.y=4log3x+log x3D.y=4e x+e﹣x7.(5分)△ABC的三个内角,A,B,C的对边分别为a,b,c,且,则A=()A.30°B.60°C.120°D.150°8.(5分)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S5=()A.B.C.D.9.(5分)已知等比数列{a n}的各项均为不等于1的正数,数列{b n}满足b n=lga n,b3=18,b6=12,则数列{b n}前n项和的最大值等于()A.126B.130C.132D.13410.(5分)已知向量=(2cos2x,),=(1,sin2x),设函数,则下列关于函数y=f(x)的性质的描述正确的是()A.关于直线对称B.关于点对称C.周期为2πD.y=f(x)在上是增函数11.(5分)某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)(4)在△ABC中,若,则A>C>B其中错误命题的个数是()A.0B.1C.2D.312.(5分)给出下列四个关于数列命题:(1)若{a n}是等差数列,则三点、、共线;(2)若{a n}是等比数列,则S m、S2m﹣S m、S3m﹣S2m(m∈N*)也是等比数列;(3)等比数列{a n}的前n项和为S n,若对任意的n∈N*,点(n,S n)均在函数y=b x+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为﹣1.(4)对于数列{a n},定义数列{a n﹣a n}为数列{a n}的“差数列”,若a1=2,{a n}+1的“差数列”的通项为2n,则数列{a n}的前n项和S n=2n+1﹣2其中正确命题的个数是()A.4B.3C.2D.1二、填空题:本大题4个小题,每小题5分,共20分.13.(5分)求值:cos415°﹣sin415°=.14.(5分)在等差数列{a n}中,若a2+a4+a6+a8+a10=80,则S11的值为.15.(5分)设正实数x,y满足x+2y=xy,若m2+2m<x+2y恒成立,则实数m的取值范围是.16.(5分)在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA(+)的取值范围是.三、解答题:本大题共6个小题,共70分17.(10分)(1)已知等比数列{a n}中,a1=2且a1+a2=6.求数列{a n}的前n项和S n的值;(2)已知tanθ=3,求的值.18.(12分)已知函数(x∈R).(1)化简f(x)并求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值.19.(12分)已知D为△ABC的边BC上一点,且AB:BC:CA=1::1.(1)求角A的大小;(2)若△ABC的面积为,且∠ADC=45°,求BD的长.20.(12分)已知在△ABC中,b(sinB+sinC)=(a﹣c)(sinA+sinC)(其中角A,B,C所对的边分别为a,b,c)且∠A为钝角.(1)求角A的大小;(2)若,求b+c的取值范围.21.(12分)已知数列{a n}满足:a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求数列{a n}的通项公式;(3)设,求数列{c n}的前n项和T n的取值范围.22.(12分)对于无穷数列{x n}和函数f(x),若x n+1=f(x n)(n∈N+),则称f(x)是数列{x n}的母函数.(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且;又数列{a n}满足.(1)求证:f(x)=x+2是数列{2n a n}的母函数;(2)求数列{a n}的前项n和S n.(Ⅱ)已知是数列{b n}的母函数,且b1=2.若数列的前n项和为T n,求证:.2016-2017学年四川省成都七中实验学校高一(下)期中数学试卷参考答案与试题解析一、选择题:共12小题,每小题5分,共60分.每个小题只有一个正确答案. 1.(5分)已知a>b,c>d,且cd≠0,则()A.ad>bc B.ac>bd C.a﹣c>b﹣d D.a+c>b+d【解答】解:∵a>b,c>d,且cd≠0,∴a﹣b>0,c﹣d>0,由不等式的性质可得a﹣b+c﹣d>0,a+c>b+d,故选:D.2.(5分)若{a n}是等差数列,且a1=﹣1,公差为﹣3,则a8等于()A.﹣7B.﹣8C.﹣22D.27【解答】解:a8=﹣1﹣3×7=﹣22.故选:C.3.(5分)二次不等式ax2+bx+1>0的解集为{x|﹣1<x<},则a+b的值为()A.﹣6B.6C.﹣5D.5【解答】解:∵二次不等式ax2+bx+1>0的解集为{x|﹣1<x<},∴﹣1,是方程ax2+bx+1=0的两个实数根,且a<0.∴,解得,∴a+b=﹣5.故选:C.4.(5分)如果﹣1,a,b,c,﹣9成等比数列,那么()A.b=3,ac=9B.b=﹣3,ac=9C.b=3,ac=﹣9D.b=﹣3,ac=﹣9【解答】解:由等比数列的性质可得ac=(﹣1)×(﹣9)=9,b×b=9且b与奇数项的符号相同,∴b=﹣3,故选:B.5.(5分)在△ABC中,已知b=2,a=3,cos A=﹣,则sin B等于()A.B.C.D.【解答】解:∵cos A=﹣,∴sinA==,∵b=2,a=3,由正弦定理可得sinB==×=,故选:A.6.(5分)下列各函数中,最小值为4的是()A.B.C.y=4log3x+log x3D.y=4e x+e﹣x【解答】解:对于A,当x→﹣∞时,y→﹣∞,故不对,对于B:若取到最小值,则sinx=2,显然不成立,对于C:4log3x与log x3均不能保证为正数,故对,对于D:y=4e x+e﹣x≥4,当且仅当x=﹣ln2时取等号,故选:D.7.(5分)△ABC的三个内角,A,B,C的对边分别为a,b,c,且,则A=()A.30°B.60°C.120°D.150°【解答】解:∵==1,∴a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴cosA===,又A为三角形的内角,则A=60°.故选:B.8.(5分)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S5=()A.B.C.D.【解答】解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为=2n﹣1,同理,小老鼠每天打洞的距离=2﹣,∴S n=2n﹣1+2﹣,∴S5=25+1﹣=32.故选:B.9.(5分)已知等比数列{a n}的各项均为不等于1的正数,数列{b n}满足b n=lga n,b3=18,b6=12,则数列{b n}前n项和的最大值等于()A.126B.130C.132D.134【解答】解:由题意可知,lga3=b3,lga6=b6.又∵b3=18,b6=12,则a1q2=1018,a1q5=1012,∴q3=10﹣6.即q=10﹣2,∴a1=1022.又∵{a n}为正项等比数列,∴{b n}为等差数列,且d=﹣2,b1=22.故b n=22+(n﹣1)×(﹣2)=﹣2n+24.∴S n=22n+×(﹣2)=﹣n2+23n=+.又∵n∈N*,故n=11或12时,(S n)max=132.10.(5分)已知向量=(2cos2x,),=(1,sin2x),设函数,则下列关于函数y=f(x)的性质的描述正确的是()A.关于直线对称B.关于点对称C.周期为2πD.y=f(x)在上是增函数【解答】解:f(x)=2cos2x+sin2x=cos2x+sin2x+1=2sin(2x+)+1,当x=时,sin(2x+)=sin≠±1,∴f(x)不关于直线x=对称;当x=时,2sin(2x+)+1=1,∴f(x)关于点(,1)对称;f(x)得周期T==π,当x∈时,2x+∈(﹣,),∴f(x)在在上是增函数.故选:D.11.(5分)某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)(4)在△ABC中,若,则A>C>B其中错误命题的个数是()A.0B.1C.2D.3【解答】解:(1)∵tanA+tanB=tan(A+B)(1﹣tanAtanB),∴tanA+tanB+tanC=tan(A+B)(1﹣tanAtanB)+tanC=tanAtanBtanC,∴△ABC是钝角三角形,可得:tanAtanBtanC<0,故错误;(2)∵△ABC为锐角三角形,∴A+B>90°,B>90°﹣A,∴cosB<sinA,sinB>cosA,∴cosB﹣sinA<0,sinB﹣cosA>0,∴cosB﹣sinA<sinB﹣cosA,可得cosA+cosB<sinA+sinB,故错误;(3)当B=时,tanB不存在,故错误;(4)由tanC=得到0<C<90°,且tan30°=<<1=tan45°,因为正切函数在(0,90°)为增函数,所以得到30°<C<45°;由sinB=可得到0<B<90°或90°<B<180°,在0<B<90°时,sin30°=>,因为正弦函数在(0,90°)为增函数,得到0<B<30°;在90°<B<180°时,sin150°=>,但是正弦函数在90°<B<180°为减函数,得到B>150°,则B+C>180°,矛盾,不成立.所以0<B<30°.由B和C的取值得到A为钝角,所以A>C>B,故正确;故选:D.12.(5分)给出下列四个关于数列命题:(1)若{a n}是等差数列,则三点、、共线;(2)若{a n}是等比数列,则S m、S2m﹣S m、S3m﹣S2m(m∈N*)也是等比数列;(3)等比数列{a n}的前n项和为S n,若对任意的n∈N*,点(n,S n)均在函数y=b x+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为﹣1.(4)对于数列{a n},定义数列{a n﹣a n}为数列{a n}的“差数列”,若a1=2,{a n}+1的“差数列”的通项为2n,则数列{a n}的前n项和S n=2n+1﹣2其中正确命题的个数是()A.4B.3C.2D.1【解答】解:(1)若{a n}是等差数列,则S n=na1+,∴=a1﹣+n,即是关于n的一次函数,∴{}是等差数列,∴三点、、共线,故(1)正确;(2)若{a n}是公比为﹣1的等比数列,当m为偶数时,有S m=S2m=S3m=0,显然结论错误;故(2)错误;(3)S n=b n+r,当n=1时,a1=S1=b+r,当n≥2时,a n=S n﹣S n﹣1=b n+r﹣(b n﹣1+r)=b n﹣b n﹣1=(b﹣1)b n﹣1,又因为{a n}为等比数列,所以r=﹣1,故(3)正确;(4)n=1时,a1=2;当n≥2时,a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣1+2n﹣2+…+2+2=2+=2n;∴S n==2n+1﹣2,故(4)正确.故选:B.二、填空题:本大题4个小题,每小题5分,共20分.13.(5分)求值:cos415°﹣sin415°=.【解答】解:cos415°﹣sin415°=(cos215°+sin215°)•(cos215°﹣sin215°)=cos215°﹣sin215°=cos30°=,故答案为:.14.(5分)在等差数列{a n}中,若a2+a4+a6+a8+a10=80,则S11的值为176.【解答】解:∵等差数列{a n}中,若a2+a4+a6+a8+a10=80,∵a2+a10=2a6,a4+a8=2a6,∴5a6=80,∴a6=16,∴S11==11a6=176.故答案为:176.15.(5分)设正实数x,y满足x+2y=xy,若m2+2m<x+2y恒成立,则实数m的取值范围是(﹣4,2).【解答】解:正实数x,y满足x+2y=xy,∴+=1,∴x+2y=(x+2y)(+)=2+2++≥4+2=8,当且仅当x=2y,即x=4,y=2时等号成立.不等式m2+2m<x+2y恒成立,即m2+2m<8恒成立,解得﹣4<m<2;∴实数m的取值范围是(﹣4,2).故答案为:(﹣4,2).16.(5分)在△ABC中,a,b,c是角A,B,C所对应边,且a,b,c成等比数列,则sinA(+)的取值范围是(,).【解答】解:∵△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∵a,b,c成等比数列,sin2B=sinAsinC设a,b,c分别为a,aq,aq2.则有⇒⇒.sinA()=sinA()=sinA=∴sinA(+)的取值范围是:(,)三、解答题:本大题共6个小题,共70分17.(10分)(1)已知等比数列{a n}中,a1=2且a1+a2=6.求数列{a n}的前n项和S n的值;(2)已知tanθ=3,求的值.【解答】解:(1)设等比数列{a n}的公比为q,由已知得a1=2,且a1+a2=2+2q=6,∴q=2,∴a n=2n.从而,S n==2n+1﹣2.(2)∵tanθ=3,∴==2.18.(12分)已知函数(x∈R).(1)化简f(x)并求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值.【解答】解:函数(x∈R).化简可得:=.∴f(x)的最小正周期T=.(2)上时,易得,于是,即2≤f(x)≤3,∴当时,f(x)max=3;当时,f(x)min=2.故得f(x)在区间上的最大值为3,最小值为2.19.(12分)已知D为△ABC的边BC上一点,且AB:BC:CA=1::1.(1)求角A的大小;(2)若△ABC的面积为,且∠ADC=45°,求BD的长.【解答】解:设AB:BC:CA=1::1=k,则AB=AC=k,BC=k,(1)由余弦定理得:cosA===﹣,∵A为三角形的内角,∴A=120°;(2)∵AB=CA,∠A=120°,∴∠B=∠C=30°,∴∠BAD=15°,∵S=AB•AC•sin120°=,△ABC∴AB=AC=2,∵sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=,则由正弦定理=得:BD==﹣1.20.(12分)已知在△ABC中,b(sinB+sinC)=(a﹣c)(sinA+sinC)(其中角A,B,C所对的边分别为a,b,c)且∠A为钝角.(1)求角A的大小;(2)若,求b+c的取值范围.【解答】解:(Ⅰ)由正弦定理得b(b+c)=(a+c)(a﹣c),…3分可得:a2=b2+c2+bc,…4分又a2=b2+c2﹣2bccosA,于是,…5分又A∈(0,π),∴.…6分(Ⅱ)∵,∴,且0,…7分由正弦定理可知,,…8分所以b+c=2RsinB+2RsinC=sinB+sinC,…9分===, (10)分又0,可得:<C+<,∴,…12分注:用均值不等式求解更易,,得:,…6分从而:,…10分∴b+c≤1,…11分又,∴.…12分.21.(12分)已知数列{a n}满足:a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求数列{a n}的通项公式;(3)设,求数列{c n}的前n项和T n的取值范围.【解答】(1)证明:∵a n=2a n+1,∴a n+1+1=2(a n+1),+1∴数列{a n+1}是等比数列.(2)解:由(1)及已知{a n+1}是等比数列,公比q=2,首项为a1+1=2,∴a n+1=2•2n﹣1=2n,∴.(3)解:=﹣,∴=<1,设f(n)=1﹣,则f(n)是增函数,∴当n=1时,f(n)取得最小值f(1)=.∴T n的取值范围是[,1).22.(12分)对于无穷数列{x n}和函数f(x),若x n+1=f(x n)(n∈N+),则称f(x)是数列{x n}的母函数.(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且;又数列{a n}满足.(1)求证:f(x)=x+2是数列{2n a n}的母函数;(2)求数列{a n}的前项n和S n.(Ⅱ)已知是数列{b n}的母函数,且b1=2.若数列的前n项和为T n,求证:.【解答】解:(Ⅰ)(1)由题知,且.∴f(x)=x+2是数列{2n a n}的母函数;…3分(2)由(1)知:{2n a n}是首项和公差均为2的等差数列,故.∴①∴②两式相减得:.S n=,∴…6分(Ⅱ)由题知:,b1=2.∴.从而是以为首项,为公比的等比数列,∴…8分又,故当n≥2时⇒…12分。

2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)

2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)

2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={-1,1,2},B={x| (x+1)(x-2)<0 },则A∩B=()A。

{-1}B。

{1}C。

{-1,1}D。

{1,2}2.与命题“若a∈M,则b∈M”等价的命题是()A。

若a∈M,则XXXB。

若b∈M,则a∉MC。

若b∉M,则a∈MD。

b∉M,则a∉M3.已知a>b,则下列不等式恒成立的是()A。

a^2>b^2B。

a^2<b^2C。

a^2>abD。

a^2+b^2>2ab4.设f(x)= 1/(x-3),则f(f(4))=()A。

-1B。

1/13C。

1/11D。

1/75.设a=0.9^1.1,b=1.1^0.9,c=log0.9 1.1,则a,b,c的大小关系正确的是()A。

b>a>cB。

a>b>cC。

c>a>bD。

a>c>b6.函数f(x)= -log3x的零点所在的区间为()A。

(-∞,0)B。

(0,1)C。

(1,3)D。

(3,∞)7.设p:x^2-x-20≤0,q:x≥1,则p是q的()A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

既不充分也不必要条件8.若变量x,y满足x+y=3,则2x-y的最大值是()A。

-2B。

3C。

7D。

99.设f(x)=sinx-x,则下列说法正确的是()A。

f(x)是有零点的偶函数B。

f(x)是没有零点的奇函数C。

f(x)既是奇函数又是R上的增函数D。

f(x)既是奇函数又是R上的减函数10.已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()11.当x∈(0,3)时,关于x的不等式e^x-x-2mx>XXX成立,则实数m的取值范围是()A。

2016-2017高一数学必修一期末考试试卷

2016-2017高一数学必修一期末考试试卷

2016-2017高一数学必修一期末考试试卷2016-2017高一数学必修一期末考试试卷一、选择题(共12小题,共60.0分)1.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的范围是()A.a≥2 B.a≥1 C.a≤1 D.a≤22.若函数f(x)=x-x(a∈R)在区间(1,2)上有零点,则a的值可能是()A.-2 B.0 C.1 D.33.设a=log0.6 0.4,b=log0.6 0.7,c=log1.5 0.6,则a,b,c 的大小关系是()A.a>c>b B.a>b>c C.c>a>b D.c>b>a4.函数f(x)=lg(x^2-4)的定义域为() A.{x|-21} C.{x|x>2}D.{x|-22}5.若直角坐标平面内关于原点对称,则对称点对两点满足条件:①点都在f(x)的图象上;②点与f(x)的一个“兄弟点对”(点对可看作一个“兄弟点对”).已知函数f(x)=2x−1,(x≤0) g(x)=f(x-1)+1,(x>0)的个数为 A.2 B.3 C.4 D.56.已知函数g(x)=2x-1,f(x)=g(ax+b),若关于f(x)=0的方程g(x)=0有5个不等实根,则实数a的值是()A.2 B.4 C.2或4 D.不确定的7.已知a,b都是负实数,则a+2b+a+b的最小值是()A.6B.2(2-1)C.22-1D.2(2+1)8.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0),g(x)=f(x)-x 的零点按从小到大顺序排列成一个数列,则该数列的通项公式为()A.x n=n-1 B.a n=n(n-1) C.a n=n(n-1)/2 D.x n=2x−29.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0)的图象如图所示,为了得到g(x)的图象,只需将f(x)的图象()A.向左平移1个长度单位 B.向右平移1个长度单位 C.向左平移π/2个长度单位 D.向右平移π/2个长度单位10.f(x)是定义在(-1,1)上的奇函数且单调递减,若f(2-a)+f(4-a^2)<1,则a的取值范围是()A.(3,2) B.(−∞,3)∪(2,+∞) C.(5,3) D.(−∞,5)∪(3,+∞)11.已知集合A={x|x≥0},B={y||y|≤2,y∈Z},则下列结论正确的是() A.A∩B=ϕ B.A∪B=R C.A∩B=Z D.A∪B={y|y≥-2}答案:1.D2.C3.A4.B5.C6.B7.A8.B9.A 10.B 11.D1.合并重复的信息,删除明显有问题的部分:A) ∪ B = (-∞。

四川省成都市树德中学高一数学上学期期末考试试题

四川省成都市树德中学高一数学上学期期末考试试题

四川省成都市树德中学2016-2017学年高一数学上学期期末考试试题满分:150分 考试时间:120分钟一、选择题(共12个小题,每小题5分,共60分.每小题只有一项是符合题目要求的) 1.设全集U =R ,3|01x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|2B x x =<,则()U C A B =(A ){|12}x x ≤< (B ){|12}x x << (C ){}|2x x < (D ){}|1x x ≥ 2.下列函数既是偶函数,又在(0,)+∞上是增函数的是 (A )2y x-=(B )13y x =(C )||2x y = (D )|1||1|y x x =-++ 3.下列说法正确的是(A )若()f x 是奇函数,则(0)0f = (B )若α是锐角,则2α是一象限或二象限角 (C )若//,//a b b c ,则//a c (D )集合{|{1,2}}A P P =⊆有4个元素4.将函数sin y x π=的图像沿x 轴伸长到横坐标为原来的2倍,再向左平移1个单位,得到的图像对应的解析式是 (A )sin(1)2xy π=+(B )sin(21)y x π=+ (C )cos2xy π= (D )cos 2xy π=-5.若G 是ABC ∆的重心,且满足GA GB GC λ+=,则=λ(A )1 (B ) 1- (C )2 (D )2-6.如图,向一个圆台型容器(下底比上底口径宽)匀速注水(单位时间注水体积相同),注 满为止,设已注入的水体积为v ,高度为h ,时间为t ,则下列反应变化趋势的图像正确的是7.平面直角坐标系xOy 中,角α的始边在x 轴非负半轴,终边与单位圆交于点34(,)55A ,将其终边绕O 点逆时针旋转43π后与单位圆交于点B ,则B 的横坐标为(A )(B )1027- (C ) (D )524-8.函数()y f x =满足对任意的,x y R ∈,都有()()()f x y f x f y +=⋅,且(1)2f =, 若()g x 是()f x 的反函数(注:互为反函数的函数图像关于直线y x =对称),则(8)g =(A )3 (B )4 (C )16 (D )12569.函数()f x =(A )定义域是{|,()}6x x k k Z ππ≠+∈ (B )值域是R(C )在其定义域上是增函数 (D )最小正周期是π10.过x 轴上一点P 作x 轴的垂线,分别交函数sin ,cos ,tan y x y x y x ===的图像于123,,P P P ,若3238PP PP =,则1||PP =(A )13 (B )12(C)3 (D)311.定义符号函数为⎪⎩⎪⎨⎧<-=>=0,10,00,1)sgn(x x x x ,则下列命题: ①)sgn(||x x x ⋅=;②关于x 的方程ln sgn(ln )sin sgn(sin )x x x x ⋅=⋅有5个实数根;③若ln sgn(ln )ln sgn(ln )()a a b b a b ⋅=⋅>,则a b +的取值范围是(2,)+∞;④设22()(1)sgn(1)f x x x =-⋅-,若函数2()()()1g x f x af x =++有6个零点,则2a <-.正确的有 (A )0个 (B )1个 (C )2个 (D )3个 12.已知函数3()sin 1x a f x a x a -=++,那么下列命题正确的是(A )若0=a ,则()y f x =与3y =是同一函数(B )若10≤<a ,则32log 3331()(2log 2)[()](log 5)()232f f f f f ππ-<-<<< (C )若2a =,则对任意使得()0f m =的实数m ,都有()1f m -= (D )若3a >,则(cos 2)(cos3)f f <二、填空题(共4个小题,每小题5分,共20分,把最终的结果填在题中横线上) 13.若函数()f x =(2)y f x =的定义域是___________.14.若函数(12)3,(1)()ln ,(1)a x a x f x x x -+<⎧=⎨≥⎩ 的值域为R ,那么a 的取值范围是_________.15.若sin 245(0,),(0,),,cos(),1cos 2313ααπβπαβα∈∈=+=+则sin β=__________.16.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()+x f x g x e =(e 是自然对数的底数),又()(2)AP f x AB g x AC =+,其中0x >,则PAB ∆与PAC ∆的面积比PABPACS S ∆∆的最小值是________. 三、解答题(共6个小题,共计70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(I)求值:232log 3log 4log 0.125⋅-(II )求值:sin15cos15+.18.(本题满分12分)已知函数()cos sin()sin()44f x x x x x ππ=++-. (I )求函数)(x f 对称轴方程和单调递增区间; (II )对任意[,]66x ππ∈-,()0f x m -≥恒成立,求实数m 的取值范围.19.(本题满分12分)根据平面向量基本定理,若12,e e 为一组基底,同一平面的向量a 可以被唯一确定地表示为12a xe ye =+,则向量a 与有序实数对(,)x y 一一对应,称(,)x y 为向量a 在基底12,e e 下的坐标;特别地,若12,e e 分别为,x y 轴正方向的单位向量,i j ,则称(,)x y 为向量a 的直角坐标.(I )据此证明向量加法的直角坐标公式:若1122(,),(,)a x y b x y ==,则1212(,)a b x x y y +=++; (II )如图,直角OAB ∆中,90,||1,||3AOB OA OB ∠===,C 点在AB 上,且OC AB ⊥,求向量OC 在基底,OA OB 下的坐标.20.(本题满分12分)某企业一天中不同时刻的用电量y (万千瓦时)关于时间t (小时,024t ≤≤)的函数()y f t =近似满足()sin()f t A t B ωϕ=++,(0,0,0)A ωϕπ>><<.右图是函数()y f t =的部分图象(0t =对应凌晨0点). (Ⅰ)根据图象,求A ,ω,ϕ,B 的值;(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量()g t (万千瓦时)与时间t (小时)的关系可用线性函数模型()225(012)g t t t =-+≤≤模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.21.(本题满分12分)已知函数()lg(1)lg(1)f x x x =+--.(Ⅰ)求)(x f 的定义域,判断并用定义证明其在定义域上的单调性; (Ⅱ)若0a >,解关于x 的不等式2(2)lg 2xx f a a -<.22.(本题满分12分)设)(x f 是定义在R 上的奇函数,且对任意x ∈R ,都有(2)()f x f x +=-,当01x ≤≤时,2()f x x =.(I )当20x -≤≤时,求)(x f 的解析式;(II )设向量(2sin ,1),(9,16cos )a b θθ==,若,a b 同向,求2017()sin cos f θθ+的值;(III )定义:一个函数在某区间上的最大值减去最小值的差称为此函数在此区间上的“界高”. 求()f x 在区间[,1]t t +(20)t -≤≤上的“界高”()h t 的解析式;在上述区间变化的过程中,“界高”()h t 的某个值0h 共出现了四次,求0h 的取值范围.树德中学高2016级第一期期末考试数学参考答案一、选择题1.A2.C3.D4.C5.B6. D7. B8. A9. D 10.A 11.D 12. C 二、填空题13. [1,)+∞ 14. 1[1,)2- 15. 166516. 三、解答题17. 解:(I )原式13322lg3lg 41log 272log 232332lg 2lg38-=⋅--=--=+-= (5分)(II )原式22(cos15)2(cos 45sin15sin 45cos15)22=+=+ 645)2sin 602=+==(10分) (直接算出sin15,cos15的值也可)18.解:(I )法一:1()2sin()cos()2sin(2)4422f x x x x x x πππ=+++=++12cos 2sin(2)26x x x π=+=+.法二:()2(cos sin )(cos sin )22f x x x x x x =++-22112(cos sin )2cos 22222x x x x x=+-=+sin(2)6x π=+ (3分) 由2()6226k x k x k Z πππππ+=+⇒=+∈, 由222()26236k x k k x k k Z πππππππππ-≤+≤+⇒-≤≤+∈,所以对称轴是()26k x k Z ππ=+∈,单调增区间是[,]().36k k k Z ππππ-+∈ (6分) (II )由[,]66x ππ∈-得2[,]662x πππ+∈-,从而1sin(2)[,1]62x π+∈-, (11分) ()0f x m -≥恒成立等价于min ()m f x ≤,12m ∴≤-. (12分)19.(I )证明:根据题意:1122(,),(,)a x y b x y ==1122,a x i y j b x i y j ⇒=+=+,(2分)1212()()a b x x i y y j ∴+=+++,(4分)1212(,)a b x x y y ∴+=++. (6分)(II )解:法一(向量法):根据几何性质,易知1360||,||22OAB CA CB ∠=⇒==. 从而13AC CB =,所以141(),333AO OC CO OB OC OA OB +=+⇒=+化简得:31.44OC OA OB =+所以OC 在基底,OA OB 下的坐标为31(,).44法二(向量法):同上可得:14AC AB =,所以131().444AO OC AO OB OC OA OB +=+⇒=+上法也可直接从OC 开始1131().4444OC OA AC OA AB OA OB OA OA OB ∴=+=+=+-=+法三(向量法):设,OC xOA yOB =+则(1),BC OC OB xOA y OB =-=+-BA OA OB =-,利用,BC BA 共线可解得. 法四(坐标法):以O 为坐标原点,,OA OB 方向为,x y 轴正方向建立直角坐标系(以下坐标法建系同),则(1,0),A B . 由几何意义易得C的直角坐标为3(4. 设,OC xOA yOB =+则3(,(1,0)()44x y x =+=,334414x x y ⎧⎧==⎪⎪⎪⎪∴⇒⎨⎪==⎪⎩. 法五(坐标法):设OC xOA yOB =+(1,0)()x y x =+=,又知(1,0),A B ,则由,,A B C 三点共线易解得,x y . 法六(坐标法):完全参照《必修4》P99例8(2)的模型和其解答过程,此处略. 法七(几何图形法):将OC 分解在,OA OB 方向,利用平几知识算出边的关系亦可. 法八(向量法)(已经学过数量积的同学可以选用此法):设,OC xOA yOB =+则1x y +=①; 由0,OC AB OC AB ⊥⇒⋅=()()0xOA yOB OB OA ⇒+⋅-=⇒22()030yOB xOA x y OA OB y x -+-⋅=⇒-=②, 由①,②解得31,.44x y ==所以OC 在基底,OA OB 下的坐标为31(,).44(12分,还有其它方法,各方法酌情分两到三段给分)20. 解:(Ⅰ)由图知212T πω==,6πω∴=. (1分)2125.15.22min max =-=-=y y A ,225.15.22min max =+=+=y y B . (3分) ∴1sin()226y x πϕ=++.代入(0,2.5),得22k πϕπ=+,又0ϕπ<<,∴2πϕ=. (5分)综上,21=A ,6πω=,2πϕ=,2B =. 即1()sin()2262f t t ππ=++. (6分)(Ⅱ)由(Ⅰ)知11()sin()2cos 226226f t t t πππ=++=+.令)()()(t g t f t h -=, 设0)(0=t h ,则0t 为该企业的停产时间.易知()h t 在(11,12)上是单调递增函数. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,即11点到11点30分之间(大于15分钟)则0(11.25,11.5)t ∈.即11点15分到11点30分之间(正好15分钟). (11分) 答:估计在11点15分到11点30分之间的时间段停产. (12分) 21. 解:(Ⅰ)由题意10110x x x ->⎧⇒>⎨+>⎩,所以定义域为),1(+∞. (2分)任取121x x <<,则12122112121221(1)(1)1()()lglg (1)(1)1x x x x x x f x f x x x x x x x +--+--==-+--+, 121x x <<,1221122121(1)(1)2()0x x x x x x x x x x ∴-+----+=->,且12211x x x x --+12(1)(1)0x x =-+>,12211221111x x x x x x x x -+-∴>--+,122112211lg01x x x x x x x x -+-∴>--+,12()()f x f x ∴>,即函数)(x f 在),1(+∞上单调递减 (6分)注:令1()lg((1,))1x f x x x +=∈+∞-,1()1x x x ϕ+=-,先判断12(),()x x ϕϕ大小,再判断12(),()f x f x 大小的酌情给分. (Ⅱ)由1()lg(1)1x f x x x +=>-知,31(3)lg lg 231f +==-,(可直接看出或设未知数解出), 于是原不等式等价于2(2)(3)x x f a a f -<. (7分)由(Ⅰ)知函数)(x f 在区间),1(+∞上单调递减,于是上不等式等价于:2231x x a a ->>, 即2230x x a a -->⇒(3)(1)03x x x a a a -+>⇒>. (9分)于是:①若1a >,不等式的解集是{|log 3}a x x >;②若01a <<,不等式的解集是{|log 3}a x x <;③若1a =,不等式的解集是Φ. (12分,每少一种情况扣1分) 22. 解:(I )设12-≤≤-x ,则021x ≤+≤,2(2)(2)()f x x f x ∴+=+=-,2()(2)f x x ∴=-+; 设10x -≤≤,则01x ≤-≤,2()()()f x x f x ∴-=-=-,2()f x x ∴=-.综上:当20x -≤≤时, 22(2),(21)(),(10) x x f x x x ⎧-+-≤≤-⎪=⎨--≤≤⎪⎩. (2分) (II )由题:932sin cos 9sin cos 32θθθθ=⇒=,225(sin cos )12sin cos 16θθθθ∴+=+=,所以5sin cos 4θθ+=±.sin cos 0θθ>,θ∴可能在一、三象限, 若θ在三象限,则,a b 反向,与题意矛盾;若θ在一象限,则,a b 同向. 综上, θ只能在一象限.5sin cos ,4θθ∴+=20174448()(2017)(20152)(4034)sin cos 5555f f f f θθ∴=⨯=⨯+⨯=⨯++,(※)由(2)()f x f x +=-得(4)(2)[()]()f x f x f x f x +=-+=--=,所以(※)式2882224()(2)()()()5555525f f f f ==--=--===(或0.16). (6分) (III )先说明对称性(以下方法均可,未说明对称性扣1分): 法一:由(II ):(4)()f x f x +=,再由已知:)(x f 是奇函数且(2)()f x f x +=-,得(2)()()f x f x f x -=-=-,令x 为x -,得(2)(),f x f x --=()f x ∴的图像关1x =-对称.法二:由(I ):[1,0]x ∈-时,22(2)(2)(2)()f x x x f x --=---=-+=;[2,1]x ∈--时,22(2)(22)()f x x x f x --=---+=-=,综上:()f x 在[1,0]-和[2,1]--上的图像关于1x =-对称.法三:由画出图像说明()f x 在[2,1]--和[1,0]-上的图像关于1x =-对称也可. 设()f x 在区间[,1]t t +上的最大值为()M t ,最小值为()m t ,则()()()h t M t m t =-.显然:区间[,1]t t +的中点为12t +. 所以,如图: (i )当2t ≥-且112t +≤-,即322t -≤≤-时,2()(2)M t t =-+,()1m t =-, 2()()()(2)1h t M t m t t ∴=-=-++;(ii )当10t +≤且112t +≥-,即312t -≤≤-时,2()(1)M t t =-+,()1m t =-, 2()()()(1)1h t M t m t t ∴=-=-++;(iii )当10t -≤≤时,2()(1)M t t =+,2()m t t =-,222()()()(1)221h t M t m t t t t t ∴=-=++=++.综上:2223(2)1,(2)23()(1)1,(1)2221,(10)t t h t t t t t t ⎧-++-≤≤-⎪⎪=⎨-++-≤≤-⎪⎪++-≤≤⎩. (10分)根据解析式分段画出图像,并求出每段最值(如图),由图像可得:0314h <<.(12分)。

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

完整word版,四川省成都市2015-2016学年高一上学期期末数学试卷Word版含解析

完整word版,四川省成都市2015-2016学年高一上学期期末数学试卷Word版含解析

2015-2016学年四川省成都市高一(上)期末数学试卷、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的1 •已知集合 A={ - 1 , 0, 1, 2}, B={x|x v 2},则 A AB=( )B. { - 1 , 0, 2} C . { - 1, 0} D • {0 , 1}2. sin 150。

的值等于(-Vs23. 下列函数中,f (x )与g (x )相等的是( )2A. f (x ) =x , g (x )B . f (x ) =x 2, g (x )=(订亍)4C. f (x ) =x 2, g (x )=D . f (x ) =1, g (x ) =x 04.幕函数y=x a ( a 是常数)的图象( )A .一定经过点(0, 0)B .一定经过点(1, 1)C . 一定经过点(-1 , 1)D .一定经过点(1,- 1)A .a v c vb B .c v b v a C . a v b v c D . b v a v c7.若角c=2rad (rad 为弧度制单位),则下列说法错误的是( )A .角a 为第一象限角B . a = (| )C . sin a> 0D . sin av cos a &下列函数中,是奇函数且在( 0, 1]上单调递减的函数是()A . y= - x 2+2xB . y=x+:C . y=2x - 2-x D . y=1 -IT9.已知关于x 的方程x 2- kx+k+3=0,的两个不相等的实数根都大于 2,则实数k 的取值范围是()A . k > 6B . 4v k v 7C . 6v k v 7D . k > 6 或 k >- 27T71 71兀A . y=sin (x+ § )B . y=cos (x - $ )C . y=sin (x+ § )D . y=ta n (x+ § )1T5.下列函数中,图象关于点( 一-,0)对称的是( ))A • { - 1 , 0, 1} 6.已知 a=log 32, b= (log 32)22310. 已知函数f (x) =2log22x - 4 ?log2X - 1在x €[1 , 2]上的最小值是-卡,则实数入的值为211. 定义在R 上的偶函数f (x)满足f (x+2) =f (x),当x€[ - 3,- 2]时,f (x) =x +4x+3 , 则y=f[f (x) ] + 1在区间[-3, 3]上的零点个数为( )A . 1个B. 2个C. 4个D. 6个((2-[幻)・| - 1 | , 0^y<212. 已知函数f (x) = _. ,其中[x]表示不超过x的最大整数,如,[-3?5] = - 4, [1?2]=1,设n €N*,定义函数f n (x)为:(x) =f (x),且f n(x) =f[f n-1 (x) ] (n②,有以下说法:______ __ 9①函数尸丘_ £(x)的定义域为{x|〒$€};②设集合A={0 , 1, 2}, B={x|f 3 (x) =x, x 3},则A=B ;g③f2015 ( ) +f2016 (y④若集合M={x|f 12 (x) =x, x €[0 , 2]},则M中至少包含有8个元素.其中说法正确的个数是( )A . 1个B. 2个C. 3个D. 4个二、填空题:本大题共4小题,每小题5分,共20分。

四川省成都市2014-2015学年高一上学期期末考试数学试题 Word版含答案

四川省成都市2014-2015学年高一上学期期末考试数学试题 Word版含答案

成都市2014-2015年度高一上期末考试-数学一、选择题(每空5分,共50分)1、已知集合A={x|x2-2x>0},B={x|-<x<},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B2、函数y=的图像与函数(-2≤x≤4)的图像所有交点的横坐标之和等于A. 2B. 4C. 6D. 83、已知函数的最小正周期为,则该函数的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称4、当时,函数的最小值是()A. B. C.2 D.15、已知是定义在R上的周期为2的偶函数,当时,,设,,则a、b、c的大小关系为()A. B. C. D.6、已知点是重心,,若,则的最小值是( )A. B. C. D.7、如图,在中,,是上的一点,若,则实数的值为()8、设Q为有理数集,函数f (x) =g(x)=,则函数h(x)=f (x)·g (x)A.是奇函数但不是偶函数 B.是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数9、已知函数在区间上均有意义,且、是其图象上横坐标分别为、的两点.对应于区间内的实数,取函数的图象上横坐标为的点,和坐标平面上满足的点,得.对于实数,如果不等式对恒成立,那么就称函数在上“k 阶线性近似”.若函数在上“k 阶线性近似”,则实数k 的取值范围为A .B .C .D .10、函数的定义域为,若存在闭区间,使得函数满足:①在内是单调函数;②在上的值域为,则称区间为的“倍值区间”.下列函数中存在“倍值区间”的有 ( )①; ②;③; ④(A )①②③④ (B )①②④ (C )①③④ (D )①③二、填空题(每空5分,共25分)11、设集合A (p ,q )=,当实数取遍的所有值时,所有集合A (p ,q )的并集为 .12、设为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是13、函数为上的奇函数,该函数的部分图像如下图所表示,、分别为最高点与最低点,并且两点间的距离为,现有下面的3个命题:(1)函数的最小正周期是;(2)函数在区间上单调递减;(3)直线是函数的图象的一条对称轴。

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题(含答案)

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题(含答案)

2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若z =(2−ai)(1+2i)为纯虚数,则实数a =( )A. −2B. 2C. −1D. 12.已知向量a =(2,−1),b =(k,2),且(a +b )//a ,则实数k 等于( )A. −4B. 4C. 0D. −323.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的是( )A. 若m//α,n//α,则m//n B. 若α⊥β,γ⊥β,则α⊥γC. 若m ⊥α,n ⊥α,则m//nD. 若m//α,m//β,则α//β4.如图,在正方体ABCD−A 1B 1C 1D 1中,点M ,N 分别为线段AC 和线段A 1B 的中点,求直线MN 与平面A 1B 1BA 所成角为是( )A. 60∘B. 45∘C. 30∘D. 75∘5.已知cos 2α=23,则cos(π4−α)cos(π4+α)的值为( )A. 13B. 23C.23 D.2 296.设a ,b 为单位向量,a 在b 方向上的投影向量为−12b ,则|a−b |=( )A. 1B. 2C.2D.37.筒车亦称“水转筒车”,一种以水流作动力,取水灌田的工具,如图是某公园的筒车,假设在水流稳定的情况下,筒车上的每一个盛水筒都做逆时针方向匀速圆周运动.现有一半径为2米的筒车,在匀速转动过程中,筒车上一盛水筒M 距离水面的高度H(单位:米,记水筒M 在水面上方时高度为正值,在水面下方时高度为负值)与转动时间t(单位:秒)满足函数关系式H =2sin(π30t +φ)+54,φ∈(0,π2),且t =0时,盛水筒M 位于水面上方2.25米处,当筒车转动到第80秒时,盛水筒M 距离水面的高度为( )米.A. 3.25B. 2.25C. 1.25D. 0.258.已知角α,β满足cos α=13,cos (α+β)cos β=14,则cos (α+2β)的值为( )A. 112B. 18C. 16D. 14二、多选题:本题共3小题,共15分。

四川省成都市石室中学2023-2024学年高一竞赛班下学期期末考试数学试题

四川省成都市石室中学2023-2024学年高一竞赛班下学期期末考试数学试题

四川省成都市石室中学2023-2024学年高一竞赛班下学期期末考试数学试题一、单选题1.若复数()()()221i z a a a =-+-∈R 为纯虚数,则复数z a +在复平面上的对应点的位置在( )A .第一象限内B .第二象限内C .第三象限内D .第四象限内2.数据1210,,,x x x L 的方差20s =,则下列数字特征一定为0的是( ) A .平均数B .中位数C .众数D .极差3.某中学组织三个年级的学生进行党史知识竞赛. 经统计,得到前200名学生分布的扇形图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列命题错误..的是( )A .成绩前200名的学生中,高一人数比高二人数多30人B .成绩前100名的学生中,高一人数不超过50人C .成绩前50名的学生中,高三人数不超过32人D .成绩第51名到第100名的学生中,高二人数比高一人数多4.命题“[]1,2x ∃∈,320x x a +->”为假命题的一个必要不充分条件是( ) A .11a ≥ B .11a ≤ C .12a ≥D .12a ≤5.在ABC V 中,,,a b c 分别为角,,A B C 所对的边,且sin 2sin A B =,2cos 0a C b +=,则c o s A =( )A BC D .146.如图,在菱形ABCD 中,π3DAB ∠=,且C F C D λ=u u u r u u u r ,CE CBμ=u u u r u u u r ,若3677AC AF AE =+u u u r u u u r u u u r ,则λμ+=( )A .23B .1C .43D .27.如图,AC 是圆O 的直径,45DCA DA ∠=o ,垂直于圆O 所在的平面,B 为圆周上不与点,A C 重合的点,AM DC ⊥于M ,AN DB ⊥于N ,则下列结论不正确的是( )A .平面ABC ⊥平面DACB .CB ⊥平面BADC .CD ⊥平面AMND .平面AMN ⊥平面DAB8.美国数学家JackKiefer 于1953年提出0.618优选法,又称黄金分割法,是在优选时把尝试点放在黄金分割点上来寻找最优选择.我国著名数学家华罗庚于20世纪60、70年代对其进行简化、补充,并在我国进行推广,广泛应用于各个领域.黄金分割比0.618t =≈,现给出三倍角公式3cos34cos 3cos ααα=-,则t 与sin18o 的关系式正确的为( )A .23sin18t =oB .2sin18t =oC .t =oD .t =o二、多选题9.已知向量()1,2a =-r ,(,1)b λ=r,则下列说法中正确的是( )A .若//a b r r ,则12λ=B .若a b ⊥r r,则2λ=C .若2λ<,则a r 与b r的夹角为钝角D .当1λ=时,则a r 在b r 上的投影向量的坐标为11,22⎛⎫-- ⎪⎝⎭10.设12,z z 为复数,则下列结论中正确的是( )A .若11z 为虚数,则1z 也为虚数 B .若1i 1z +=,则1zC .1212z z z z =D .1212z z z z -≤+11.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知2c =且()()()sin sin sin sin a c A C b A B +-=-,则下列结论正确的是( )A .π3C =B .a 的取值范围为(]0,2C .ab 的最大值为4D .若D 为AB 的中点,则CD 的取值范围为()1,212.如图一,矩形ABCD 中,22BC AB ==,AM BD ⊥交对角线BD 于点O ,交BC 于点M .现将ABD △沿BD 翻折至A BD 'V 的位置,如图二,点N 为棱A D '的中点,则下面结论正确的是( )A .存在某个位置使得//CN 平面A OM 'B .在翻折过程中,恒有BD A M '⊥C .若二面角A BD C '--的平面角为π3,则A C '=D .若A '在平面BCD 上的射影落在BCD △内部,则A BCD V '-∈⎝⎭三、填空题13.将10个数据按照从小到大的顺序排列如下:11,15,17,,23,26,27,34,37,38a ,若该组数据的40%分位数为22,则a =.14.若函数()()()sin 0f x x ωϕω=+>的图象向左平移3π后,得到的函数图象与()f x 的图象重合,则ω的最小值为.15.若某球体的半径与某圆锥的底面半径相等,且该球体的表面积为1S ,体积为1V ,该圆锥的侧面积为2S ,体积为2V ,若11222S V S V =,则该球体半径与该圆锥母线的比值为. 16.镇江西津渡的云台阁,是一座宋元风格的仿古建筑,始建于2010年,目前已成为镇江市的地标建筑之一.如图,在云台阁旁水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且40AB BC ==米,则云台阁的高度为米.四、解答题17.已知函数()cos2f x x x =+. (1)求函数()f x 的最小正周期和对称中心; (2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域.18.如图,在四边形ABCD 中,120,2,3B AB AD ︒∠===,且,1BC k AD AB BC =⋅=u u u r u u u r u u u r u u u r,若P ,Q 为线段AD 上的两个动点,且||1PQ =.(1)当P 为AD 的中点时,求CP 的长度;(2)求CP CQ ⋅u u u r u u u r的最小值.19.2023年起我国旅游按下重启键,寒冬有尽,春日可期,先后出现了“淄博烧烤”,“尔滨与小土豆”,“天水麻辣烫”等现象级爆款,之后各地文旅各出奇招,衢州文旅也在各大平台发布了衢州的宣传片:孔子,金庸,搁袋饼纷纷出场.现为进一步发展衢州文旅,提升衢州经济,在5月份对来衢旅游的部分游客发起满意度调查,从饮食、住宿,交通,服务等方面调查旅客满意度,满意度采用百分制,统计的综合满意度绘制成如下频率分布直方图,图中4b a =.(1)求图中a 的值并估计满意度得分的平均值(同一组中的数据用该组区间的中点值作代表); (2)若有超过60%的人满意度在75分及以上,则认为该月文旅成绩合格.衢州市5月份文旅成绩合格了吗?(3)衢州文旅6月份继续对来衢旅游的游客发起满意度调查.现知6月1日-6月7日调查的4万份数据中其满意度的平均值为80,方差为75;6月8日-6月14日调查的6万份数据中满意度的平均值为90,方差为70.由这些数据计算6月1日—6月14日的总样本的平均数与方差.20.如图,在ABC V 中,D 是BC 边上的一点,BAD α=∠,DAC β=∠.(1)证明:sin sin BD AB DC AC αβ⋅=⋅;(2)若D 为靠近B 的三等分点,AB =2AC =,90β=︒,BAC ∠为钝角,求ACD S V . 21.如图,三棱台111ABC A B C -中,ABC V 是边长为2的等边三角形,四边形11ACC A 是等腰梯形,且1111AC AA ==,D 为11AC 的中点.(1)证明:AC BD ⊥;(2)若过1,,B B D 三点的平面截三棱台111ABC A B C -当二面角1A -AC B -为锐二面角时,求二面角1B BC A --的正弦值.22.在四面体ABCD 中,,AB a CD b ==,记四面体ABCD 的内切球半径为r .分别过点,,,A B C D 向其对面作垂线,垂足分别为1234,,,H H H H .(1)是否存在四个面都是直角三角形的四面体ABCD ?(不用说明理由)(2)若垂足1H 恰为正三角形BCD △的中心,证明:r =(3)已知2024a b +=,证明:253r <.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度下期期末考试高一数学试题(理科)第Ⅰ卷(60分)一.选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中只有一项是符合题目要求的)1.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .重合D .与,,a b θ的值有关2.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( ) A .ab b a 222>+ B .2≥+b aa b C. ab b a 211>+ D .ab b a 2≥+3.一空间几何体的三视图如图所示, 则该几何体的体积为( )A. 322+πB. 324+πC. 3322+πD. 3324+π4.在ABC∆中,若)sin()cos(21)sin(C A C B B A +++=-,则A B∆的形状一定( ) A.等边三角形 B .不含60°的等腰三角形 C .钝角三角形 D .直角三角形 5. 设,a b 是空间中不同的直线,,αβ是不同的平面,则下列说法正确的是( ) A .//,a b b α⊂,则//a α B .,,//a b αβαβ⊂⊂,则//a b C.βββα//,//,,b a b a ⊂⊂ ,则//αβ D .//,a αβα⊂,则//a β 6.设数列{}n a 是首项为m , 公比为(1)q q ≠的等比数列, 它的前n 项和为n S , 对任意*n N ∈, 点( )A. 在直线0mx qy q +-=上B. 在直线0qx my m -+=上C. 在直线0qx my q +-=上D. 不一定在一条直线上7.已知A 是锐角,1lg(1cos )lg1cos A m n A+==-,,则lgsin A =( )。

A.1m n +B.m n -C.2m n - D.2n m +8.设等差数列{}n a 满足81335a a =,且10a >,则前n 项和n S 中最大的是( ) A. 10S B.11S C.20S D.21S9.如图, MN αβ--为120︒, O MN ∈, a β∈, B α∈. 45BON AOM ∠=∠=︒,OA OB ==, 则AB =( )10.满足60ABC ∠=︒, 12,AC = BC k =的ABC ∆恰有一个, 那么k 的取值范围是( )A. k =B. 012k <≤C. 12k ≥D. 012k <≤或k =11.已知数列{}n a 、{}n b 均为等比数列,其前n 项和分别为,n n S T ,若对任意的,n N *∈都有314n n n S T +=,则=35b a( ) A. 81 B. 9 C. 729 D. 73012 三棱柱111C B A ABC -底是边长为1的正三角形,高 11=AA 在AB 上取一点P ,设11C PA ∆与底面的二面角为α,11C PB ∆与底面的二面角为β,则 )tan(βα+的最小值( ) A.433-B.1536-C.433-D.835- 二.填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卷上的相应位置) 13. 若点P 在平面区域20,250,20x y x y y --⎧⎪+-⎨⎪-⎩≤≥≤上,则uy x -2的取值范围为 .14.函数1(0,1)xy aa a -=>≠的图像恒过定点A , 若点A 在直线10(,0)mx ny m n +-=> 上, 则11m n+的最小值是 .15. 已知ABC ∆的三个内角A 、B 、C 成等差数列,且1,4AB BC ==,则边BC 上的中线AD 的长为 .16.棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论正确的是①.11DC D P ⊥ ②.平面11D A P ⊥平面1A A P ③.1APD ∠的最大值为90④.1AP PD +三.解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程和演算步骤) 17.(本小题满分10分)已知直线:2310l x y -+=,点(1,2)A --,求: (1)过点A(-1,-2)直线与直线l 平行的直线m 的方程. (2)点A 关于直线l 的对称点'A 的坐标;18.(本小题满分12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.19.(本小题满分12分)3sin23cos 3sin 32)(2x x x x f -=已知函数 的值域;求函数)()1(x f .sin ,,1)(,,,,,)2(2的值求且若所对的边分别为中,角在A ac b c f c b a C B A ABC ==∆20.(本小题满分12分)函 数1,(122≠∈++-=*y N n x n x x y )的最大值为n a ,最小值为n b 且)21(4-=nn n b a c , (1)求数列n c 的通项公式; (2)求1)36()(++=n nc n c n f )(*∈N n 的最大值.21. (本小题满分12分)如图,已知四棱锥ABCD P -中,底面ABCD 为菱形,ABCD PA 平面⊥,60=∠ABC ,F E , 分别是 PC BC ,的中点. ;)1(PAD AE 平面证明:⊥PAD EH PD H AB 与平面上的动点,为,若取2)2(=.26的余弦值,求二面角所成最大角的正切值为C AF E --22.(本小题满分12分)已知)(n f 是平面区域n I : ⎪⎩⎪⎨⎧>>+-≤003y x n nx y (x , y R ∈, *n N ∈)内的整点(横纵坐标都是整数的点)的个数,记()2nn a f n =,数列{}n a 的前n 项和为n S(1)求数列{}n a 的前n 项和为n S ;(2)若对于任意*∈N n ,()()11614n n S f n c++-+≤恒成立,求实数c 的取值范围.2016-2017学年度高一下期期末考试数学试题(理科)参考答案一、选择题:每小题5分,满分60分。

1.B2.B3.C4.D5.D6.B7.C 8.C 9.D 10.D 11.C 12.B二、填空题:每小题5分,满分25分。

13.[0,6] 14. 4 15. 16.①②④,三、答题:共6小题,共70分。

17.解:(1)设所求直线方程为将A点坐标代入有m=-4所以所求直线方程为(2)设坐标为,则有解得18(1)证明:(2)解:取AD中点为O,连接PO,设PA=x19.解(1)所以(2)20.解,(Ⅰ)由已知,的定义域为R方程有解即的解集即的两个根为又因为(Ⅱ)因为=21.(1)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.∵E为BC的中点,∴AE⊥BC.又BC∥AD,因此AE⊥AD.∵PA⊥平面ABCD,AE⊊平面ABCD,∴PA⊥AE.而PA⊊平面PAD,AD⊊平面PAD且PA∩AD=A,∴AE⊥平面PAD.(2)解:设AB=2,H为PD上任意一点,连结AH,EH.由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,∴当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时tan∠EHA=,因此AH=.又AD=2,∴∠ADH=45°,∴PA=AD tan 45°=2.∵PA⊥平面ABCD,PA⊊平面PAC,∴平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连结ES,则∠ESO为二面角E-AF-C的平面角,在Rt△AOE中,EO=AE•sin 30°=,AO=AE•cos 30°=.又F是PC的中点,如图,PC=,∴AF=PC=,sin∠SAO=,在Rt△ASO中,SO=AO•sin∠SAO=,∴SE=,在Rt△ESO中,cos∠ESO=,即所求二面角的余弦值为.文21.(1)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.∵E为BC的中点,∴AE⊥BC.又BC∥AD,因此AE⊥AD.∵PA⊥平面ABCD,AE⊊平面ABCD,∴PA⊥AE.而PA⊊平面PAD,AD⊊平面PAD且PA∩AD=A,∴AE⊥平面PAD.(2)解:设AB=2,H为PD上任意一点,连结AH,EH.由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,∴当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时tan∠EHA=,因此AH=.又AD=2,∴∠ADH=45°,∴PA=AD tan 45°=2.22题(12分)【解析】作出平面区域如图所示:1)由,,得,而.当时,,内有个整点;当时,,内有个整点综上得内的整点个数,于是.从而.则两式作差得.,2)因为.所以令,则只需.由,即,得2,由,得或3. 所以,则.。

相关文档
最新文档