八年级数学下册 16.1 分式及其基本性质 16.1.2 分式的基本性质课件1 (新版)华东师大版

合集下载

新人教版八年下《16[1].1分式-分式的基本性质》ppt课件 2

新人教版八年下《16[1].1分式-分式的基本性质》ppt课件 2

16.1.2分式的基本性质第一课时教学设计教材分析:“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。

教学目标:知识目标:1)通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。

2)引导学生用语言和式子表示分式的基本性质,使学生对其有更深的理解。

3)通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用。

4)引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

能力目标:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

情感目标:通过研究解决问题的过程,培养学生合作交流意识与探究精神。

教学重、难点:重点:理解分式的基本性质。

难点:运用分式的基本性质进行分式的变形。

教法分析:本节课主要采用启发引导探索的教学方法。

学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

教学教具:课件ppt教学过程:活动一、创设问题情境导入新课教师提出问题(具体问题见课件),学生思考交流,回答问题。

在此环节中,教师先用三道小题对上节课内容进行简单的回顾,重点在第四道小题上,通过分数的通分、约分,让学生回忆所学过的分数的基本性质,为引出分式的基本性质做铺垫。

在活动中教师要关注学生对学过的知识是否掌握得较好;学生对新知识的探究是否有浓厚的兴趣。

通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。

在这个活动中,首先激活了学生原有的知识,体现了学生的学习是在原有知识上自我生成的过程。

16.1.2分式的基本性质

16.1.2分式的基本性质
A B A B A M (M 0) BM AM (M 0) BM
分数的基本性质:分数的分子分母都乘以(或除以) 同一个不等于零的数,分数的值不变.
下列各组分式,能否由左边变形为右边? 2 a(a b) (2) x 与 x( x 1) a (1) 与 2 ab a b 3y 3 y( x 1) x xa xy y (3) 与 (4) 2 与 y ya x x
1 , (3) x² - y²
1 x² +xy
(x+y)(x-y) ∵ x² - y² =____________, x² +xy=__________, x (x + y )先把 Nhomakorabea母 分解因式
1 1 ∴ 与 的最简公分母为____________, x(x+y)(x-y) x² - y² x² +xy xx 1 x ³ - xy x (x + y)( x² - y) 因此 =________________, x² - y² x-y x 1 x³ - xy ² y) x (x + y)( x- = ________________, x² +xy
约分:
3 6
1 1 通分: 和 2 3
4、分数的基本性质是什么?
分数的基本性质:分数的分子分母都乘以(或除 以)同一个不等于零的数,分数的值不变。
a 分式 2 a
分式 n
2
1 (a≠0)与 2 相等吗?
(n≠0)与
说说你的理由。
mn
n 相等吗? m
分式的基本性质:
分式的分子与分母都乘以(或除以) 同一个不等于零的整式,分式的值不变.
2x(x+2) (x-2)
就是这两个分式的最简公分母.
a b c , 2 , (3)分式 2 a 4a 4 4a 8a 4 3a 6

分式的基本性质课件华东师大版数学八年级下册

分式的基本性质课件华东师大版数学八年级下册

5 bc 2a2b bc
(a b) 2a ab2c 2a
5bc 2a2b2c
,
2a2 2ab 2a2b2c .
学习目标
概念剖析
典型例题
当堂检测
课堂总结
内 容 A A C , A A C(C 0). B BC B BC
作用
分式进行约分 和通分的依据
进行分式运算的基础
分式的
基本性质
(1)分子分母同时进行;
像这样,把一个分式的分子与分母的公因式约去,叫做分式的约分.
分子与分母没有公因式的式子,叫做最简分式.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
例3.约分:
(1) 8ab2c 12a2bc3
(2) x2 25 2x 10
提示:要先找出分子和分母的公因式.
解:(1) 8ab2c 12a2bc3
2b 4abc 3ac2 4abc
2b . 3ac2(Fra bibliotek)x225
2x 10
(x
5) (x 2(x 5)
5)
x 5. 2
点睛:与分数约分类 似,关键是要找出分 式的分子与分母的公 因式.
先进行因式分解,再约分.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
归纳总结: (1)若分子、分母都是单项式,可直接找出分子、分母的公因式,再约分; (2)若分子、分母含有多项式,首先对分子、分母分解因式,转化成因式 乘积的形式,然后约去分子、分母所有的公因式; (3)找公因式时,先找数字的最大公约数,再找字母或因式共有的且次数 最低的. 分子、分母有负号时,把负号提到分数线前面.
课堂总结
例4.对下列式子进行通分:

16.1.2分式的基本性质_约分

16.1.2分式的基本性质_约分

约分时, 约分时,分子或分母若是 多项式,能分解则必须先 多项式,能分解则必须先 进行因式分解. 进行因式分解.再找出分 子和分母的公因式进行 约分
例:约分
6 x 2 − 12 xy + 6 y 2 (3) 3 x − 3y
6 x 2 − 12 xy + 6 y 2 解:(3) 3 x − 3y
2 (x − y) 6 = (x − y) 3
x2 y + xy2 (3) ) 2xy
m2 − 2m +1 (4) ) 1− m
x −1 (1) 2 x − 2x + 1 2 m − 3m (2) 2 9−m
2
注意: 注意: 当分子分母是多项式的时候, 当分子分母是多项式的时候, 先进行分解因式, 先进行分解因式,再约分
(3)
x x
2
+ 4x + 3 + x−6
(1)约去系数的最大公约数 约去系数 系数的 约去分子分母相同因式 相同因式的 (2)约去分子分母相同因式的最低次幂
例:约分
x2 − 9 (2) 2 x + 6x + 9
分析:为约分要先找出分子和分母的公因式。 分子和分母的公因式 分析:为约分要先找出分子和分母的公因式。
x2 − 9 ( x + 3)( x − 3) x−3 (2) 2 = 解: = 2 x + 6x + 9 ( x + 3) x+3
2
(4)
49 − x
x
2
− 7x
2
小结
把一个分式的分子和分母的公因式 把一个分式的分子和分母的公因式 约去,不改变分式的值, 约去,不改变分式的值,这种变形叫做分 约分。 式的约分 式的约分。 1.约分的依据是: 1.约分的依据是:分式的基本性质 约分的依据是 2.约分的基本方法是: 2.约分的基本方法是: 约分的基本方法是 先找出分式的分子、分母公因式, 先找出分式的分子、分母公因式,再约 去公因式. 去公因式. 3.约分的结果是 整式或最简分式 约分的结果是: 3.约分的结果是:

华师大版八年级数学下册第十六章《分式的基本性质2》优质课课件

华师大版八年级数学下册第十六章《分式的基本性质2》优质课课件

(4) m2 2m 1 1 m
例4 通分
把各分式化成相同
3
(1)2 a 2 b

ab
ab2c
(3)
1 与x
x24 42x
分母的分式叫做
分式的通分.
(2)
x
2x
5
3x 与x5
a b 解:(1)最简公分母是 2 2 2c
2a32b2a32•bb•bcc2a32 bb2 cc
aab2bc(aab2bc)••22aa22aa22b22acb
分式的基本性质
在化简分式 5xy 时,小颖和小明的做法 出现了分歧: 20x2y
小颖: 5xy 5x
20x2y 20x2
小明: 5xy
20x2y
5xy 4x 5xy
1 4x
对于分数而 言,彻底约 分后的分数
叫什么?
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
分 式 的 基
16.1.2
一 、复习提问
x
(1)x22xx2,
3x3xy2 6x2
xy
(2)ab ;
ab a2b
2ab
a2
不改变分式的值,使下列各式的分子与分母中的多项
式按 的x 降幂排列,且首项的系数是正数.
1 3x x2,x2 23 xx 12,2x1 x2 x3
(2) 2 x 与 3 x x5 x5
解:(2)最简公分母是 (x5)(x5)
x2x5(x2x5 (x ) x (5 )5)2xx22 1 2x0 5 x3x5(x3x5 (x) (x5 )5)3xx2 2 1 2x5 5
(3) 1 与 x

北师大版八年级下册认识分式——分式的基本性质课件

北师大版八年级下册认识分式——分式的基本性质课件

师生互动 应用新知
下列等式的右边是怎样从左边得到的?
(1) a ac c 0
2b 2bc
分子分母都 乘c
(2) x3 x2
xy y
分子分母都除以x
(3)
x 1x 1 xyx 1
x 1 xy
分子分母都除以(x-1)
例题讲授 应用深化
例1、 化简下列分式:
(1) 25a2bc3 15ab2c
情境引入 唤醒认知
老师将一块蛋糕平均分成6份,将其中的一 份给了甲同学;老师又将同样的一块蛋糕平均分 成12份,将其中的2份给了乙同学;
请问:老师偏心了吗?给哪位同学的蛋糕多?
类比推理 探索新知
类比分数的基本性质,你能得到分式的基本性质吗? 分式的分子与分母都乘(或除以)同一个不等
于零的整式,分式的值不变.
归纳总结 自我评价
❖ 1、本节课你学到了什么?
❖ 2、 在小组合作学习的过程中你 有什么感想?
布置作业
习题5.2 1题,2题
x2 9 x (2) 2 6x 9
分子和分母中没有公因式的分式称 为最简分式。
化简分式时,通常要使结果成为最 简分式或整式。
巩固训练 应用提升
化简下列分式:
(1)
7m2n 35mn 2
(2)
3a2 ab
9a2 b2
主体参与 视察发现
问题:当分式中有1个负号时,结果是怎样的?有2 个负号呢?有3个负号呢?
用脑思考, 用心揣摩, 用行动证实。
鲁班造锯
鲁班在这里就运用 “类比”的思想方 法,“类比”也是 数学学习中常用的
一种重要方法。
北师大版八年级数学下册
认识分式(2)
——分式的基本性质

16.1.2 分式的基本性质

16.1.2 分式的基本性质

0.01x 5 ⑵ 0.6a 5 b ⑴ 3 0.3 x 0.04 2
0 .7 a
5 1 x y 5 , (3) 6 5 1 x y 6 5
5bΒιβλιοθήκη 例5:约分- 25a bc 5abc 5ac 5ac () 1 2 15ab c 5abc 3b 3b
2 3 2 2
x2 9 x 3x 3 x 3 (2) 2 2 x 6x 9 x3 x 3
xy 2.若把分式 中的 x 和 x y
的值(
y
都扩大3倍,那么分式
A
).
A.扩大3倍 C.扩大4倍
B.扩大9倍 D.不变
1 1 2a 3ab 2b 已知, 3 ,求分式 的值。 a b a ab b
3x 3xy x y 2 6x ( 2x )
2
例3:不改变分式的值,使下列分子与分母都 不含“-”号
2x 2x ⑴ 5y 5y
3a 3 a ⑵ 7b 7b 10 m 10 m ⑶ 3n 3n
例4:不改变分式的值,把下列各式的分子与 分母的各项系数都化为整数.
x x x (2) 2 3 y( x 1) 3 y
3
将左边分式的分子与分母都除以 ( x 1)
2
例2
填空
ab (1) 2 ab ab
2
(a ab)
2a b ( 2ab b ) , (b 0) 2 2 a ab
2
x ( 1 ) (2) 2 , x 2x x 2
a b a b 2a 2a 2 2ab 2 2 2 2 ab c ab c 2a 2a b c
2x 3x (2) 与 x5 x5

华东师大版数学八年级下册16.分式的基本性质课件

华东师大版数学八年级下册16.分式的基本性质课件

作业
课本习题16.1第3,4 题做到作业本上
2 xy
(__2_x_y_)
x2 y2
,
3x x y
15x( x y)
(_5_(_x_+_y_))2
x x2
y y2
(__1___)
x y
约去的是分子、
例2、化简分式:8ab2c
分母的公因式
12a2b
解: 8ab2c
12a2b
4 a b( 2 b c ) 4 a b( 3 a )
2bc
3 a ((约根去据的什是么什?么)?)
11
1
1
(5) x2 x , x2 x ; (6) x2 x , x2 2x 1
答案展示 (4) 1 1 , 1 x y x2 y2 (x y)(x y) x y (x y)(x y)
解:(1) 1 b , 1 a a2b a2b2 ab2 a2b2
(2) c c2 , a a2 , b b2 ab abc bc abc ac abc
A、扩大到本来2倍 B、缩小为本来的 1
2
C、不变
D、缩小为本来的 1
x
x
2、如果把上题分式
什么呢?( B )
x y
改为
xy
那么4答案又是
课堂检测
3、约分
ab (1) 2a2 ;
x2 2xy y2 (2) x2 y2 .
解:(1) b 2a
, (2)
x x
y y
4、通分:(1)
a
b
x
,
ay
(1)ac, (2) 1 , (3) 2a , (4) a 4x 3b b
(5) 1 , (6) 2mn, (7) 4 y , (8) 1

八年级数学第十六章分式

八年级数学第十六章分式

第十六章 分式16.1.1 从分数到分式知识领航:1.一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式. 2.对分式的概念的理解要注意以下两点:(1)分母中应含有字母;(2)分母的值不能为零. 3.由于只有在分式有意义的条件下,才能讨论分式的值的问题,因此,要分式的值为零,需要同时满足两项条件:(1)分式的分母的值不等于零;(2)分子的值等于零.例题解析:【例】当x 取什么值时,下列分式有意义.(1)54+x x , (2)422+x x.双基淘宝 1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.3.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 4. 若分式1-x x无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1± 5.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定6.如果分式x 211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x7.当_____时,分式4312-+x x 无意义;当______时,分式68-x x有意义. 8.当_______时,分式534-+x x 的值为1;当______时,分式51+-x 的值为正;当______时分式142+-x 的值为负. 9.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 10.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/.综合运用 11.要使分式221yx x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)值为零? (3)值为1?13.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?14.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值..拓广创新15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11.现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1.2分式基本性质知识领航:1.分式的基本性质是:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示是:C B C A B A ⋅⋅=CB CA B A ÷÷= (0≠C ) 2.约分:把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 3.通分:把几个异分母的分式分别化为与原来的分式相等的同分母的分式叫通分。

16.1.2 分式的基本性质(二)

16.1.2 分式的基本性质(二)

16.1.2 分式的基本性质(二)学习目标:1. 理解并掌握分式的基本性质,并能类比分数的通分,运用分式的基本性质进行分式的通分。

.2. 通过分式的通分提高学生的运算能力.学习过程:一. 情景创设,课题引入:1.判断下列约分是否正确:(1)c b c a ++=b a (2)22y x y x --=yx +1 (3)n m n m ++=0 2.计算:把12与23通分,其方法是什么?二. 导入新课:与分数的通分类似,如何把分式 a b ab+ 与 22a b a - 化成分母相同的分式? 分析:我们可以将上述两个分式都变成分母是_____的分式.即: a b ab+=__________________;22a b a -=__________________. 与分数的通分一样,利用_____________________,使分子和分母同乘适当的整式,不改变分式的值,把a b ab + 与 22a b a -化成分母相同的形式,这样的分式变形叫做分式的_______. 例1 通分(1)232a b 和2a b ab c - (2)25x x -和35x x + 分析:分数的通分要找出________________,同样分式的通分要先确定各分式的公分母,一般取各分母的所有因式的最____次幂的积做公分母,它叫做最简公分母.比如上面的(1)中,22a b 的因式有2、2a 、b ;2ab c 的因式有_____、_____、_____. 两式中所有因式的最高次幂的积是__________.解:(1)最简公分母为________ 232a b =______________________;2a b ab c-=______________________.(2)最简公分母为__________________25x x -=_________________________________;35x x +=_____________________________. 巩固练习:(1)321ab 和cb a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a-(4)11-y 和11+y(5)26ca b 和23cab(6)22x y x y -+和2()xy x y +三. 拓展应用:通分:(1)2(1)xx +和21x x -(2)232a a a ++、221a a a ++和136a -+.。

华师大版八年级下册数学全册课件

华师大版八年级下册数学全册课件

知2-练
知3-讲
知识点 3 约 分
约分:利用分式的基本性质,约去分式的分子和分母的公 因式,这样的分式变形叫做分式的约分.
要点精析:约分的方法:分式的分子、分母同除以它们的 公因式.
(1)约分的关键是找出分子、分母的公因式. (2)找公因式的方法:①当分子、分母是单项式时,先找分
子、分母系数的最大公约数,再找相同字母的最低次幂, 它们的积就是公因式;②当分子、分母是多项式时,先 把多项式分解因式,再按①中的方法找公因式.
知3-练
x2 1 1 (中考·常德)若分式 x 1 的值为0,则x=________.
2 (中考·温州)若分式 x 2 的值为0,则x的值是( )
x3
A.-3 B.-2 C.0
D.2
知3-练
3 下列结论正确的是( ) A.3a2b-a2b=2 B.单项式-x2的系数是-1 C.使式子(x+2)0有意义的x的取值范围是x≠0 D.若分式 a2 1 的值等于0,则a=±1 a1
B BM
是不等于0的整式).
例4 约分:
(1)
16 x2 y3 20 xy 4
;
(2)
x2 4 x2 4x 4 .
知3-讲
导引:分式的约分,即要求把分子与分母的公因式约去.
为此,首先要找出分子与分母的公因式.
解:(1) (2)
16x2 y3 20 xy 4
4xy3 4x 4xy3 5 y
(2)分式是否有意义,只与分式的分母是否为0有关,而与分 式的分子的值是否为0无关.
2.条件的求法:(1)当分式有意义时,根据分式分母值不为0 的条件转化为不等式求解.(2)当分式无意义时,根据分 式分母值为0的条件转化为方程求解.

分式的性质-PPT

分式的性质-PPT

2
2ab 3a2c2(a 0)
分子分母都
(2)
4ab 6b(a 1)
2a 3(a 1)
分子分母都
(3)(aab(1()a a1)1)
(a 1) ab
分子分母都
7
例2(课本P5)填空:
x (1) x2 2x
( ) x2
,
3x2 3xy 6x2
x y ( )
(2)a
b
(
ab
) a2b ,
2a a2
b
(
) a2b
观察分子分母如何变化
8
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
(1) x
2
x
2x
(
x2
)
(分子分母都乘以x)
(2)3x2 3xy
x y
6x2
(
)
(分子分母都除以3x)
10
例3(补充)判断下列变形是否正确.
(1)
a a2 b b2
(
)
(2) b bc a ac
a2 3a3
(2) a
1 2
a aБайду номын сангаас
3
1
(符号法则深一层次的应用,可以不讲)
17
(七)归纳小结
1.分式的基本性质: 一个分式的分子与分母同乘(或除以)一个
的整式,分式的值___________. 用字母表示为:
A AC B BC
A AC B BC
(C≠0)
2.分式的符, 号法则:
(1) a ?(2) a a ?
b
b b
3.数学思想:类比思想
18
(八)课后作业

16.1.2分式的基本性质---通分课件

16.1.2分式的基本性质---通分课件

1.通分的定义
2.最简公分母的定义 3.找最简公分母的方法:
1.(多项式)因式分解; 2.各分母系数的最小公倍数。 3.各分母所含相同字母(或因式)的最高次幂。 4.各分母所含有其他的字母(或因式) 。
2
最简公分母:
12
a b
1、各分母系数的最小公倍数。 2、各分母所含相同字母(或因式)的最高次幂。 3、各分母所含有其他的字母(或因式) 。 4、所得的系数与各字母(或因式)的最高次幂的 积(其中系数都取正数) 注:最简公分母与公因式的区别?
1.通分:
2c 3ac (1) 与 2 bd 4b
x 2 xy (2) 与 2 2 2 x y x y
1.将下列分数通分:
2 4 (1) 、 3 5 2 × 10 5 = 3 × 15 5 4 × 12 3 = 5 × 15 3
5 7 (2) 、 6 8 5 × 20 4 = 6 × 24 4 7× 3 21 = 8× 3 24
你能说出分数通分的数学原理吗?
填空:
a + b 3a + 3ab
2
4ab
=
12a b
2
,
2a - b 4ab - 2b 2 = 2 , 6a 12a b
2
1.你运用什么数学原理进行分式变形?
分式变形后,各分母有什么变化?
a + b 3a + 3ab = 2 4ab 12a b
2
2a - b 4ab - 2b 2 = 2 6a 12a b
2
这样的分式变形叫什么?
通分的定义:
利用分式的基本性质,把不同 分母的分式化为相同分母的分式, 这样的分式变形叫分式的通分。
(三)例题分析

数学八年级下册第16章 作业课件 华东师大版(付,262页)

数学八年级下册第16章 作业课件 华东师大版(付,262页)
第 16 章 分式 16.1 分式及其基本性质
16.1.1 分式
知识点❶:分式的有关概念
• 1.下列式子是分B式的是( )
• A.
B.
• C. +y
D.
2.下列有理式: 有( )
• A.1个 B.2个 C.3个
D.4个
其Hale Waihona Puke 分式B3.(例1变式)下列有理式中,哪些是整式?哪 些是分式?
• ,-,,,
D.不变
4.不改变分式的值,把下列各式的分子、分母
中的各项系数都化为整数:
4x-9y
• (1)
5=x+_6_y______;
• (2)
-=3a1-0_a_2+_0_b7_b ______.
知识点❷:约分与最简分式
• 5.对下列分式约分,正D确的是( ) • A.=a2 B.=-1
• C.= D.=
(x+2y)(x-2y) x+2y 原式= (x-2y)2 =x-2y,当 x=5,y=-1 时,原式=37
15.等式 ()
• A.a≠0且b≠0 • C.a≠-1且b≠-1
答案不唯一,选择 x2+4xy+4y2,x2-4y2,
x2+4xy+4y2
(x+2y)2
则 x2-4y2 =(x+2y)(x-2y)=
x+2y x-2y
14.先化简,再求值:
• (1)
,其中x= ,y=- ;
原式=yx((3x--x3))=-yx,当 x= 2,y=
- 2时,原式=1
• (2)
,其中x=5,y=-1.
B.(a2-1)(a2+1)
• C.a2+1
D.(a-1)4
10.(例4变式)通分:
• (1),,;

华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质

华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质

x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2

1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b

ab ab2c

数学:16.1分式-16.1.2分式的基本性质通分约分

数学:16.1分式-16.1.2分式的基本性质通分约分
在乙同学的化简中,分子和分母已没有公因式 在乙同学的化简中 分子和分母已没有公因式, 分子和分母已没有公因式 这样的分式称为最简分式
化简分式时,通常要使结果成为最简分式或者整式 化简分式时 通常要使结果成为最简分式或者整式
5 xy 5x = 2 2 20 x y 20 x
10 x + 10 5、先将分式 2 约分, 、 约分,再讨论取哪 x −1
-3 -3 × 3 -9 所以 2 = 2 = 2 2x 2x × 3 6x
a a ×2 x 2ax = = 3 x 3 x ×2 x 6 x 2
通分的依据是: 分式的基本性质 通分的依据是: 通分的关键是: 通分的关键是: 找到最简公分母 1、系数的最小公倍数 、 最简公分母: 最简公分母: 乘积 2、相同字母的最高次幂 、
2
公分母8a 公分母 2b2
(3)
5(a + b) ⋅ 3(a + b) 3(a + b) 3a + 3b − 15(a + b ) = = = 5(a + b) ⋅ 5 5 5 − 25(a + b )
公分母 5(a+b) ( )
化简下列分式(约分 化简下列分式 约分) 约分
x + 2x +1 (4) x2 + x
2
约分的步骤
2
) ( x + 1) (1)约去系数的最 解:原式 = x( x + 1) 大公约数
x +1 = x
(2)约去分子分母 ) 相同因式的最低次幂
在约分化简时同学甲和同学 乙出现了分歧 同学甲
5xy 5xy 1 同学乙 = = 2 20x y 4x ⋅ 5xy 4x
你更认同哪个同学的解法呢?为什么? 你更认同哪个同学的解法呢?为什么?

华师大版数学八年级下册16.分式的基本性质课件

华师大版数学八年级下册16.分式的基本性质课件

分式 分式 分式 分式
(打“√”或“×”)
a 中b的a,b同时扩大10倍,分式值不变.( )×
ab
a 中 b的a,b同时扩大10倍,分式值不变.( )√
2a
a 约 2分后变为 2 .
( )×
ab
b
与2
a的最简公分母为(a+b)(a2-b2).( )×
ab
a2 b2
知识点 1 约分
【例1】化简下列分式:
1 3ab2c .
27ab
2
x2 x
6x 9 2y 9y
.
【思路点拨】确定分子、分母的公因式→约分.
分子、分母分别因式分解→找出公因式→约分.
【自主解答】1 3ab2c 3ab bc bc .
27ab 3ab 9 9
2
x2 6x 9 x2y 9y
x 32 yx 3x
3
x xy
的最简公分母是______.
【解析】因为(a-1)2=(1-a)2,所以最简公分母为(1-a)3.
答案:(1-a)3
3.分式 1 , 1 , 1 的最简公分母是______.
a b a b a2 b2
【解析】各分母的因式是(a+b),(a-b),(a+b)(a-b),
所以最简公分母是(a+b)(a-b).
1
x x y
y 2
.
2
x x2
1 . 1
提示:中(x-y)2变为(y-x)2不用在前面添负号. 错把x2-1当作(x-1)2进行约分了.
a2 ab a a b
a
3.化简 xy-2y 的结果是( )
x2-4x 4
A. x x2
B.x-x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于分数而 言,彻底约 分后的分数 叫什么?
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
P 10 . 1
约分
x2 1 (1) x2 2x 1
m2 3m (2) 9 m2
x2 4x 3
(3)
x2 x 6
注意:
当分子分母是多项 式的时候,先进行 分解因式,再约分
式按 的x降幂排列,且首项的系数是正数.
3x 1 x2
,
2x 1 x2 3x 2
,
2x
1 x x2
3
解: 3x 1 x2
3x x2 1
3x x2
1
2x 1
2x 1
2x 1
x2 3x 2 x2 3x 2 x2 3x 2
1 x x 1 x 1
2x x2 3 x2 2x 3 x2 2x 3
不改变分式的值,把下列各式的分子与分母都不含“-”号.
3x
(1)
2y
abc
(2)
d
2q
(3)
p
(4) 3m 2n
巩固练习
3.下列各式成立的是( D)
(A)b
c
a
a
c
b
(C) c c ba ab
(B)
c c ab ab
(D)
c ba
c ab
巩固练习
x y y
1.若把分式 x y 的 和 都扩大两倍,则分式的值( ) B
(1)约去系数的最
(3)
15a b2 25a b
大公约数 (2)约去分子分母
分式约分的
相同因式的最低次幂
依据是什么?
分式的基本性质
在化简分式 5xy 时,小颖和小明的做法 出现了分歧: 20x2y
小颖: 5xy 20x2y
5x 20x2
小明: 5xy 20x2y
5xy 4x 5xy
1 4x
分数的 基本性质
分数的分子与分母同时乘以(或除以)一 个不等于零的数,分数的值不变.
你认为分式“a ”与“1”;分式
2a
2
“ n2 ”与“n ”相等吗?
mn
m
类比分数的基本性质,你能得到分式 的基本性质吗?说说看!
分数的分子与分母同时乘以(或除以)一 个不等于零的数,分数的值不变.
类比分数的基本性质,得到: 分式的基本性质:
(1) a 与 a(a b) a b a2 b2
(2)
x 3y

x(x2 1) 3y(x2 1)
填空,使等式成立.
⑴ 3 ( 3x 3y )
4y 4y(x y)

y2 y2 4
(
1
y2 )
(其中 x+y ≠0 )
a a a (1) a b ( ab
2
), b
2a
b
2


2b
x x x (2)
x2 7x
(4)
49 x2
(1)
3a 3 a4
(2)
12a3y 27ax
x2 y
(3) x2 y xy 2 2xy
(4) m2 2m 1 1 m
已知,1 1 3 ,求分式 2a 3ab 2b 的值。
ab
a ab b
把各分式化成相同
a (1)2
3 2b

ab
a b2 c
分式的分子与分母同时乘以(或除以)同 一个不等于零的整式 ,分式的值不变.
用 公 式 表 示 为:
A AM , A AM . B 与练习
例1 下列等式的右边是怎样从左边得到的?
(1) a ac c 0
2b 2bc
(2)
x3 xy
一 、复习提问
1、下列各式中,属于分式的是( B )
A、 x 1 B、 2
2
x 1
C、1 x2 y 2
D、 a 2
2、当x=__2___时,分式 x 1 没有意义。
2x
3. 分式 a 1 的值为零的条件是_a__=_1__ .
b 1
把3个苹果平均分给6个小朋友,每 个小朋友得到几个苹果?
解 :3 3 3 1 6 63 2 2 与 4 相等吗? 5 10
分母的分式叫做 分式的通分.
x (3)
1与x 2 4 4 2x
(2) x2x5

3x x5
a b 解:(1)最简公分母是 2 2 2 c
2
3
a2
b
2
3 • bc
a2b •bc
2
3bc
a2b2
c
ab
ab2 c
(a b) • 2a
ab2 c • 2a
2 a2 2ab 2 a2b2 c
(2) 2x 与 3x x5 x5
A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍
x y 2.若把分式 xy中的 和 都扩大3倍,那么分式
的值( )A. x y
A.扩大3倍 B.扩大9倍 C.扩大4倍 D.不变
不改变分式的值,把下列各式的分 子与分母的各项系数都化为整数.
⑴ 0.01x 5 0.3x 0.04
5x1 y
(3)
2
xy
2
( x
y),
2
x
2x
( x

2
三、例题讲解与练习
练习1. 填空:
(1) 9mn2 m 36n3 ( )
(2)
x2 xy x2
x (
y )
ab ( ) (3)
ab a2b .
不改变分式的值,使下列分子与分母都不 含“-”号
⑴ 2x ⑵ 3a
5y
7b
⑶ 10m 3n
练习
练习
不改变分式的值,使下列各式的分子与 分母的最高次项系数是正数.
⑴ 1 a a2 ⑵ x 1
1 a2 a3
1 x2
⑶ 1 a2 a2 a 3

把分式分子、分母的
化简下列分式(约分) 公因式约去,这种变
(1) a 2bc
形叫分式的约分.
ab
约分的步骤
32a3b2c
(2) 24a 2b3d
x2 y
解: (1由) 知
,c 0
a 2b
2.abcc
ac 2bc
为什么给出 c ? 0
(2) 由 x 0,

x3 x3 x x2 .
为什么本题未给 x 0 ?
xy xy x y
下列分式的右边是怎样从左边得到的?
⑴ b by (y 0) ⑵ ax a
2x 2xy
xb b
下列各组中分式,能否由第一式变形为 第二式?
解:(2)最简公分母是 (x 5)(x 5)
2x x5
2x(x (x 5)(x
5) 5)
2 x2 10x x2 25
3x x5
3x(x 5) (x 5)(x 5)
3 x2 15x x2 25
6 5
x
5 1
y
,
65
0.6a 5 b

3
0.7a 2 b
5
练习
3.不改变分式的值将下列各式中的系数都化成整
数.
1 x2y 2
0.1x 0.03 y
1x3 y 34
0.1x y
0.2a 1 b 2
3 a 0.8b 4
三、例题讲解与练习
例4.不改变分式的值,使下列各式的分子与分母中的多项
相关文档
最新文档