高等代数§9.3 同构
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k R
3)
( ), ( )
( , ),
这样的映射 称为欧氏空间V到V'的同构映射.
§9.3 同构
二、同构的基本性质
1、若 是欧氏空间V到V'的同构映射,则 也是
线性空间V到V'同构映射. 2、如果 是有限维欧氏空间V到V'的同构映射, 则
d im V d im V .
§9.3 同构
一、欧氏空间的同构 二、同构的基本性质
§9.3 同构
一、欧氏空间的同构
定义: 实数域R上欧氏空间V与V'称为同构的,
如果由V到V'有一个1-1对应 ,适合
1) 2)
( ) ( ) ( ),
( k ) k ( ),
, V ,
( ), ( )
( ( )), ( ( )) ( ), ( )
( , )
为欧氏空间V到V"的同构映射.
§9.3 同构
5、两个有限维欧氏空间V与V'同构
d im V d im V .
'
§9.3 同构
§9.3 同构
4、同构作为欧氏空间之间的关系具有: ①反身性;②对称性;③传递性. ① 单位变换 I V 是欧氏空间V到自身的同构映射. ② 若欧氏空间V到V'的同构映射是 ,则 欧氏空间V'到V的同构映射. 事实上, 首先是线性空间的同构映射. 其次,对 , V ' , 有
( , ) (
1
是
1
( )), (
1
( ))
1
( ),
1
( )
1
为欧氏空间V'到V的同构映射.
§9.3 同构
③ 若 , 分别是欧氏空间V到V'、V'到V"的同构映射, 则 是欧氏空间V到V"的同构映射. 事实上,首先, 是线性空间V到V"的同构映射. 其次,对 , V , 有
'
3、任一 n 维欧氏空间V必与 R n同构.
§9.3 同构
n 设V为2,1 , , n 维 欧氏空间, 标准正交基, 在这组基下,V中每个向量 可表成 为V的一组
证:
x 1 1 x 2 2 x n n ,
xi R
Biblioteka Baidu
作对应 : V R n , ( ) ( x 1 , x 2 , , x n ) 易证 是V到 R n 的 1 1 对应. 且 满足同构定义中条件1)、2)、3), 故 为由V到 R n 的同构映射,从而V与 R n 同构.