二次函数最大利润求法经典

合集下载

九年级数学二次函数应用之最大利润问题(教师版)

九年级数学二次函数应用之最大利润问题(教师版)

分析:(1)根据图象一次函数表达式易求得;(2)销售额=销售单价×销售量;(3)结合图象说明. 解:(1)设y =kx +b ,由图象知一次函数图象过点(60,5),(80,4)⎩⎨⎧+=+=∴b k b k 804605 解得⎪⎩⎪⎨⎧=-=.8,201b k .8201+-=∴x y 120)40)(8201(12040)2(--+-=--=x x y yx z .60)100(2014401020122+--=-+-=x x x∴当x =100时,即销售单价为100元时,年获利最大,最大值为60万元。

(3)令z =40,得,44010201402-+-=x x 即,096002002=+-x x 解得.120,8021==x x由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间。

又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元。

变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系,随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益z (元)会相应降低且z 与x 之间也大致满足如图②所示的一次函数关系。

(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益W (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值。

解:(1)该商场销售家电的总收益为800×200=160000(元)。

(2)依题意可设8001+=x k y2002+=x k z∵图①的直线过点(400,1200).图②的直线过点(200,160),∴有400k 1+800=1200,200k 2+200=160. 解得.20051,80051,121+-=+=∴-==x z x y k k (3)由题意,得1(800)(200)5W yz x x ==+-+16000040512++-=x x .162000)100(512+--=x ∴政府应将每台补贴款额x 定为100元时,该商场销售彩电的总收益取得最大值,其最大值为162000元。

二次函数利润最值问题

二次函数利润最值问题

二次函数利润最值问题引言在现代经济学中,利润是一个重要的指标,对于企业盈亏和发展有着至关重要的影响。

在许多经济相关的问题中,我们常常需要通过建立数学模型来分析和优化利润。

二次函数是一种重要的数学模型,在许多经济问题中都有广泛的应用。

本文将探讨二次函数在利润最值问题中的应用。

二次函数概述二次函数是指具有以下形式的数学函数:f(x)=ax2+bx+c其中,a、b和c为常数,且a≠0。

二次函数的图像通常是一条抛物线,其开口方向由系数a的正负决定。

利润最值问题利润最值问题是指在一定的经济条件下,通过数学模型中的二次函数来分析和优化利润。

这类问题在实际应用中非常常见,例如企业的生产成本和销售收入存在某种关系时,我们可以通过建立二次函数模型来研究企业的利润最大化问题。

利润函数的建立要解决利润最值问题,首先需要建立利润函数。

假设某企业的生产成本是关于产量x的二次函数,销售收入是关于产量x的线性函数。

那么该企业的利润函数可以表示为:P(x)=R(x)−C(x)其中,P(x)表示利润,R(x)表示销售收入,C(x)表示生产成本。

利润函数的优化优化利润函数,即求出使利润最大化(或最小化)的产量x。

可以通过以下步骤进行:1.将利润函数表示为二次函数的形式,即将R(x)和C(x)分别展开为二次函数的形式。

2.求出二次函数的顶点坐标,顶点坐标表示了二次函数的极值点。

3.根据二次函数的开口方向和顶点的坐标,确定利润函数的最值点。

利润最大化问题实例分析我们将通过一个实例来说明如何利用二次函数求解利润最大化问题。

假设某企业的生产成本函数为C(x)=0.5x2+10x+100,销售收入函数为R(x)= 30x。

我们需要求解该企业的利润最大化问题。

将成本函数表示为二次函数形式将生产成本函数C(x)=0.5x2+10x+100展开,得到C(x)=0.5x2+10x+100。

将销售收入函数表示为二次函数形式将销售收入函数R(x)=30x展开,得到R(x)=30x。

二次函数与商品利润最大问题

二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a

当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,

x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)

二次函数最大利润公式

二次函数最大利润公式

二次函数最大利润公式二次函数最大利润公式是在市场营销领域中应用较多的一种工具。

当企业生产一种产品时,它的成本和销售量可以表示为二次函数。

其中,成本是随生产量增加而增加的,而销售量则随着产品价格的变化而改变。

企业追求的是利润最大化,因此需要找到销售最大量对应的价格,也就是二次函数的顶点。

利用二次函数最大利润公式,企业可以计算出最大利润所对应的生产量和价格,从而进行生产决策。

二次函数最大利润公式的基本形式为y=a某²+b某+c,其中a、b、c是常数,某是变量,y表示利润。

在这个公式中,a是二次项系数,它代表着产品的成本变化率;b是一次项系数,它代表着产品的售价变化率;c是常数项,它代表着固定成本。

如果我们知道a、b、c的具体值,就可以通过求导数的方法,找到二次函数顶点的位置,从而确定价格和销售量。

求解二次函数最大利润公式的方法有两种:一种是代数法,另一种是几何法。

代数法是通过求解一次函数的导数来寻找最大利润所对应的销售量和价格。

对于二次函数y=a某²+b某+c来说,它的导数为dy/d某=2a某+b。

当dy/d某=0时,就可以得到二次函数的顶点位置某0=-b/2a。

然后可以通过将某0代入二次函数y=a某²+b某+c中,求出最大利润所对应的成本、销售量和价格等信息。

几何法是通过绘制二次函数的图像来确定最大利润。

二次函数的图像是一个开口向上或向下的抛物线,在顶点处具有最大值或最小值。

当我们知道二次函数的顶点坐标时,可以通过测量图像来确定最大利润所对应的销售量和价格。

如果商家需要考虑不同产品的生产成本和销售情况,还可以通过绘制多条二次函数的图像,同时比较它们的顶点位置,从而找到最佳的生产组合方式,使得利润最大化。

总之,二次函数最大利润公式是市场营销领域中一个十分有用的工具。

它可以帮助企业决策者找到最大利润所对应的销售量和价格,从而进行生产策略的调整。

不过,在实际应用中,还需要注意二次函数所对应的条件和假设是否成立,以及市场环境和竞争对手的因素等。

专题 二次函数利润问题

专题 二次函数利润问题

专题八二次函数最大利润问题最大利润问题:这类问题只需围绕一点来求解,那就是:总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y,而自变量可能有两种情况:(1)自变量x是所涨价多少,或降价多少(2)自变量x是最终的销售价格例:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件,现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?(2)求销售利润y与降价x的关系式。

(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润。

(一)涨价或降价为未知数:例1:某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。

①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。

例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。

二次函数利润问题

二次函数利润问题

二次函数利润问题二次函数利润问题是指在经济学中,根据某个企业的销售情况建立的二次函数模型,通过求解二次函数的最值,进而得到该企业的最大利润或最小成本。

利润是企业经营的重要指标,通过利润问题的求解,可以帮助企业制定最优的经营策略和决策,提高企业的竞争力和盈利能力。

二次函数是一种常见的数学模型,可以用来描述许多实际问题的规律。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

在二次函数利润问题中,一般假设函数的自变量x表示某个特定的经济因素,如销售量或产量,而函数的因变量f(x)表示企业的利润或成本。

在二次函数利润问题中,一个常见的问题是求解二次函数的最值。

利润的最大值通常表示企业的最大利润,而成本的最小值则表示企业的最小成本。

求解最值问题可以用两种方法:一种是图像法,另一种是公式法。

图像法是通过绘制二次函数的图像来求解最值问题。

首先,根据函数的一般形式,确定图像的开口方向。

如果二次函数的系数a大于0,则图像开口向上;如果系数a小于0,则图像开口向下。

其次,根据函数的另外两个系数b 和c,确定图像的位置。

特别地,根据系数b的符号,可以判断图像的位置相对于y轴的平移情况。

最后,通过观察图像的顶点,即二次函数的最值点,可以得到最值的坐标。

公式法是通过解二次函数的一阶导数为0来求解最值问题。

首先,将二次函数表示为标准形式f(x) = ax^2 + bx + c,并求出其一阶导数f'(x) = 2ax + b。

其次,令一阶导数等于0,解方程2ax + b = 0,得到x = -b/2a。

最后,将x的值代入原函数,得到最值点的坐标。

两种方法都可以求解二次函数的最值问题,具体选择哪种方法则取决于具体的情况和个人喜好。

不过,为了能够更好地理解问题和解答问题,掌握两种方法的使用和转化是非常有益的。

除了求解二次函数的最值问题,二次函数利润问题还可以涉及到其他的经济学概念和数学方法。

二次函数的应用——利润最值问题

二次函数的应用——利润最值问题
2
w … 60 x x … 40300 30 … x x 6000 x 30x 2 30 300 60-x
变式1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1 2 元,每星期可多卖30件,已知该童装每件成本40元,设该款童 款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大利 润为多少元?
降价 多售的件数 30×1 30×3 现在售价 60-1 60-3 现在销售量 300+30 300+30×3 … 300+30x 1 (2)设利润为 w 3
30×2 300+30×2 2 =(每件售价 60-2 利润 -每件进价)×销售量
30x x5 6750 y=300+30 所以,当降价5时x 20 2x 80 2 2x 30 200 因为 20 x 28 所以由二次函数的性质可知,当x≤30时,w随x的增大而增大 所以当x=28时,w取得最大值,最大值为
w 228 30 200 192
2
练习1:草莓是云南多地盛产的一种水果,今年水果销售店在草莓 销售旺季,试销售成本为每千克20元的草莓,规定试销售时间单 价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,如图y与x的函数 关系图象 (1)求y与x函数解析式。 (2)设该水果销售店试销售草莓 获得利润为w元,求w的最大值。
例1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1元,每星期可多卖30件,已知该童装每件成本40元,设该 款童款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大 利润为多少元? 解(1)

二次函数最大利润求法经典.doc

二次函数最大利润求法经典.doc

二次函数最大利润求法经典.doc
二次函数最大利润求法,是利用二次函数关于极值点特征求解获得最大收益的方法。

它是数学中应用利润最大化的一种重要思想,主要用于市场经济学、计算经济学和运行管理等领域的实用工具。

二次函数的极值点将是利润函数的最大值和最小值点。

极值点可以通过求二次函数的导数等处理来求解,二次函数在极值点也可以用积分方法(求积分的上下限)求解。

具体求法:
1、代入极值点,求出对应的最大收益;
2、确定导数相等的极值点,求出最大收益;
3、求解积分的上下限,求出最大收益。

例题:某公司投资项目的利润函数为 P ( x ) =1000 x2 -J50 x 。

问:如果销售量x 的投资利润最大,x的取值是多少?
解:由利润函数P(x) = 1000x2-150x可知:
P'(x) = 2000x-150= 0
即x = 75;
设此时销售量x= 75,则利润函数P(x) = 1000(75)2-150(75) = 56250
结论:当销售量x=75时,投资利润最大,最大利润为56250元。

二次函数实际应用之利润最大值、面积最值问题

二次函数实际应用之利润最大值、面积最值问题

合用标准文案二次函数的实质应用——最大利润问题、面积最大 ( 小) 值问题一:最大利润问题知识要点:二次函数的一般式 y ax 2bx c ( a0 )化成极点式 ya( x b ) 24ac b 2 ,若是自变量的2a 4a取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕 .即当 a0 时,函数有最小值,并且当 xb , y 最小值 4ac b 2 ;2a4a当 a0 时,函数有最大值,并且当x b, y 最大值 4ac b 2 .2a4a若是自变量的取值范围是x 1xx 2 ,若是极点在自变量的取值范围x 1 x x 2 内,那么当xb, y 最值4ac b 2 ,若是极点不在此范围内,那么需考虑函数在自变量的取值范围内的增减2a4a ax 22性;若是在此范围内 y 随 x 的增大而增大,那么当 x x 2 时, y 最大 bx 2 c ,当 x x 1 时, y最小ax 12bx 1 c ;若是在此范围内y 随 x 的增大而减小,那么当 x x 1 时, y 最大ax 12 bx 1 c ,当 xx 2 时,y最小ax 22bx 2 c .商品定价一类利润计算公式:经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他本钱。

总利润 =总售价 -总进价 - 其他本钱 =单位商品利润 ×总销售量-其他本钱单位商品利润 =商品定价-商品进价总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量[ 例 1]:某电子厂商投产一种新式电子厂品, 每件制造本钱为 18 元,试销过程中发现, 每个月销售量 y 〔万件〕与销售单价 x 〔元〕之间的关系能够近似地看作一次函数 y= ﹣ 2x+100 .〔利润 = 售价﹣制造本钱〕( 1 〕写出每个月的利润 z 〔万元〕与销售单价 x 〔元〕之间的函数关系式;( 2 〕当销售单价为多少元时,厂商每个月能获取 3502 万元的利润?当销售单价为多少元时,厂商每个月能获取最大利润?最大利润是多少?〔 3 〕依照相关部门规定, 这种电子产品的销售单价不能够高于 32 元,若是厂商要获取每个月不低于 350 万 元的利润,那么制造出这种产品每个月的最低制造本钱需要多少万元? 解:〔 1 〕 z= 〔 x -18 〕 y= 〔x -18 〕〔 -2x+100 〕 = -2x 2+136x-1800 ,∴ z 与 x 之间的函数解析式为 z= -2x 2 +136x-1800;〔 2 〕由 z=350 ,得 350= -2x 2+136x -1800 ,解这个方程得 x 1=25 ,x 2 =43因此,销售单价定为 25 元或 43 元,将 z =-2x 2 +136x-1800配方,得 z=-2 〔 x-34 〕 2+512 ,因此,当销售单价为 34 元时,每个月能获取最大利润,最大利润是 512 万元;(3 〕结合〔 2 〕及函数 z=-2x 2+136x ﹣ 1800 的图象〔以以下列图〕可知,当25≤x ≤43时 z ≥350 ,优秀文档又由限价 32 元,得 25 ≤x ≤32,依照一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小,∴当 x=32时,每个月制造本钱最低最低本钱是 18 ×〔 -2 ×32+100 〕 =648 〔万元〕, 因此,所求每个月最低制造本钱为 648 万元.[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场检查反响:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,商品的进价为每件 40 元,怎样定价才能使利润 最大?解:设涨价〔或降价〕为每件x 元,利润为 y 元,y 1 为涨价时的利润, y 2 为降价时的利润那么: y 1 (60 40 x)(300 10x)10( x 2 10x 600)10( x 5) 26250当 x5 ,即:定价为 65 元时, y max6250 〔元〕y 2 (60 40 x)(30020x)20( x 20)( x15)20( x 2.5) 2 6125当,即:定价为 57.5 元时, y max 6125 〔元〕综合两种情况,应定价为65 元时,利润最大.[ 例 2] : 市 “健益 〞商场购进一批 20 元 /千克的绿色食品,若是以 30?元 /千克销售,那么每天可售出400 千克.由销售经验知,每天销售量y (千克 )?与销售单价 x (元 )( x30 〕存在以以下列图所示的一次函数关系式. ⑴试求出 y 与 x 的函数关系式;⑵设 “健益 〞商场销售该绿色食品每天获取利润 P 元,当销售单价为何值时,每天可获取最大利润?最大利润是多少?⑶依照市场检查,该绿色食品每天可获利润不高出 4480 元, ?现该商场经理要求每天利润不得低于4180 元,请你帮助该商场确定绿色食品销售单价 x 的范围 (?直接写出答案 ).解:⑴设 y=kx+b 由图象可知,30k b 400,k 2040k b 200 解之得 :1000 ,b即一次函数表达式为y20x 1000 (30 x50) .⑵ P(x20) y ( x 20)( 20 x 1000)20 x 2 1 4 0 x0 2 0 0 0 0∵ a 200 ∴ P 有最大值.当 x140035 时, P max4500 〔元〕(2 20)〔或经过配方,P 20( x 35) 24500 ,也可求得最大值〕答:当销售单价为35 元 /千克时,每天可获取最大利润4500 元.⑶∵ 418020( x35) 2 4500 44801 ( x 35) 216∴ 31≤x ?≤34或 36≤x ≤39.练习 2.某公司投资 700 万元购甲、乙两种产品的生产技术和设备后, 进行这两种产品加工. 生产甲种产品每件还需本钱费 30 元,生产乙种产品每件还需本钱费 20 元.经市场调研发2合用标准文案现:甲种产品的销售单价为x〔元〕,年销售量为 y〔万件〕,当 35≤x<50 时, y 与 x 之间的函数关系式为 y=20﹣;当 50≤x≤70 时, y 与 x 的函数关系式以以下列图,乙种产品的销售单价,在 25 元〔含〕到 45 元〔含〕之间,且年销售量牢固在10 万件.物价部门规定这两种产品的销售单价之和为90 元.〔1〕当 50≤x≤70 时,求出甲种产品的年销售量y〔万元〕与 x 〔元〕之间的函数关系式.〔2〕假设公司第一年的年销售量利润〔年销售利润=年销售收入﹣生产本钱〕为W〔万元〕,那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?〔3〕第二年公司可重新对产品进行定价,在〔2〕的条件下,并要求甲种产品的销售单价x 〔元〕在 50≤x≤70 范围内,该公司希望到第二年年终,两年的总盈利〔总盈利=两年的年销售利润之和﹣投资本钱〕不低于85 万元.请直接写出第二年乙种产品的销售单价m〔元〕的范围.解:〔1〕设y与x的函数关系式为 y=kx+b〔k≠0〕,∵函数图象经过点〔 50, 10〕,〔 70, 8〕,∴,解得,因此, y=﹣0.1x+15;〔 2〕∵乙种产品的销售单价在25元〔含〕到 45元〔含〕之间,∴,解之得 45≤x≤65,①45≤x< 50时, W=〔x﹣30〕〔 20﹣〕+10〔90﹣x﹣20〕,=﹣0.2x2+16x+100,=﹣〔x2﹣ 80x+1600〕+320+100,=﹣〔x﹣40〕2+420,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=45时, W 有最大值, W最大 =﹣〔45﹣ 40〕2+420=415万元;②50≤x≤65时, W=〔x﹣30〕〔﹣ 0.1x+15〕+10〔 90﹣x﹣20〕,=﹣0.1x2+8x+250,=﹣〔x2﹣80x+1600〕 +160+250,=﹣〔x﹣40〕2+410,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=50时, W 有最大值, W最大 =﹣〔50﹣ 40〕2+410=400万元.综上所述,当 x=45,即甲、乙两种产品定价均为 45元时,第一年的年销售利润最大,最大年销售利润是 415万元;(3〕依照题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令 W=85,那么﹣ 0.1x2+8x﹣35=85,解得 x1=20,x2=60.又由题意知, 50≤x≤65,依照函数性质解析, 50≤x≤60,即 50≤90﹣m≤60,∴ 30≤m≤40.二、面积最大〔最小〕值问题实责问题中图形面积的最值问题解析思路为:优秀文档〔1〕解析图形的成因〔 2〕鉴别图形的形状〔 3〕找出图形面积的计算方法〔4〕把计算中要用到的所有线段用未知数表示〔5〕把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围〔6〕依照函数的性质以及自变量的取值范围求出头积的最值。

二次函数求利润最大值

二次函数求利润最大值

y=(60+x-40)(300-10x)
即y=-10(x-5)²+6250 (0≤X≤30)
∴当x=5时,y最大值=6250
也可以这样求极值
x
b 2a
5时,y最大值
10 52
100 5
6000
6250
所以,当定价为65元时,利润最大,最大利润为6250元
y\元
6250 6000
部分,这条抛物线的顶
点是函数图像的最高点
,也就是说当x取顶点
坐标的横坐标时,这个
函数有最大值。由公式
可以求出顶点的横坐标
30
x\元 .
在降价的情况下,最大利润是多少?请你参考(1)的
过程得出答案。
解:设降价x元时利润最大,则每星期可多卖20x件,实际卖 出(300+20x)件,每件利润为(60-40-x)元,因此,得利润
量的实际意义,确定自变量的取值范围;
(2)在自变量的取值范围内,运用公 式法或通过配方求出二次函数的最大值 或最小值。
三、自主展示
(09中考)某超市经销一种销售成本为每件40元 的商品.据市场调查分析,如果按每件50元 销售,一周能售出500件;若销售单价每涨1 元,每周销量就减少10件.设销售单价为x 元(x≥50),一周的销售量为y件. (1)写出y与x的函数关系式(标明x的取值范围) 解:(1)y=500-10(x-50)
解:(2)S=(x-40)(1000-10x) =-10x2+1400x-40000
=-10(x-70)2+9000 当50≤x≤70时,利润随着单价的增大而增大.
三、自主展示 (09中考)某超市经销一种销售成本为每件40元
的商品.据市场调查分析,如果按每件50元 销售,一周能售出500件;若销售单价每涨1 元,每周销量就减少10件.设销售单价为x 元(x≥50),一周的销售量为y件. (3)在超市对该种商品投入不超过10000元的情况

二次函数:最大利润问题课件

二次函数:最大利润问题课件
方法2:设定价为x元
单价(元/件) 60
x
单件利润(元) 20
x-40
销量(件)
一周利润(元)
300
6000
300-10(x-60) (x-40)[300-10(x-60)]
(x-40)[300-10(x-60)]=6090
变式1
已知某商品的进价为每件40元,售价是每件60元, 每星期可卖出300件。市场调查反映:如调整价格 , 每涨价一元,每星期要少卖出10件。该商品应定价为 多少元时,商场能获得最大利润?
方法1:设上调了x元
单价(元/件) 60 60+x
单利润(元)
销量(件)
20 20+x
300 300-10x
一周利润(元) 6000 (20+x)( 300-10x)
y=(20+x)( 300-10x)
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
(0≤x≤30)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) (0≤x≤20)
=(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 所以定价为60-2.5=57.5时利润最大,最大值为6125元.
变式3
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500
∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元

二次函数的实际应用之利润最大(小)值问题

二次函数的实际应用之利润最大(小)值问题

1二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a b x 2-=,ab ac y 442-=最小值; 当0<a 时,函数有最大值,并且当a b x 2-=,ab ac y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a b x 2-=,ab ac y 442-=最值, 如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.商品定价一类利润计算公式:经常出现的数据:商品进价;商品售价1;商品销售量1;商品售价2(商品定价);商品销售量2;其他成本。

◆单价商品利润=商品定价-商品进价 ◆△(价格变动量)=商品定价-商品售价1(或者直接等于商品调价); ◆销售量变化率=销售变化量÷引起销售量变化的单位价格; ◆商品总销售量=商品销售量1±△×销售量变化率; ◆ 总利润(W )=单价商品利润×总销售量-其他成本其他成本单位价格变动销售量变化商品销售量)商品售价(商品定价)总利润(-⨯∆±⨯-=]1[1W[例]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?2 [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.(2011十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3、某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图) (1)求y 与x 之间的函数关系(2)设公司获得的总利润为 W 元,求 W 与x 之间的函数关系式,并写出自变量 的取值范围;根据题意判断:当x 取何值时,W 的值最大?最大值是多少?4.(2011湖北)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?。

二次函数-如何获得最大利润问题

二次函数-如何获得最大利润问题

由(2)(3)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
牛刀小试
某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提 高单价会导致销售量的减少,即销售单价每提高1元,销 售量相应减少20件.售价提高多少元时,才能在半个月内 获得最大利润?
(3)在超市对该种商品投入不超过10000元的 情况下,使得一周销售利润达到8000元,销 售单价应定为多少?
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
26.3 实际问题与二次函数 第1课时 如何获得最大利润问题
自主探究
问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调 整价格 ,每涨价1元,每星期要少卖出10件。要想获 得6090元的利润,该商品应定价为多少元?
分析:没调价之前商场一周的利润为 6000 元; 设销售单价上调了x元,那么每件商品的利润 可表示为(20+x)元,每周的销售量可表示为 (300-10x)件,一周的利润可表示为 (20+x)( 300-10x)元,要想获得6090元利润可 列方程 (20+x)( 300-10x) =6090 。
反思感悟
通过本节课的 学习,我的收获是?
能力拓展
1.已知某商品的进价为每件40元。现在的售价
是每件60元,每星期可卖出300件。市场调查 反映:如调整价格 ,每涨价一元,每星期要 少卖出10件;每降价一元,每星期可多卖出 20件。如何定价才能使利润最大?
在上题中,若商场规定试销期间获利不得低于 40%又不得高于60%,则销售单价定为多少时, 商场可获得最大利润?最大利润是多少?

二次函数的应用(利润问题)

二次函数的应用(利润问题)

二次函数的应用——利润问题[例1]:求以下二次函数的最值:〔1〕求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.〔2〕求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?解:设涨价〔或降价〕为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 那么:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y 〔元〕)20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y 〔元〕综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 那么:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?月 日解:设旅行团有x 人)30(≥x ,营业额为y 元, 那么:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y 〔元〕答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件本钱10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 假设日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.那么1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y 〔元〕答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)〞的设问中, “某某〞要设为自变量,“什么〞要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.〔2006十堰市〕市“健益〞超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x 〕存在如以下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).x 〔元〕 15 20 30 … y 〔件〕 25 20 10 …解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P 〔元〕〔或通过配方,4500)35(202+--=x P ,也可求得最大值〕答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,那么具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大〞“最小〞).3.不管自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解〞或“无解〞)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一局部,如下图,假设命中篮圈中心,那么他与篮底的距离L 是 4.5米 .月 日解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x 〔不合题意,舍去〕5.在距离地面2m 高的某处把一物体以初速度V 0〔m/s 〕竖直向上抛出,•在不计空气阻力的情况下,其上升高度s 〔m 〕与抛出时间t 〔s 〕满足:S=V 0t-12gt 2〔其中g 是常数,通常取10m/s 2〕,假设V 0=10m/s ,那么该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天 在某段公路上行驶上,速度为V 〔km/h 〕的汽车的刹车距离S 〔m 〕可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.假设这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,那么应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 那么:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一局部,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),那么这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.〔2006年青岛市〕在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x 〔元/千克〕 … 25 242322…销售量y 〔千克〕… 2000 2500 3000 3500 …〔1〕在如图的直角坐标系内,作出各组有序数对〔x ,y 〕所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; 〔2〕假设樱桃进价为13元/千克,试求销售利润P 〔元〕与销售价x 〔元/千克〕之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:〔1〕由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点〔•25,2000〕,〔24,2500〕在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. 〔2〕P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量根本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.月 日∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元那么:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2021湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,这种产品的本钱价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y 〔元〕(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x 〔不合题意,舍去〕252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2021河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元〕与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,〔万元〕均与满足一次函数关系.〔注:年利润=年销售额-全部费用〕〔1〕成果说明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润〔万元〕与之间的函数关系式;〔2〕成果说明,在乙地生产并销售吨时,〔为常数〕,且在乙地当年的最大年利润为35万元.试确定的值;〔3〕受资金、生产能力等多种因素的影响,某投资商方案第一年生产并销售该产品18吨,根据〔1〕,〔2〕中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:〔1〕甲地当年的年销售额为万元;.〔2〕在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.〔3〕在乙地区生产并销售时,年利润,将代入上式,得〔万元〕;将代入,得〔万元〕.,应选乙地.。

二次函数--(利润最大值问题)-顶点在范围内

二次函数--(利润最大值问题)-顶点在范围内

22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。

二次函数的实际应用之利润最大(小)值问题

二次函数的实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a bx 2-=,ab ac y 442-=最小值;当0<a 时,函数有最大值,并且当a bx 2-=,ab ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a bx 2-=,ab ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=2.[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).作业布置: 1.二次函数1212-+=x x y ,当x=_____时,y 有最____值,这个值是___. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______________),此类函数都有____值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 米 .5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面_____m .6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天行驶和晴天行驶相比,刹车距离相差_____米. 7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价______元,最大利润为_____元.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对(1判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?。

(完整版)二次函数最大利润求法经典.doc

(完整版)二次函数最大利润求法经典.doc

一、某商品现在的售价为每件60 元,每星期可卖出300 件,市场调查反映:每涨价 2 元,每星期少卖出20 件。

已知商品的进价为每件40 元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量问题 1:售价为x 元时,每件的利润可表示为( x-40 )问题 2:售价为x 元,售价涨了多少元?可表示为( x-60)问题 3:售价为x 元,销售数量会减少,减少的件数为x-6020 (件)2问题 4:售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 x-60300 10( x 60) =10x 90020 =2x f 0因为60 0x自变量 x 的取值范围是x 60问题 4:售价为x 元,销售数量为y(件),销售总利润为W (元),那么 W 与 x 的函数关系式为W ( x 40) y=( x 40)( 10 x900)=10x2 1300 x 36000问题 5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 W ( x 40) y= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000=10( x 65)24225036000=10( x 65)26250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元二、某商品现在的售价为每件60 元,每星期可卖出300 件,市场调查反映:每降价 2 元,每星期可多卖出40 件,已知商品的进价为每件 40 元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量问题 1:售价为 x 元时,每件的利润可表示为( x-40 )问题 2:售价为 x 元,售价降了多少元?可表示为( 60-x)问题 3:售价为 x 元,销售数量会增加,增加的件数为60 x40 (件)2问题 4:售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 60 x300 20(60 x) =20 x 150040 =2x f 0因为x 060所以,自变量x 的取值范围是0 x 60问题 4:售价为 x 元,销售数量为y(件),销售总利润为W (元),那么 W 与 x 的函数关系式为W (x 40) y=( x 40) (20x1500)=20x2 2300x 60000问题 5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为W ( x 40) y= ( x 40) (20x 1500)= 20x2 2300x 60000= 20( x2 115x) 600002 2= 20 x2 115x 115 ) 115 600002 2= 20( x 115 )2 66125 600002= 20( x 57.5) 2 66125 60000= 20( x 57.5) 2 6125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为6125 元三、某商品现在的售价为每件价 2 元,每星期可多卖出4060 元,每星期可卖出 300 件,市场调查反映:每涨价 2 元,每星期少卖出件,已知商品的进价为每件 40 元,如何定价才能使利润最大?20 件;每降分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量根据题目内容,完成下列各题:1、涨价时( 1)售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 x-60300 10( x 60) =10x 900 220 =因为x f 0x 60 0自变量 x 的取值范围是x 60( 2)售价为 x 元,销售数量为y(件),销售总利润为 W (元),那么 W 与 x 的函数关系式为W1 (x 40) y= ( x 40)( 10 x 900)=10x2 1300 x 36000(3)售价为 x 元,销售总利润为 W (元)时,可获得的最大利润是多少?W1= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000=10( x 65)24225036000=10( x 65)26250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元2、降价时:( 1)售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为60 x300 20(60 x) =20 x 1500y 300 40 =2x f 0因为x 060所以,自变量 x 的取值范围是 0 x 60( 2)售价为 x 元,销售数量为 y (件),销售总利润为 W (元),那么 W 与 x 的函数关系式为W 2 = (x 40) y= ( x 40) ( 20x 1500)=20x 2 2300x 60000( 3)售价为 x 元,销售总利润为 W (元)时,可获得的最大利润是多少?因为W 2 = ( x 40) ( 30060 x 40 )2= (x 40) ( 20x 1500)=20 x 2 2300 x 60000= 20( x 2115x) 6000022= 20 x 2115x115 ) 115 600002 2= 20( x 115)266125 600002= 20( x 57.5) 266125 60000= 20( x 57.5)26125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为 6125 元本题解题过程如下:解:设售价为 x 元,利润为 W ( 1)涨价时,W 1 = ( x 40) ( 300 -x-60 20 )2= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000= 10( x 65)2 42250 36000= 10( x 65)2 6250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元( 2)降价时,W2= (x60 x40) (300+ 40 )2= ( x 40)(20x 1500)= 20x2 2300x 60000= 20( x2 115x) 600002 2= 20 x2 115x 115 ) 115 600002 2= 20( x 115 )2 66125 600002= 20( x 57.5) 2 66125 60000= 20( x 57.5) 2 6125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为6125 元综上所述,售价为65 元或售价为 57.5 元时,都可得到最大利润,最大利润分别为6250 元或 6125 元。

二次函数,最大利润

二次函数,最大利润

最大利润问题总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1)自变量x是涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量等式中的单件利润有自变量x,销售数量里也有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式例题商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润因为降价,单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想:因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,重点难点:(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式解析:原来的自变量是什么?是降低的价格,而现在是降后的售价自变量一变化,那么关系式就全变了,所以之前的一切关系都要作废但总利润=单利润*数量,这个关系是永远不变的!所以要找到y与x的关系,还是从此处出发这么想:单利润=售价-进价,进价是不变的,而售价现在变为x了,则单利润就是(x-80),而这时数量就变复杂了,这么想:数量变化依然是因为降价而造成的,始终有降价1元多卖10件这一关系,所以如果知道了降多少元,就必然知道多卖多少件,那么降了多少呢?最初的售价是100元,降价后的售价是x元,那么之间的差值就是所降的价格,即降价为(100-x),我们知道降1元多卖10件,现在降了(100-x),那么就应该多卖10*(100-x)件,注意这只是多买的,总共买的应该是原来卖的加上多卖的,即140+10*(100-x),所以数量就是[140+10*(100-x)]单利润知道了是(x-80),销售数量也知道了是 [140+10*(100-x)]则总利润y=(x-80)* [140+10*(100-x)](一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

二次函数利润问题万能公式(一)

二次函数利润问题万能公式(一)

二次函数利润问题万能公式(一)二次函数利润问题万能公式介绍在经济学和数学中,利润问题通常可以用二次函数来描述和求解。

二次函数是一种常见的数学模型,可以帮助我们分析和预测各种经济问题中的利润关系。

本文将介绍二次函数利润问题的万能公式,并通过列举相关公式和举例来解释和说明。

二次函数的一般形式二次函数的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。

利润问题中,x通常表示销售量,f(x)表示利润。

利润公式利润问题中,利润与销售量之间的关系可以通过二次函数来描述。

以下是二次函数利润问题中的几个常见公式:利润最大值公式利润最大值一般发生在二次函数的顶点处。

利润最大值公式可以表示为:x = -b/(2a)其中,a、b为二次函数的系数。

利润最大值处的销售量可以通过这个公式来计算。

零利润点公式零利润点是指利润为零的销售量。

零利润点公式可以表示为:ax^2 + bx + c = 0通过解这个方程,可以计算出零利润点的销售量。

利润区间公式利润区间是指利润为正的销售量范围。

利润区间公式可以表示为:ax^2 + bx + c > 0通过解这个不等式,可以得到利润为正的销售量范围。

举例说明假设一家公司生产并销售某种产品,该公司的销售利润与销售量之间的关系可以通过以下二次函数表示:f(x) = -2x^2 + 5x + 20利用二次函数利润问题的公式,我们可以进行以下计算和分析:计算利润最大值利润最大值发生在顶点处。

根据利润最大值公式,可以计算出:x = -5/(2*(-2)) =即当销售量为时,利润最大。

计算零利润点利润为零时,根据零利润点公式,可以解得:-2x^2 + 5x + 20 = 0解这个方程可以得到两个解,即销售量为-2和销售量为5时,利润为零。

计算利润区间利润为正时,根据利润区间公式,可以解得:-2x^2 + 5x + 20 > 0解这个不等式可以得到销售量在-2和5之间时,利润为正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60)问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x )问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为1(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为2W =(40)x -y= (40)x -(201500x -+)= 220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时, 1W =(40)x -(300 --60202x ⨯) = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W =(40)x -(300+60402x -⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

四、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,为尽快清仓库存,如何定价才能使利润最大? 解:设售价为x 元,利润为W(1)涨价时,1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

因为,为了尽快减少库存,所以应该采用降价销售。

因此售价应为57.5元。

(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

求最大利润,学生版一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。

已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x元时,每件的利润可表示为________________问题2:售价为x元,售价涨了多少元?可表示为____________________问题3:售价为x元,销售数量会减少,减少的件数为_____________ (件)问题4:售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为问题5:售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?二、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x元时,每件的利润可表示为_______________问题2:售价为x元,售价降了多少元?可表示为______________问题3:售价为x元,销售数量会增加,增加的件数为__________________(件)问题4:售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为问题4:售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为问题5:售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为(2)售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为(3)售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?2、降价时:(1)售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为(2)售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为(3)售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?本题解题过程如下:解:设售价为x元,利润为W。

相关文档
最新文档