元素与集合之间的关系
集合之间的基本关系 -回复
集合之间的基本关系 -回复
1. 包含关系:集合A包含集合B,表示B中的元素都属于A,用符号表示为B ⊆ A。
2. 相等关系:集合A与集合B相等,表示A和B拥有完全相同的元素,用符号表示为
A = B。
3. 真包含关系:集合A真包含集合B,表示A包含B且A与B不相等,用符号表示为
B ⊂ A。
4. 交集关系:集合A与集合B的交集,表示A和B中共有的元素的集合,用符号表示为A ∩ B。
5. 并集关系:集合A与集合B的并集,表示A和B所有元素的集合,用符号表示为A ∪ B。
6. 差集关系:集合A与集合B的差集,表示A中除去与B共有的元素剩下的元素的集合,用符号表示为A - B。
7. 对称差集关系:集合A与集合B的对称差集,表示A和B中除去共有的元素,剩下的元素的集合,用符号表示为A △ B。
8. 互斥关系:集合A与集合B互斥,表示A和B没有共有的元素,用符号表示为A ∩
B = ∅。
9. 子集关系:集合A是集合B的子集,表示A中的所有元素都属于B,用符号表示为
A ⊆ B。
10. 空集关系:空集是任何集合的子集,用符号表示为∅⊆ A。
元素与集合的概念
元素与集合的概念1. 元素的概念在数学中,元素是指集合中的一个个体或成员。
元素可以是任何事物、对象、数字等。
元素是集合的构成部分,一个集合可以包含多个元素。
1.1 定义元素的定义可以通过集合论的角度进行解释。
在集合论中,元素是指集合中的一个个体,该个体可以是任何事物、对象、数字等。
元素是集合的基本构成单位,集合中的每个元素都是独立的,没有重复。
1.2 重要性元素在数学中起着非常重要的作用,它是集合论的基础概念之一。
元素的概念使得我们能够将不同的个体或事物进行分类和组织,从而建立起数学中的各种集合。
元素的概念也是数学中许多重要理论和定理的基础,例如集合的交并运算、集合的包含关系等。
1.3 应用元素的概念在数学中有广泛的应用。
以下是一些常见的应用场景:•集合论:元素是集合论的基本概念,集合论研究的对象就是集合和其中的元素之间的关系和性质。
•数论:元素可以是整数、有理数、实数等,用于研究数的性质和规律。
•几何学:元素可以是点、线、面等几何图形的基本构成单位,用于研究几何图形的性质和关系。
•概率论:元素可以是随机试验的结果,用于研究随机事件的概率和统计规律。
2. 集合的概念集合是由一些确定的元素组成的整体,是数学中最基本的概念之一。
集合可以包含有限个元素,也可以包含无限个元素。
集合可以用不同的方式表示和描述,例如列举法、描述法、集合运算等。
2.1 定义集合的定义可以从直观和集合论两个角度进行解释。
•直观定义:集合是由一些确定的元素组成的整体。
集合中的元素可以是任何事物、对象、数字等。
集合中的元素是独立的,没有重复。
•集合论定义:集合是一个确定的对象,该对象的性质是一个个体是否属于该对象。
例如,集合A表示所有满足某个条件的元素的集合,可以表示为A={x|x满足某个条件}。
2.2 重要性集合在数学中起着非常重要的作用,它是数学的基础概念之一。
集合的概念使得我们能够将不同的元素进行分类和组织,从而建立起数学中的各种结构和理论。
集合与常用逻辑用语知识点
集合与常用逻辑用语一、知识总结1、集合(1)元素与集合:①集合元素的特征性: 、 、 ;②元素与集合的关系:元素与集合之间的关系有 和 两种,表示符号分别为 和 ;③常见集合的符号表示:自然数集 、正整数集 、整数集 、有理数集 、实数集(R );④集合的表示方法 、 、 。
(2)集合与集合间的关系:①如果集合A 中 元素都是集合B 的元素,则A 叫做B 的子集;空集φ,它是任何非空集合的 ;②若B A ⊆,且A B ⊆,则 。
(3)集合的运算:设A 、B 是两个集合,全集为U ,则{}B x A x x B A ∈∈=且I ,{}B x A x x B A ∈∈=或Y ,{}A x U x x A C U ∉∈=且。
若B A ⊆,则A B A =I ,B B A =Y 。
2、命题及其关系、充分条件与必要条件 (1)命题的概念:在数学中用语言、符号或式子表达的,可以 的陈述句叫做命题,其中的语句叫真命题, 的语句叫假命题。
(2)四中命题及其关系:用q p 和分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示两个命题互为逆否命题,它们有相同的真假性,是等价关系。
两个命题互为逆命题或互为否命题,它们的真假性没有关系。
(3)充分条件与必要条件:①如果q p ⇒,则p 是q 的 ,q 是p 的 ;若q p ⇔,则p 是q 的 。
②若p 不能推出q ,且q 不能推出p ,则p 是q 的 . 3、逻辑连接词与量词(1)逻辑连接词:①用联结词“且”联结命题p 和命题q ,记作 ,读作“p 且q ”。
②用联结词“或”联结命题p 和命题q ,记作 读作“p 或q ”。
③对一个命题p 全盘否定记作 读作“非p ”或“p 的否定”。
(2)全称量词与存在量词:①全称量词有:所有的,任意一个,任给,用符号“ ”表示。
存在量词:存在一个,至少有一个,有些,用符号“ ”表示。
②含有全称量词的命题,叫做 ;“对M 中任意一个x ,有()x p 成立”可用符号简记为: 。
元素与集合的关系
元素与集合的关系
【常用数集及其表示】
非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R;
元素与集合的关系
【典型例题】
用符号“ ”或“
”填空.
(1)2 3 _ _ _ _ _ { x |x 1 1 } , 3 2 _ _ _ _ { x |x 4 } ;
知识点——
元素与集合的关系
元素与集合的关系
【定义】
(1)如果a是集合A的元素,就说a属
于(belong to)A,记作a A.
(2)如果a不是集合A的元素,就说a
不属于(not belong to)A,记作 a A.
元素与集合的关系
【解题之核心】
给定一个对象a,它与一个给定
的集合A之间的关系为 a A , 或者 a A , 二者必居其一.解答这
元素与集合的关系
【典型例题】
(1) 231211, 23 {x|x11}; 3218164, 32 {x|x4};
(2)令 3 n2 1 ,则 n 2N, 3{x| xn21,nN};
令5 n2 1,则 n2,其中2N, (3) ∵(-1,1)是 一5 个{有x|序x实n 数2对1,,且n 符N合}关;系 y x 2 , ∴ (1, 1){y| yx2}, Fra bibliotek素与集合的关系
【变式训练】
下面有四个命题: (1)集合N中最小的数是1; (2)若 -a不属于N ,则a 属于N ; (3)若 aN,bN,则 a +b 的最小值为2; (4) x212x 的解可表示为 {1,1}; 其中正确命题的个数为( ) A.0个 B.1个 C.2个 D.3个
集合的基本概念元素集合之间的关系
第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
2.集合的概念及元素与集合间关系(学生版)
集合的概念及元素、集合与集合间关系(讲案)【教学目标】一、集合的概念、表示【知识点】1.定义:一般地,把确定的,不同的对象看成一个整体,这个整体叫做集合,这些对象称为元素。
集合通常用大写英文字母来表示,例如集合A,集合B、集合C,元素常用小写英文字母来表示,例如a b c。
,,2.常用数集:①非负整数集(自然数集),记作N②正整数集,记作*N或N+③整数集,记作Z④有理数集,记作Q⑤全体实数集,记作R3.集合的分类:①有限集:含有有限个元素的集合②无限集:含有无限个元素的集合③空集:不含任何元素的集合,记作∅4.集合的表示方法:① 列举法:将集合中的元素一一列举出来,写在“{}”内表示集合的方法。
使用列举法时元素间用分隔号“,”隔开,不重复,无顺序,对于含较多元素的集合,如果元素间有明显规律,可用列举法,但是必须把元素间的规律表达清楚后才能用省略号。
② 描述法:把集合中的元素的公共属性描述出来,写成“(){}|x p x ”,x 为该集合的代表元素,()p x 是元素具有的性质③ venn 图示法:为了形象的描述集合,我们常常画一条封闭的曲线,用他的内部来表示集合。
【例题讲解】★☆☆例题1.下列语句是否能确定一个集合 .(1)所有质数全体;(2)某校高一性格开朗的学生全体;(3)与1接近的实数的全体;(4)平面直角坐标系内以原点为圆心,以1为半径的圆内所有的点(不包括圆上的点);★☆☆练习1.A.接近于0的数的全体; B.比较小的正整数全体;C.平面上到点O 的距离等于1的点的全体;D.正三角形的全体;.其中能构成集合的是( )★☆☆例题2:用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程2x x =的所有实数根组成的集合;(3)由1~20以内所有的质数组成的集合★☆☆练习1.用列举法表示下列集合:(1)我国古代四大发明组成的集合;(2)大于2且小于15的所有素数组成的集合;(3)方程22x =的所有实数根组成的集合.★☆☆练习2.用列举法表示下列给定的集合:(1)大于1- 且小于5的整数组成的集合A ;(2)方程290x -= 的实数根组成的集合B ;(3)小于8 的质数组成的集合.C★☆☆例题3.用合适的方法表示下列集合,并说明是有限集还是无限集.(1)到A 、B 两点距离相等的点的集合(2)满足不等式21x >的x 的集合(3)全体偶数(4)被5除余1的数(5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈ (7)方程()0,x x a a R -=∈的解集★☆☆练习1.用描述法表示下列集合.(1)方程22x =的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
高中数学-元素与集合
元素与集合一. 集合的概念对任给的一个性质P ,存在一个集合S ,它的元素恰好是具有性质P 的所有对象。
即{|()}S x P x =,其中()P x 表示“x 具有性质P ”。
由此,我们知道集合的元素是完全确定的,同时它的元素之间具有互异性和无序性。
集合的元素个数为有限数的集合称为有限集,元素个数为无限数的集合称为无限集。
如果有限集A 的元素个数为n ,则称A 为n 元集,记作||A n =。
空集不含任何元素。
例1 设集合25{|0,}ax M x x R x a -=<∈-,若3,5M M ∈∉,求实数a 的取值范围。
例2 设集合22{|,,}M a a x y x y Z ==-∈,n 为整数,分别判断数4,41,42,43n n n n +++与集合M 的关系。
例3 设集合22,,0}S m n N m n =∈+>。
证明:对一切,x y S ∈,且x y <,总存在z S ∈,使得x z y <<。
二. 集合与集合的关系在两个集合的关系中,子集是一个重要的概念,它的两个特例是真子集和集合相等。
从下面“充分必要条件”的角度来理解子集、真子集和集合相等的概念是十分有益的:子集:,A B x A x B ⊆⇔∈∈对任意恒有;真子集:A B A B x B x A⊆⎧⊂⇔⎨∈∉⎩存在,但; 集合相等:,A B A B B A =⇔⊆⊆。
容易证明两个集合之间关系的如下性质:1. ,()A A A ∅⊆∅⊂≠∅;2. ,A B B C A C ⊆⊆⇒⊆;3. n 元集A 总共有2n 个不同的子集。
如果,A B 是两个相等的数集,那么可以得到A B =的两个非常有用的必要条件:两个集合的元素之和相等;两个集合的元素之积相等。
例4 若集合{1,2,,50}的子集不包含形如{,3}x x 的子集,则称该子集为“特殊子集”,含元素个数最多的特殊子集称为“超特殊子集”。
求超特殊子集含有多少个元素,且存在多少个不同的超特殊子集?例 5 设,,a b c 是互不相同的正整数,n 为正整数。
元素与集合
元素与集合1. 特征:确定性,无序性,互异性。
2. 集合中元素的关系:.3. 一些常见的集合 符号:N ,+N ,Z, Q, R, C,4. 集合的表示法:列举法,描述法,图示法。
描述法中:特别注意元素的代表形式。
}|),{(},|{},|{222x y y x x y y x y x ===均表示不同的集合。
集合之间的关系:1.包含于⊂,真包含于⊂。
相等、子集、真子集。
2.空集φ是任何集合的子集。
3.特别的:{φ}与φ的关系。
集合的基本运算:A ∪B,A ∩B,A CU(补集)。
集合的运算性质:A ∩A=_____;A ∩B=____(交换律); A ∩φ =____;A ∩B____A\B;若AB ⊆,则A ∩B=_____; A ∪A=_____;A ∪B=_____(交换律);A ∪φ=_____;A\B____(A ∪B);若A B ⊆,则A ∪B_____; A ∪ACU=_____;A ∩ACU=_______;)(A CC UU=______;φCU=_____;UCU=_______;_____)(_____;)(==B A B A C C U U;()()______;_____;______;)(____;)(====C B A C B A C B A C B A命题 量词 逻辑命题是能判断真假的语句;:存在:所有的;∃∀:逻辑连接词:或、且、非;pp p q p ⌝∨∧,,;命题的否定:()())(,:),(,,,,x p m x x p m x x p m x x p m x ⌝∈∀∈∃⌝∈∃∈∀的否定为的否定为:qp q p p q q p p q q p q p ⇔⇒⇒⇒的充要条件。
即是的必要条件。
是的充要条件,是.,,四种命题的关系:原命题:若p 则q;否命题:若非p ,则非q ; 逆命题: q 则p;逆否命题: 非p ,则非q ;一元二次不等式及其解法1. 若一元二次不等式b ax >,⎭⎬⎫⎩⎨⎧<≥=<<>>R b b a abx a abx a 解集为解集为则则解集为若,0,0,0.,0,,0.φ2. 不等式组()βα<;(1).{}βαβα<<<>x x x 解集为,, (2).φβα解集为><x x(3).{}ββα>>>x x x 解集为.,(4).{}αβα<<<x x x 解集为3.一元二次不等式,4),0(022ac b a c bx ax -=∆≠>++其中21,x x 是方程c bx ax ++2=0(0≠a )的两个根,且21x x <.(1) 当时,o a >()()()∞+∞<∆+∞-∞=∆∞+⋃∞>∆,解集为若(,解集为若,解集为若-,0),2)2,(0-,0,21aba b x x (2) 当时,o a <_______,0_______0_____,0解集为若,解集为若解集为若<∆=∆>∆4.一元()3,,0,0*22110≥∈≠∈>++++--n N n a R a a x a xa x a n n n n n n n次不等式可为()()()()()()()()()()的解集。
集合的概念及运算
1.集合与元素 某些指定的对象集在一起就成为一个集合 , 简称集, 通常 用大写字母A, B, C, „ 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, „ 表示. 2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集 (元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等. 3.集合中元素的性质 对于一个给定的集合, 它的元素具有确定性、互异性、无 序性. 4.集合的表示方法 ①列举法;②描述法;③图示法;④区间法;⑤字母法.
2-x-1=0}, 得 a≥- 1. 由 A={ x | ax 13.解: 4 ∵对任一 x0∈A, 必有 x0B, ∴AB; 又 B 中元素为方程 a(ax2-1)2-1=x 即 a3x4-2a2x2-x+a-1=0 的实根, ∴由 AB 知 a3x4-2a2x2-x+a-1 含有因子 ax2-x-1. ∴a3x4-2a2x2-x+a-1=0 即为 (ax2-x-1)(a2x2+ax-a+1)=0. ∵A=B, ∴a2x2+ax-a+1=0 无实根或其实根为 ax2-x-1=0 的实根. 由 a2x2+ax-a+1=0 无实根得: a< 3 4;
典型例题
1.已知全集为 R, A={y | y=x2+2x+2}, B={y | y=x2+2x-8}, 求: (1) A∩B; (2) A∪CRB; (3) (CRA)∩(CRB). [1, +∞) (-∞, -9)∪[1, +∞) (-∞, -9) 评注 本题涉及集合的不同表示方法, 准确认识集合A、B是 解答本题的关键. 对(3)也可计算CR(A∪B). 2.已知集合A={x | x2-x-6<0}, B={x | 0<x-m<9}. (1)若A∪B=B, 求实数 m 的取值范围; [-6, -2] (2)若A∩B, 求实数 m 的取值范围. (-11, 3) 评注 (1)注意下面的等价关系: ①A∪B=B AB; ②A∩B=A AB; (2)用“数形结合思想”解题时, 要特别注意“端点” 的取舍.
2023年高考数学总复习第一章 集合与常用逻辑用语 第1节:集合(学生版)
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.62.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N x |13≤x <aM ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±15.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.37.(2022·太原模拟)已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.49.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}14.(2020·浙江卷)设集合S ,T ,S ⊆N +,T ⊆N +,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x ∈S .下列命题正确的是()A.若S 有4个元素,则S ∪T 有7个元素B.若S 有4个元素,则S ∪T 有6个元素C.若S 有3个元素,则S ∪T 有5个元素D.若S 有3个元素,则S ∪T 有4个元素15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.。
高一数学复习知识点专题讲解与训练3---集合间的基本关系
高一数学复习知识点专题讲解与训练集合间的基本关系课标要点课标要点学考要求高考要求1.子集、真子集的概念b b2.空集的概念b b3.Venn图a a知识导图,学法指导,1.注意辨析两大关系:(1)元素与集合的关系;(2)集合与集合的关系.2.本节的学习重点是子集、真子集、空集的概念;难点是集合之间关系的应用.3.学习中要注意集合之间的关系的几种表述方法:自然语言、符号语言、图形语言.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A 为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A 都能推出x∈B.知识点二集合相等1.自然语言:如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等.2.符号语言:若A⊆B,又B⊆A,则A=B.(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点四真子集文字语言符号语言图形语言对于两个集合A,B,如果集合A是集合B的子集,且在集合B中存在一个元素不是集合A的元素,我们称集合A是集合B的真子集若集合A⊆B,但x∈B,且x∉A,则A B(或B A)(读作“A 真包含于B”或“B真包含A”)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,(1)若A⊆B,B⊆C,则A⊆C;(2)若A B,B C,则A C.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()答案:(1)×(2)√(3)√(4)×2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A解析:集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,D正确.答案:D4.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B类型一集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.(2)①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.③方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B(2)见解析根据元素与集合、集合与集合之间的关系直接判断①②③④⑥,对于⑤应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B 不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是() A.M T B.M T C.M=T D.M⃘T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2-1=0}={-1,1},又T={-1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A(2)见解析学习完知识点后,我们可以得到B⊆A,C⊆A,D⊆A,D⊆B,D⊆C.类型二子集、真子集的个数问题例2(1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A C B 的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.-2 B.4 C.0 D.以上答案都不是【解析】(1)由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.【答案】(1)B (2)C(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.方法归纳求集合子集、真子集个数的三个步骤跟踪训练2(1)已知集合M={x∈Z|1≤x≤m},若集合M有4个子集,则实数m=() A.1 B.2 C.3 D.4(2)若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:(1)根据题意,集合M有4个子集,则M中有2个元素,又由M={x∈Z|1≤x≤m},其元素为大于等于1而小于等于m的全部整数,则m=2.(2)若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:(1)B(2)5由A中含有奇数的个数分类:A中含1个奇数,2个奇数.类型三根据集合的包含关系求参数例3已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,①A =∅,满足A ⊆B .(2)当a >0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <2a. 又∵B ={x |-1<x <1},且A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1.②∴a ≥2. (3) 当a <0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <1a .③ ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1.∴a ≤-2.综上所述,a 的取值范围是{a |a =0,或a ≥2,或a ≤-2}.①欲解不等式1<ax<2,需不等号两边同除以a ,而a 的正负不同时,不等号的方向不同,因此需对a 分a =0,a>0,a<0进行讨论.②A ⊆B 用数轴表示如图所示:由图易知,1a 和2a 需在-1与1之间.当1a =-1,或2a =1时,说明A 与B 的某一端点重合,并不是说其中的元素能够取到端点,如2a =1时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x<1,x 取不到1.③a<0时,不等式两端除以a ,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.解析:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时,由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15,(1)解方程x 2-8x +15=0,求出A ,当a =15时,求出B ,由此能判定集合A 与B 的关系.(2)分以下两种情况讨论,求实数a 的取值集合.①B =∅,此时a =0;②B ≠∅,此时a ≠0.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1. 答案:D2.已知集合M ={y |y =x 2-2x -1,x ∈R },集合N ={x |-2≤x ≤4},则集合M 与N 之间的关系是( )A .M >NB .MN C .N M D .M ⊆N解析:因为y =(x -1)2-2≥-2,所以M={y|y≥-2},所以N M.答案:C3.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1 B.-1C.±1 D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C4.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.答案:B5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3C.m<3 D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题(每小题5分,共15分)6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥52. 结合数轴知A B .答案:A B7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a .由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a ,得a =1.经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去.故a =-1或a =2.答案:-1或28.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________. 解析:在数轴上画出集合A .又因为A ⊆B ,所以a <-3,当a =-3时也满足题意,所以a ≤-3.A.A⊆B B.B⊆CC.C⃘A D.B A解析:易知集合B,C是集合A的子集,且是真子集,而B,C之间没有关系,因此只有D选项正确,答案:D12.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:3613.已知集合A={1,3,x2},B={x+2,1}.是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,说明理由.解析:假设存在实数x,使B⊆A,则x+2=3或x+2=x2.(1)当x+2=3时,x=1,此时A={1,3,1},不满足集合元素的互异性.故x≠1.(2)当x+2=x2时,即x2-x-2=0,故x=-1或x=2.①当x=-1时,A={1,3,1},与集合元素的互异性矛盾,故x≠-1.②当x=2时,A={1,3,4},B={4,1},显然有B⊆A.综上所述,存在x=2,使A={1,3,4},B={4,1}满足B⊆A.14.已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1.即实数m 的取值范围为{m |m ≥-1}.。
高一数学集合知识点
1.1集合1.1.1集合的含义与表示一、集合的含义集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.关键词:确定的、总体【特征】确定性、无序性、互异性、【表示方法】列举法、描述法、图示法.二、元素与集合关系得判断【知识点的认识】一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母 A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.【命题方向】元素与集合之间的关系命题方向有二,一是验证元素是否是集合的元素;二是知元素是集合的元素,根据集合的属性求出相关的参数.【解题方法点拨】如题型一:已知A是偶数集,试判断a=2b2+4b,b∈N是否是集合的元素?方法点拨:因为偶数都可以写成整数2倍的形式,故解决本题的方法就是看元素a能否变成数的2倍的形式.三、集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.四、集合的分类【知识点的认识】集合的分类主要依集合中元素个数的多少来划分,有限集和无限集两种.有限集元素个数是确定的,元素个数有限个,可以利用列举法或描述法表示;无限集元素个数是无限的,只能利用描述法表示.【解题方法点拨】从集合的元素个数直接判断.【命题方向】这一考点,是了解内容,会考多以选择题判断为主,高考多与集合之间的关系联合命题.五、集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x-1>0}表示实数x的范围;{(x,y)|y-2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.1.1.2集合间的基本关系一、子集与真子集【知识点的认识】子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).而真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,注①空集是所有集合的子集②所有集合都是其本身的子集③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉空集和它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-2.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且A⊆B 时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.二、集合的包含关系及其应用【知识点的认识】如果集合A中的任意一个元素都是集合B的元素,那么集合A 叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.三、集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作 A=B.(3)对于两个有限数集A=B,则这两个有限数集 A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A 与集合B相等,是指A 的每一个元素都在B 中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.四、集合中元素个数的最值【知识点的认识】【命题方向】【解题方法点拨】求集合中元素个数的最大(小)值问题的方法通常有:类分法、构造法、反证法、一般问题特殊化、特殊问题一般化等.需要注意的是,有时一道题需要综合运用几种方法才能解决.五、空集的定义、性质及运算【知识点的认识】空集的定义:不含任何元素的集合称为空集.记作∅.空集的性质:空集是一切集合的子集.空集不是没有;它是内部没有元素的集合,而集合是存在的.这通常是初学者的一个难理解点.将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的.例如:{x|x2+1=0,x∈R}=∅.虽然有x的表达式,但方程中根本就没有这样的实数x使得方程成立,所以方程的解集是空集.空集是任何集合的子集,是任何非空集合的真子集.【解题方法点拨】解答与空集有关的问题,例如集合A∩B=B⇔B⊆A,实际上包含3种情况:①B=∅;②B⊂A且B≠∅;③B=A;往往遗漏B是∅的情形,所以老师们在讲解这一部分内容或题目时,总是说“空集优先的原则”,就是首先考虑空集.【命题方向】一般情况下,多与集合的基本运算联合命题,是学生容易疏忽、出错的地方,考查分析问题解决问题的细心程度,难度不大,可以在选择题、填空题、简答题中出现.1.1.3集合的基本运算一、并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A ∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A∪B=∅,两个集合都是空集.⑦A∪(CUA)=U.⑧CU(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.二、交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素的所有元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.图形语言:.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(CUA)=∅.⑧CU(A∩B)=(CUA)∪(CUB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.三、补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作CUA,即CUA={x|x∈U,且x∉A}.其图形表示如图所示的Venn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.四、全集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).全集是相对概念,元素个数可以是有限的,也可以是无限的.例如{1,2};R;Q 等等.【解题方法点拨】注意审题,可以借助数轴韦恩图解答.【命题方向】本考点属于理解,常出现的类型有直接求出全集,利用全集求解子集的个数,集合在参数的范围等问题,难度属于容易题.五、交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C).集合的摩根律 Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.六、Venn图表达集合的关系及运算【知识点的认识】用平面上一条封闭曲线的内部来代表集合,这个图形就叫做Venn图(韦恩图).集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn图的直观性,可以深刻理解集合的有关概念、运算公式,而且有助于显示集合间的关系.运算公式:card(A∪B)=card(A)+card(B)-card(A∩B)的推广形式:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C),或利用Venn图解决.公式不易记住,用Venn图来解决比较简洁、直观、明了.【解题方法点拨】在解题时,弄清元素与集合的隶属关系以及集合之间的包含关系,结合题目应很好地使用Venn图表达集合的关系及运算,利用直观图示帮助我们理解抽象概念.Venn图解题,就必须能正确理解题目中的集合之间的运算及关系并用图形准确表示出来.【命题方向】一般情况涉及Venn图的交集、并集、补集的简单运算,也可以与信息迁移,应用性开放问题.也可以联系实际命题.。
集合的基本关系及运算
第一章
集合与常用逻辑用语
(1)(2010·江西省信丰中学高三第三次月考)设集合I={a1, a2,a3,a4},则满足M⊆I,且M∩{a1,a2,a3}={a1,a2}的集 合M的补集C1M是 ( D.{a3} >0},则A∩B=________. )
A.{a3,a4}和{a3}
C.{a3,a4} B={x|
第一章
集合与常用逻辑用语
【分析】 由条件B⊆A时要注意B是否为空集,利用数轴 标出集合A. 【解析】 A={x|x2-3x-10≤0}={x|-2≤x≤5} (1)若B=∅,则2m-1<m+1 ∴m<2 若B≠∅,且B⊆A,则
第一章
集合与常用逻辑用语
设A={x|x2-8x+15=0},B={x|ax-1=0}.若B⊆A, 求由实数a的所有可能的值组成的集合,并写出它的所有非 空真子集. 【解析】 A={x|x2-8x+15=0}={3,5} (1)当a=0时,B=∅,∴B⊆A,
符号
N
N*或N+
Z
Q
R
C
(4)集合的表示法:列举法 、描述法 、韦恩图法 .
第一章
集合与常用逻辑用语
2.集合间的基本关系
文字语言 关系 B A⊆B 或 B⊇A
子集
集合A中任意一个元素都是集合B中的元素
真子集
A中任意一个元素均为B中的元素,且B中至 少有一个元素不是A中的元素 空集是任何集合的 子集 ,是 非空集合 任何 的真子集
第一章
集合与常用逻辑用语
第一章
集合与常用逻辑用语
1.理解两个集合的并集与交集的含义,会求两个简单 集合的并集与交集; 2.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集; 3.能使用韦恩(Venn)图表达集合的关系及运算; 4.集合的运算在解题时要注意Venn图及补集思想的应 用; 5.集合中的常用运算性质
集合的基本概念、关系及运算
2020/9/23
.
37
(2)当B A时,又可分为: (a) B≠时,即B ={0},或B ={-4}, Δ = 4(a+1)2 -4(a2 -1) = 0,解得a = -1 B ={0}满足条件; (b)B = 时,Δ = 4(a+1)2 -4(a2 -1) < 0,解得a < -1 综合(1)、(2)知,所求实数a的值a -1,或a =1.
AC
(3)对于两个集合A,B,如果A B 且 B A ,那么
A=B (4)空集是任何集合的子集,是任何非空集合的真 子集,即 Φ A
2020/9/23
.
24
例 写出集合{ a , b }的所有子集,并指出哪些是它的
真子集.
解:集合{ a , b }的所有子集为 ,{a},{b},{a,b}.
2020/9/23
.
19
知识要 点
3.集合相等与真子集的概念
如 果 集 合 A是 集 合 B的 子 集 (AB), 且 集 合 B是 集 合 A的 子 集 ( BA) , 此 时 , 集 合 A与 集 合 B中 的 元 素 是 一 样 的 , 因 此 , 集 合 A与 集 合 B相 等 . 记 作 A= B
2020/9/23
.
16
2.在数学中,经常用平面上的封闭曲线的 内部代表集合,这种图称为Venn图.
A B用Venn图表示如下:(有两种情况)
A
B
A(B)
思考1
包含关系{a} A与属于关系 a A有什么区别吗?
2020/9/23
.
17
注意
与 的区别:前者表示集合与集合之间的关系;
后者表示元素与集合之间的关系.
高一数学必修1第一章集合定义
(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.答案 D解析 ∵B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },A ={1,2,3,4,5},∴x =2,y =1;x =3,y =1,2;x =4,y =1,2,3;x =5,y =1,2,3,4.∴B ={(2,1},(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B 中所含元素的个数为10.10.如图所示,图中阴影部分(含边界)的点的坐标的集合表示为________.答案 {(x ,y )|-1≤x ≤3,且0≤y ≤3}解析 图中阴影部分点的横坐标-1≤x ≤3,纵坐标为0≤y ≤3,故用描述法可表示为⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤30≤y ≤3. 11.已知集合A ={x |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A . 解 ∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a ·12+2·1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13, ∴集合A ={-13,1}.三、探究与创新12.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.解 方法一 ∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧ a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2014+b 2014=1.方法二 由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab , 即⎩⎪⎨⎪⎧ab (a 3-1)=0, ①(a -1)(a +b +1)=0. ② 因为集合中的元素互异,所以a ≠0,a ≠1.。
元素与集合,集合与集合之间的关系知识讲解
精品文档精品文档 元素与集合,集合与集合之间的关系元素与集合之间的关系:A a ∈或A a ∉(其中,a 是元素,A 是集合),集合与集合之间的关系B A ⊆或B A ⊄(其中A 与B 是两个集合)。
B A ⊆学生容易混“∈”与“⊆”的用法。
在集合与集合之间用“⊆”,在元素与集合之间用“∈”。
而学生把“∈”与“⊆”分不清,乱用。
通过这次学习与平时自己的实践经验,所以就对于这个知识点我做了进一步思考,在此与大家分享。
原定义:给定一个集合A ,任何一个对象a 是不是这个集合的元素就确定了。
若a 在集合A 中,就说a 属于A ,记作A a ∈。
若a 不在集合A 中,就说a 不属于A ,记作A a ∉(元素与集合之间的关系)。
一般的,对于两集合,A 与B ,如果集合A 中的任何一个元素都是集合B 中的的元素,即若A a ∈,则B a ∈,我们就说集合A 包含于集合B 或集合B 包含集合A ,记作B A ⊆(或A B ⊇),这时我们说集合A 是集合B 的子集。
(集合与集合之间的关系)。
对于这些数学用语组成的很规范的定义,学生是很难理解的,我要更进一步对它们作解释,也可以举例子加以说明。
从以上两个定义中可以发现画线的部分是重点,具体总结如下:⑴“∈”与“∉”是个体与集体之间的关系,只能用在元素与集合之间,而不能用在集合与集合或元素与集合之间,就好像我们可以说某个同学不是某个班级的成员,但不可以说某个班不是某个班的成员,或某同学是不是某同学的成员一样。
⑵“⊆”与“⊄”是集体与集体之间的关系,只能用在集合与集合之间,而不能用在元素与元素之间或元素与集合之间,就好像我们可以说某个班上男生使这个班级的一部分,而不可以说某个学生是某个学生的一部分,某个学生是谋得班的一部分一样。
再例如,{}7,5,3,2,1=A ,{}9,7,5,3,1=B ,A ∈1,B ∈1,B A ⊄。
1是A 的元素,1是B 的元素,而A 不是B 的一部分。
集合概念、表示方法、分类以及集合之间的关系
集合概念、表示方法、分类以及集合之间的关系一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
非负整数集(或自然数集),记作N;;N内排除0的集.正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R;⑴确定性:⑵互异性:⑶无序性:1:判断以下元素的全体是否组成集合,并说明理由:⑴某班个子较高的同学⑵长寿的人⑷倒数等于它本身的数⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。
练:A={2,4,8,16},则4A ,8 A ,32 A.巩固练习分析:练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练2下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}其中正确命题的个数是( )3求集合{2a ,a 2+a }中元素应满足的条件?4若t 1t 1+-∈{t},求t 的值.⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示2.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
离散数学 关系
离散数学关系离散数学中,关系是一个重要的概念。
关系是指一个元素集合之间的对应关系。
这个对应关系可以用图形表示。
让我们来一步步地探讨什么是关系和关系图。
首先,我们要了解什么是元素和元素集合。
元素是一组有意义的数据,它可以是数字、字母、单词等。
元素集合是由多个元素组成的集合,比如所有自然数可以形成一个元素集合。
接着,我们可以定义关系。
关系就是两个元素集合之间的对应关系。
这个对应关系可以用有序对(x,y)表示。
如果(x,y)属于一个关系,那么我们可以说x和y之间存在这个关系。
例如,我们可以定义一个关系R为{(1,2),(2,4),(3,6)}。
这个关系表示1对2,2对4,3对6。
我们可以从这个关系中得到很多信息,比如1对应2,2对应4,3对应6。
这告诉我们一些元素之间的关系。
然而,我们很难从一个关系里面得到全部元素的对应关系,因此我们需要使用关系图来更好地理解关系的意义。
关系图是一种用点和箭头表示关系的图形。
在关系图中,每个点代表一个元素,每个射线代表一个关系。
我们可以通过观察图形来更好地理解两个元素之间的关系。
例如,我们可以用以下图形表示关系R:在这个关系图中,我们可以看到每个点代表了一个元素,每个射线表示了一个关系。
箭头的方向表示了关系的方向。
这个关系图清晰地表达出了每个元素之间的对应关系,让我们更容易地理解这个关系。
除了上述的基本关系之外,离散数学还有很多其他类型的关系,比如等价关系、偏序关系、偏序关系等等。
这些关系的定义和性质都有所不同。
总之,在离散数学中,关系是一个非常重要的概念,它帮助我们理解元素之间的联系和关系,是学习离散数学的基础。
通过理解和掌握关系,我们可以更好地解决许多离散数学中的难题。
元素与集合关系
元素与集合关系
元素与集合是集合论的基础概念之一。
元素是指一个单独的对象,而集合是由一些元素组成的整体。
元素与集合之间的关系是元素属于集合。
例如,假设有一个集合A={1,2,3},则元素1、2、3属于集合A。
符号“∈”可以表示元素属于集合的关系,如1∈A表示元素1属于集合A。
另外,还有“”表示元素不属于集合的关系,如4A表示元素4
不属于集合A。
集合中的元素可以是数字、字母、符号或其他对象,也可以是其他集合。
在集合论中,集合的定义是无序的,因此集合中的元素顺序不影响集合的定义。
同时,集合的元素也可以是重复的,但是集合中不会有两个完全相同的元素,因为在集合中,每个元素都是唯一的。
这就是集合的互异性。
元素与集合之间的关系是集合论中最基本的概念之一,它对于理解集合论中的其他概念以及其应用都有着重要的作用。
- 1 -。