第2章 质点运动学
第二章 质点运动学总结
下页 返回 结束 Δr
t 0
dr ds
r2
· B
y
元位移的大小
元路程
上页
第二章 质点运动学
§2.2
速度与加速度
§2.2.1 平均速度与瞬时速度 §2.2.2 平均加速度与瞬时加速度
上页
下页
返回
结束
第二章 质点运动学
§2.2.1 平均速度与瞬时速度
1.平均速度 r (t t ) r (t ) r 定义 v t t __ r 相 同 v 是矢量 , 方向与 __ r 大小为 v t 平均速率 P Q r r ( t t )
地面系
o
日心系
上页
Y
结束
X
下页
地心系
返回
第二章 质点运动学
选取不同的参考系,描写物 体运动的规律是不同的。
选择合适的参考系, 建立恰当的坐标系,
月亮 地球 以地球为参照系
以太阳为参考系
以方便确定物体的运动性质; 以定量描述物体的运动;
提出准确的物理模型, 以突出问题中最基本的运动规律。 讨论:刻舟求剑的启示?
x a( sin ) a(t sint ) y a(1 cos ) a(1 cost )
思考:圆内的一点和圆外的一点?
x a b sin y a b cos
上页
下页
返回
结束
第二章 质点运动学
§2.1.2 位移
1. 位移——位置矢量的增量 位移——是由初位置引向末位置的矢量,
r (t )
O
s v 0 s为路程 t
v 不能反映位移变化相对 于时间的不均匀性 .
大学物理第一章-质点运动学和第二章-质点动力学基础
位移的大小为
2 2 2 r x y z
z
路程是质点经过实际路径的长
度。路程是标量。
注意区分 Δ r 、r
Δr
Δr r ( A)
o x
A ΔS
B
r ( B) y
rA
o
rB
Δ
r
3. 速率和速度 速度是描述质点位置随时间变化快慢和方向的物理量。
平均速度
青年牛顿1666年6月22日至1667年3月25日两度回到乡间的老家1665年获学士学位1661年考入剑桥大学三一学院牛顿简介1667年牛顿返回剑桥大学当研究生次年获得硕士学位1669年发明了二项式定理1669年由于巴洛的推荐接受了卢卡斯数学讲座的职务全面丰收的时期16421672年进行了光谱色分析试验1672年由于制造反射望远镜的成就被接纳为伦敦皇家学会会员1680年前后提出万有引力理论1687年出版了自然哲学的数学原理牛顿简介牛顿第一定律
g
v v g
v
v g 远日点 g v
g v g g g g g v
v
近日点
v
v
思考题 质点作曲线运动,判断下列说法的正误。
r r s r
r r
s r
s r
Δr
矢量的矢积(或称叉积 、叉乘)
C A B
大小:C AB sin
方向:右手螺旋
C
B
矢积性质:A B B A A C ( A B) C A C B 可以得到:i j k , j k i , k i j . k i i 0, j j 0, k k 0
力学(漆安慎)课件 2-1,2描述质点运动的物理量
v v r = r (t) —— 运动函数(运动方程 )。 运动函数(
v v v v r (t) = x(t)i + y(t) j + z(t)k
x = x(t)
y = y(t) z = z(t)
或
由各个时刻的矢径端点连接而描 由各个时刻的矢径端点连接而描 矢径端点 画出的曲线就是质点运动的轨迹 质点运动的轨迹。 画出的曲线就是质点运动的轨迹。
x
位矢长度的变化
x22 + y22 + z22 − x12 + y12 + z12
第二章 质点运动学
讨论 位移与路程 位移与路程:
(A)P1P2 两点间的路程 ) 不唯一的, 是不唯一的 可以是∆s 或 ∆s ' v 是唯一的 而位移 ∆r 是唯一的. (B) 一般情况 位移 ) 一般情况, 大小不等于路程. 大小不等于路程
只要在研究问题中,物体的体积和形状是无关紧要的, 只要在研究问题中,物体的体积和形状是无关紧要的, 我们就可以看作质点。 我们就可以看作质点。 对于同一物体,由于研究的不同,有时可看作质点, 对于同一物体,由于研究的不同,有时可看作质点,有 时不行。 时不行。
第二章 质点运动学
·
物体可以作为质点处理的条件: 物体可以作为质点处理的条件:大小和形状对运 动没有影响或影响可以忽略。 动没有影响或影响可以忽略。 例:研究地球公转
v r (t + ∆t)
∆s v ∆r
A
质点的平均速度
第二章 质点运动学 一、 位置矢量(position vector)
由参考系上的坐标原点引 向质点所在位置的矢量称为质 点的位置矢量 简称位矢 位置矢量, 位矢。 点的位置矢量,简称位矢。
2 质点运动学-2
方向如图所
v
3 an g cos 30 g 2
0
a
A
g
300 an
v 2 3v an 3 g
2
2
第1章
质点运动学
大学物理A教案
4、圆周运动
(1) 圆周运动的角量描述 角位置 : 角运动方程 (t): R
B
s
A
质点所在的位矢 r 与x轴正 向的夹角,单位是弧度 rad。 角位移 : 规定:逆时针转向为正, 角速度
,加速度
kx
v v0 e
证: a dv dv dx v dv kv 2
dt dx dt
dx
dv kdx v
两边积分:
x dv v0 v k 0 dx v
v ln kx v0
v v0 e
kx
第1章
质点运动学
大学物理A教案
§1-3 自然坐标系中的速度和加速度
dt
dv a c dt
(2)
v (b ct ) an R R
2
2
a an
b R t c c
当子弹从枪口射出时,椰子刚好从树上由静止自由下 落. 试说明为什么子弹总可以射中椰子[忽略空气阻力]?
5、抛体运动
抛体运动的特点:加速度 a 为常量,为重力加速度。
抛体运动的运动学特征:
dr dx dy dz 速度 v i j k dt dt dt dt 2 加速度 a dv d r dt dt 2
平均速率不等于平均速度的大小 瞬时速率等于瞬时速度的大小
dr ds
v v
第1章
大学物理质点运动学(老师课件)
r
rB
r
r r
讨论2:
s AB
比较位移和路程
A
s
B
t 时间内质点运动路径的长度 路程:
r
r AB
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关。 例如质点运动一周,位 r s 移为零,路程为周长。 r s
v v(t + t ) v(t) a t t
方向: v 的方向
2、(瞬时) 加速度
2 v d d r 2 a lim t 0 t dt dt
加速度等于速度对时间的一阶导数。 方向:v 的极限方向, 指向曲线凹的一侧 一般 a 与 v 方向不同。
质点
没有大小和形状,只具有物体全部质量 的一点。 物理学中有很多抽象模型:
理想化的 物理模型
质点、刚体、理想气体、点电荷、…
把物体当作质点是有条件的、相对的:当物体的大
小和形状对运动没有影响或影响可以忽略。
研究地球
r
S
R 10 m s E 6
8
r 10 m Rs , RE << r
11
RE 10 m
vA
B'
B
A
速度的方向: 质点所在处轨迹的切线指向前进的方向。
e.g. 设
2 r (t ) i t j t k ( SI )
j 2 tk
t 1 t 1
dr dt
j 2k m / s
则t=1s 末的速度
一维情形,设x=6t–t2(SI),则在t=4s末的速度:
第二章质点运动学(2)
F
F
t1
t2 t
例 质量M=3t的重锤,从高度h=1.5m处自由落 到受锻压的工件上,工件发生形变。如果作用 的时间 (1) =0.1s, (2) =0.01s 。试求锤对工件 的平均冲力。 解法一利用动量定理,取竖 直向上为正。
( N Mg ) Mv Mv0
初状态动量为 M 2 gh , 末状态动量为 0。
第二章 质点动力学
(2) 动量守恒定律 火箭运动 质心运动定律
2-3 冲量‧动量定理
1、冲量
dp 把牛顿第二定律的微分形式 F dt 改写为 F d t d p
考虑一过程,力对质点的作用时间从t1 — t2, t2 p2 两端积分 Fdt dp p 2 p1 mv2 mv1
mi ri
d vi mi d vc dt ac dt mi
由牛顿第二定律得
mi ai
m
i
m1a1 m2 a2 mn an
d v1 m1 F1 f12 f13 f1n dt d v2 m2 F2 f 21 f 23 f 2 n dt d vn mn Fn f n 2 f n 3 f n ( n 1) dt
x g v x g 2 gx 3x g 所以桌面受的压力 N N 3x g
2
例 2 一柔软链条长为 l ,单位长度的质量为。 链条放在桌上,桌上有一小孔,链条一端由小孔稍 伸下,其余部分堆在小孔周围。由于某种扰动,链 条因自身重量开始落下。求链条下落速度与落下距 离之间的关系。设链与各处的摩擦均略去不计,且 认为链条软得可以自由伸开。 解 以竖直悬挂的链条 m2 和桌面上的链条为一系统, O 建立如图坐标。 则 F m1 g yg 动量定理 m1
力学第二章质点运动学(PDF)
2.1一、质点把所研究的物体视为无形状大小但有一定质量的点。
•能否看成质点依研究问题而定。
例:地球绕太阳公转:地球→质点地球半径<<日地距离6.4×103 km 1.5×108 km地球自转:地球≠质点•复杂物体可看成质点的组合。
二、位置矢量与运动方程1、位置矢量k z j y i x r v v v v ++=定义:从坐标原点O 指向质点位置P 的有向线段位置矢量的直角坐标分量:===++=r z r y r x z y x r γβαcos ,cos ,cos 222方向:大小:γβαP (x,y,z )r v z y xo2、运动方程k t z j t y i t x r vv v v )()()(++=矢量形式参数形式===)()()(t z z t y y t x x 3、轨道方程(轨迹)== → ===0),,(0),,()()()(z y x G z y x F t z z t y y t x x t 消去•要尽可能选择适当的参照物和坐标系,以使运动方程形式最简,从而减少计算量。
三、位移和路程O P P ’r ∆v )(t r v )(t t r ∆+v s ∆•••1、位移'()()r PP r t t r t ∆==+∆−v v v 2、路程'()()s PP s t t s t ∆==+∆−注意(1) 位移是矢量(有大小,有方向)位移不同于路程(2) 位移与参照系位置的变化无关r s ∆≠∆v 与Δr 的区别r v ∆分清O r v ∆r v∆O r∆••O PP ’r ∆v )(t r v )(t t r ∆+v s∆•••思考:什么情况下位移的大小等于路程?[例题]一质点在xOy平面内依照x= t 2 的规律沿曲线y = x3/ 320运动,求质点从第2 秒末到第4秒末的位移(式中t的单位为s;x,y的单位为cm)。
[解] ()()r r t t r t ∆=+∆−v v v 1212.6i j=+v v(cm)2121()()x x i y yj=−+−v v [()()][()()]x t t i y t t j x t i y t j =+∆++∆−+v v v v[()()][()()]x t t x t i y t t y t j=+∆−++∆−v v 66222121()()320320t t t t i j=−+−v v 662242(42)()320320i j =−+−vv 17.4 cm r ∆==v 与水平轴夹角Δarctan 46.4Δyx ϕ=o=2.2一、速度O P P ’r∆v )(t r v )(t t r ∆+vs∆•••反映质点运动的快慢和方向的物理量1、速度的概念平均速度:平均速率:v v v v v r t r t t r t t==+−∆∆∆∆()()tt s t t s t s v ∆∆∆∆)()(−+==瞬时速度:瞬时速率:O P P ’r∆v)(t r v)(t t r ∆+vs∆•••vv v v =≠vv ,瞬时速度沿轨道切线方向2、速度的直角坐标分量()()()()::cos ,cos ,cos x y z y x z r r t x t i y t j z t kdr dx dy dz v i j k v i v j v k dt dt dt dt v v v v v v v αβγ==++==++=++ = ===v v v v vv v v v v v v v 大小方向101552r i tj t k=−++v v v v [例题]某质点的运动学方程为求:t = 0和1s 时质点的速度矢量。
第二章 质点运动学
五. 直线运动 1.直线运动的描述 直线运动:质点运动轨迹为一直线; 位矢: r xi 直线运动中,用坐标x(代数量)可表 示质点的位置; 运动方程:x x(t )
P2
x2
P1
0
x1
x
§ 1-2圆周运动
本节先讨论圆周运动,之后再推广 到一般曲线运动。 一、自然坐标系 图1-6中,BAC为质点轨迹,t时刻 质点P位于A 点,et、en分别为A点切向及法向 的单位矢量,以A为原点, et切向 和en法向为坐标轴,由此构成的 参照系为自然坐标系(可推广到 三维)
xi yj zk
讨论: a. 路程:质点沿轨迹运动所经历的路径长 度; b. 路程是标量,大小与位移的大小一般不 r s 相等,即; dr ds c. 在极限情况下 ; d. 单方向直线运动时; r s
三. 速度 描述质点运动快慢和运动方向的物量; 1.平均速度
det d v ds v 2 式(2-2)中第二项为: v v en en en dt dt r dt r
该项为矢量,其方向沿半径指向圆心。 称此项为法向加速度,记为
v a n en (2-5) r
2
det
et
et d
大小为 (2-6) 是加速度的法向分量。 结论:法向加速度分量等于速率平方除 以曲率半径 。
⑷
三、圆周运动的角量描述 1、角坐标 如图1-11,t时刻质点在A处,t+Δt时刻质点在 B处,θ是OA与x轴正向夹角, θ+ Δ θ是OB与 x轴正向夹角,称θ为t时刻质点角坐标, Δ θ 为Δt时间间隔内角坐标增量,称为在时间间 隔内的角位移。
质点运动学
质点运动学1.描述质点的运动的物理量:位矢、位移、速度和加速度。
(1)位矢:从坐标原点引向质点所在位置的有向线段,记为r。
在直角坐标系中r=x i+y j+z k。
(2)运动方程:质点的位置随时间变化的关系:r=r(t)称为运动方程。
在直角坐标系中的矢量表示式:r(t)=x(t)i+y(t)j+z(t)k。
在自然坐标中:s=s(t)(3)位移:由质点初始位置指向末位置的矢量,△r=r(t+△t)-r(t).在直角坐标系中:△r=△x i+△y j+△z k。
(4)路程:物体运动时沿轨迹实际通过的路径长度称为路程,用s 表示。
一般情况下,|△r|≠△s。
(5)速度:质点位置对时间的一阶倒数称为速度v=d r/d t.在直角坐标系中:v=v x i+v y j+v z k=(dx/dt)i+(dy/dt)j+(dz/dt)k在自然坐标系中:v=(ds/dt)e t速度大小称为速率,速率是标量。
v=|v|=|d r/dt|=ds/dt(6)加速度:质点速度对时间的一阶求导a=d v/dt=d2r/dt2 在直角坐标系中:a=a x i+a y j+a z k=(dv x/dt)i+(dv y/dt)j+(dv z/dt)k=(d2x/dt2)i+(d2y/dt2)j+(d2z/dt2)k 在自然坐标系中:a=a t e t+a n e n=(dv/dt)e t+(v2/ρ)e n2.常见的几种运动形式(1)匀速直线运动:v=v0+atx=x0v0t+1/2*at2v2-v20=2a(x-x0)(2)抛体运动:a x=0,a y=-gv x=v0cosθ,v0=v0sinθ-1/2*gt2x=(v0cosθ)t,y=(v0sinθ)t-1/2*gt2 (3)圆周运动:角位置:θ=θ(t)角位移:△θ=θ(t+△t)-θ(t)角速度:ω=dθ/dt=v/R角加速度:β=dω/dt=d2θ/dt2法向加速度:a n=v2/R=Rω2切向加速度:aτ=dv/dt=Rβ3.伽利略变换伽利略速度变换式:v=v0+u。
第二章质点运动学
教学时数:10教学目的与要求:(1)使学生牢固掌握即时速度和即时加速度的概念。
(2)要区分时刻与时间间隔以及位置坐标、位置矢量、位移和路等概念。
(3)要求掌握位移图线与速度图线,并能应用它们来计算位移及速度、加速度。
(4)要熟练掌握匀加速直线运动规律并能灵活运用,重点研究自由落体及竖直上抛运动。
(5)掌握好位移、速度及加速度的矢量性,能正确进行速度的合成分解。
仅讲授动坐标系作平移的情况下的相对运动。
(6)要熟练掌握圆周运动及切向加速度、法向加速度的意义。
(7)通过抛体运动的学习,使学生对运动的独立性及运动的合成有明确的认识。
(8)在圆周运动基础上介绍一般曲线运动,但不作深入研究。
(9)熟练掌握在不同坐标系下,速度、加速度的表达形式。
教学重点:参照系和坐标系;质点;时间和时刻,位置矢量,位移、速度、加速度;运动方程,运动迭加原理,切向加速度和法向加速度。
角位移、角速度、角加速度;角量与线量的关系,相对运动.教学难点:运动方程, 相对运动本章主要阅读文献资料:顾建中编《力学教程》人民教育出版社赵景员、王淑贤编《力学》人民教育出版社漆安慎杜婵英《〈力学基础〉学习指导》高等教育出版社质点运动学方程一、质点的位置矢量与运动学方程位置矢量的引入,例:研究某时刻直升飞机在空中的位置。
首先选择参考系如图:设地面上的某一点为参考点,飞机视为质点。
仅由飞机和参考点的距离并不能确定飞机的方位(飞机可以位于以参考点为球心的球面上的任何位置),只有确定飞机的方位,才能完全唯一的确定飞机的位置。
1.位置矢量的定义:由参考点指向质点所在位置的矢量为质点的位置矢量,简称“位矢”。
如图中的,即是P点的位矢:通常用表示。
若建立如图所示的直角坐标系,令坐标原点和参考点重合,则有位矢的正交分量形式:(1)上式中的称为位置坐标,即:位矢在坐标轴上的投影。
有上述定义可知:“位矢”可以描述质点的位置。
同样:建立坐标系后的“位置坐标”也可以描述质点位置。
第2章质点运动学2
=
d 2rr dt 2
= axir + a y rj
a = ar =
a2 x
+
a2 y
两种表示法下加速度
lim ar =
∆t →0
∆vr ∆t
的大小相同吗?
= anern + at ert
a = ar =
a2 n
+
a2 t
a = dv , a = v2
t dt n ρ
16
课堂讨论
ar = anern + atert
*法向加速度: 由速度方向的变化带来得的加速度
大小:
方向
an :
= ern
arn
= v2
ρ
= vω = ρω2
ρ:曲率半径。
垂直于速度,指向曲线的凹侧。
*切向加速度:由速度大小的变化带来的加速度。
大小:
方向:
at
ert
=
art
= dv dt
= ρβ
切线方向,与该点速度同向或反向.
圆周运动的加速度:ρ=R; at = Rβ ;
=dβrt × rr + ωv ×d(ωrt × rr)
切向at 法向an
20
抛体运动
例: 设质点在XOY铅垂平面内作无阻力抛体运动。
试求: 质点的速度与时间t的关系和质点的运动方程.
解: 建立坐标系
y
⎪⎪⎧a x
=
dv x dt
=0
⎨ ⎪⎪⎩a y
=
dv y dt
=
−g
vr0
由初始条件:o α
t = t0;
v(t) = v2 + v2
x
第2章大学物理质点运动学选择题真题及其答案
1. 如图Z1-1所示,细绳通过两轻质定滑轮在两端各挂一个物体A 和B ,设mA=mB ,初始A 、B 处于同一高度且静止,若使B 偏离平衡位置θ角而来回摆动,则物块A 将(D )(A )保持不动 (B )向上运动 (C )向下运动 (D )上下运动2. 有一物体在0xy 平面上运动,受力作用后其动量沿两轴方向变化分别为Δp x i 和-Δp y j 。
则该力施于此物体的冲量的大小为(C )(A )I=Δp x +Δp y (B )I=Δp x -Δp y (C )22y x p p I ∆+∆= (D )22-y x p p I ∆∆=3. 如图Z1-2图所示,有一物体置于小车的左端,小车放在光滑的水平面上,用力F 拉物体使它从车的左端运动到右端,保持F 的大小和方向不变,以地面为参考系,在车固定和不固定的两种情况下,下列结论正确的是:(D )(A )两种情况下力F 做的功相等(B )两种情况下物体与车间的摩擦力对物体做的功相等(C )两种情况下物体获得的动能相等(D )两种情况下由于摩擦而长生的热相等4. 如图Z1-3所示,质点沿直线沿AB作直线运动,A、B为轨道上的任意两点,O为线外任一定点,(可视为垂直纸面的轴与纸面的交点)。
L A和L B代表质点在A、B处对定点O(轴)的角动量,则(D )(A)L A和L B方向不同,但L A=L B(B)L A和L B方向相同,但L A≠L B(C)L A和L B方向和大小都不同(D)L A和L B方向和大小都相同5. 对于质点组,内力可以改变的物理量是(C )(A)总动量(B)总角动量(C)总动能(D)总质量6. 如图Z1-4图,一绳穿过水平光滑桌面中心的小孔连接桌面上的小物块,令物块先在桌面上作以小孔为圆心的圆周运动,然后将绳的下端缓慢向下拉,则小物块的(D )(A)动量、动能、角动量都改变(B)动量不变,动能、角动量都改变(C)动能不变,动量、角动量都改变(D)角动量不变,动量、动能都改变7. 在升降机天花板栓有轻绳,其下端系一重物,如图综合1-1所示,升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,则升降机以多大加速度上升时,绳子刚好被拉断?( C )(A )2a 1 (B )2(a 1+g ) (C )2a 1+g (D )a 1+g8. 质量分别为m 和m ′的滑块A 和B ,叠放在光滑水平桌面上,如图综合1-2所示,A ,B 间静摩擦因数为s μ,动摩擦因数为k μ,系统原处静止,今有一水平力作用于A 上,要使A,B 间不发生相对华东,则应有( B )(A )F ≦s μmg (B )F ≦s μ(1+m/m ′)mg(C )F ≦s μ(m+m ′)g (D )F ≦k μ(1+m/m ′)mg9. 一质点在外力作用下运动时,下述那种说法正确( C )(A )质点的动量改变时,质点的动能也一定改变(B )质点的动能不变时,质点的动量也一定不变(C )外力的冲量是零,外力的功也一定是零(D )外力的功为零,外力的冲量也一定是零10. 质量相等的两个物体A和B,并排静止在光滑水平面上,如图综合1-3所示,现用一水平恒力F作用在物体A上,同时给物体B一个与F同方向的瞬时冲量I,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为( B )(A)I/F (B)2I/F (C)2F/I (D)F/I11. 如图综合1-4所示,劲度系数为k的弹簧在木块和外力作用下,处于被压缩状态,其压缩量为x0,当撤去外力弹簧被释放后,质量为m的木块沿光滑斜面弹出,木块最后落到地上,应有( C )A.在此过程中,木块的动能和弹性势能之和守恒B.木块到达最高点是,高度h满足1/2kx2=mghC.木块落地时的速度v满足1/2kx2+mgH=1/2mv2D.木块落地点的水平距离随θ不同而异,θ越大,落地点越远12. 如图综合1-5所示,在光滑平面上有一运动物体P,在P的正前方有一个连有弹簧和挡板M的静止物体Q,弹簧和挡板M的质量均不计,P与Q的质量相同物体P 与Q 碰撞后P 停止,Q 以碰撞前P 的速度前进,在此碰撞过程中,弹簧压缩量最大的时刻是( B )(A )P 的速度正好变为零时 (B )P 与Q 速度相等时(C )Q 正好开始运动时 (D )Q 正好达到原来P 的速度时13. 一个质量为m 的小球系在长为l 的绳上,绳与竖直线间的夹角用θ表示,当小球从θ=0运动到θ=θ0时,重力所做的功为(D )(A )00A cos mg ld θθθ=⋅⎰; (B )00A sin mg ld θθθ=⋅⎰; (C )00A cos mg ld θθθ=-⋅⎰; (D )00A sin mg ld θθθ=-⋅⎰。
力学 第二章 质点运动学
v
arccos vz 5618'
v
二、平均加速度与瞬时加速度
1、平均加速度:速度矢量对时间的平均变化率。
a v v(t t) v(t)
t
t
v(t )
v
速度矢端曲线
v( t t )
§2.3 质点的直线运动(x vx ax )
一、运动学方程
x xt
二、速度和加速度
1、速度(瞬时速度)
vx
dx dt
大小表示质点在t时刻运动的快慢;
正负分别对应于质点沿Ox正向和负向运动。
2、加速度
ax
dvx dt
d2x dt 2
ax与vx同号,则加速;ax与vx反号,则减速。
4、质点的运动学轨迹方程
质点运动时描出的轨迹称为质点的轨迹。 也就是位置矢量的矢端曲线。
质点在平面Oxy上运动,
轨迹方程: y y(x) 或者:f (x, y, z) 0
例题:r R cos tiˆ R sin tˆj, 求:轨迹方程。
y R
解: x2 y2 R2.
x
二、位移
v
v
v
4、注意:
(1)平均速度的大小不等于平均速率。 (2)瞬时速度的大小等于瞬时速率。 (3)即使位置矢量的大小不变,也可以有速度。
ΔS
r(t )
r
S
r(
t
t
)
o
dr / dt
r(t )
ΔS
S
r
r( t t )
第2章《质点运动学》习题解答
第2章 《质点运动学》习题解答2.1.1 质点的运动学方程为ˆˆˆˆ(1).(32)5,(2).(23)(41)r t i j r t i t j =++=-+-求质点轨迹并用图表示。
【解】①.32,5,x t y =+=轨迹方程为y=5②2341x t y t =-⎧⎨=-⎩消去时间参量t 得:3450y x +-=2.1.2 质点运动学方程为22ˆˆˆ2t t r e i e j k-=++,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
【解】①222tt x e y e z -⎧=⎪=⎨⎪=⎩消去t 得轨迹:xy=1,z=2②221ˆˆˆ2r e i e j k --=++,221ˆˆˆ2r e i e j k -+=++, 222211ˆˆ()()r r r e e i e e j --+-∆=-=-+-2.1.3 质点运动学方程为2ˆˆ4(23)r t i t j =++,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
【解】①.24,23,x t y t ==+消去t 得轨迹方程2(3)x y =-②0110ˆˆˆˆˆ3,45,42r j r i j r r r i j ==+∆=-=+2.2.1 雷达站于某瞬时测得飞机位置为0114100,33.7R m θ==,0.75s 后测得022124240,29.3,,R m R R θ==均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
【解】 221212122cos()R R R R R θθ∆=+--代入数值得:22041004240-241004240cos 4.4349.385()R m ∆=+⨯⨯≈349.385465.8(/)0.75Rv m s t ∆≈==∆ 利用正弦定理可解出034.89α=-2.2.2 一小圆柱体沿抛物线轨道运动,抛物线轨道为2/200y x =(长度mm )。
力学第二章质点运动学思考题答案
第二章质点运动学思考题2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?答:质点位置矢量方向不变,质点沿直线运动。
质点沿直线运动,质点位置矢量方向不一定不变。
如图所示。
2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动?答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。
2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度?答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。
因为瞬时速度与一定的时刻相对应。
瞬时速度的定义是质点在t时刻的瞬时速度等于t至t+△t时间内平均速度t/r∆∆,当△t→0时的极限,即dtr dtrlimvt=∆∆=→∆。
很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。
2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。
是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小?答:,dtdvtvlima xxtx=∆∆=→∆加速度与速度同号时,就是说,0a,0va,0vxxxx<<>>或以a,0vxx>>为例,速度为正表示速度的方向与x轴正向相同,加速度为正表示速度的增量为正,t t ∆+时刻的速度大于t 时刻的速度,质点作加速运动。
同理可说明,0a ,0v x x <<质点作加速运动。
质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。
例如初速度为x 0v ,加速度为t 6a x -=,速度为20t0x 0x t21t 6v dt )t 6(v v -+=-+=⎰,,0v ,0a 6t x x >><时,速度逐渐增加。
质点运动学第二章
相对速度—物体相对运动参考系的运动速度 用 表示
牵连速度—运动参考系相对静止参考系的运动速度 用 表示
则 = +
3.绝对时空观 在伽利略变换下,时间的测量和空间的测量均与参考系的运动状态无关,时间和空间亦不相联系。即: , ,
x
y
o
雨车
雨地
车地
6下雨时,若雨点相对地匀速直线下落,汽车在平直公路上匀速行驶,求坐在汽车中的人在下列两种情况下观察的雨点运动轨迹(1)汽车做匀速直线运动,(2)汽车做匀加速速直线运动
解:研究对象:雨点,视为质点。
基本参考系:地面;运动参考系:汽车;
则: 绝= 雨地, 相对= 雨车, 牵连= 车地
在OA上截取 ,则:
当 时, , (等腰直角三角形的两个底角相等,各为 ),
所以, ,所求船的速率; ,收绳速率。
又因为,在 中, ,
所以船速
可见: ,且 ,所以不是常量。
第二种方法:由运动学方程求解,先求小船的运动学方程,在求小船的速度。
O
A
B
O‘
自然坐标系:s=s(t)
直线运动的运动学方程:x=x(t)
3.运动轨迹:质点运动时描出的轨迹,也即位置矢量的矢端画出的曲线(矢端曲线)
轨迹方程:如在O-xy平面上 y=y(x)
4.位移:位置矢量的增量,即自质点初位置引向末位置的矢量。
在直角坐标系:
(三).速度和加速度
5.圆周运动 速度 角速度 角加速度
加速度
法向加速度 指向圆心; 切向加速度 沿切线方向
(四).由加速度求速度和位移
1. 一般情况
2.匀加速运动: 常矢量
第二章 质点与刚体的运动
二、参考系和坐标系 1、运动的绝对性和相对性 2、参考系:为描述物体运动而被选作标准的另外的一个不变 形的或几个无相对运动的物体。 (在描述物体运动时,被选作参考的其他物体,叫做参考系) (1)物体的运动性质与参考系有关 (2)参考系应是客观存在的不变形的物体 (3)参考系的选择原则:视研究问题方便而定
刚体是指在任何情况下,都没有形变的物体。 刚体也是一个各质点之间无相对位置变化且质量连续分布 的质点系。
§2.2
一、空间和时间的量度
空间和时间
1、经典时空观: – 时间是连续、均匀、独立、单方向流逝的东西 – 空间是连续、均匀、各向同性、独立存在着的东西 – 物质、空间、时间彼此独立无关 2、时空度量 :时间和长度标准单位的规定 • 一切周期运动都可用来量度时间。
v2 8 m/s 与x轴正向Fra bibliotek反[例题3]将真空长直管沿竖直方向放置.自其中O点向上 抛小球又落至原处所用的时间为t2. 在小球运动过程中
经过比O点高h处,小球离开h处至又回到h处所用时间为
t1.现测得t1、t2和h,试决定重力加速度g.
[解] 建坐标系如图,
1 2 y y0 v0 y t gt 2
v 2 v0 2a( x x0 ) ③ (v 2 v0 2as)
2 2
方法二:用加速度平均定义求 图示法:位移—时间图;速度—时间图;加速度—时间图
v
x
1 2 at 2
v0
0 v0t t a 0
t
0
t
⒊只在重力作用下的直线运动
自由落体, 竖直上抛, 竖直下抛都是加速度大小a=g,方向 竖直向下的匀变速直线运动, 可直接应用匀变速直线运动 的公式,但要注意初始条件。 自由落体运动:v gt , y gt , v 2 gy (t 0, y 0)
第一,二,三 ,四章
v
t
dx ( 2) v dt
物理学
第五版
选题目的: 掌握自然坐标系下对运动的描述
1-17 质点在Oxy平面内运动,其运动方程为
-1 -2 2 r (2.0m s )ti [19.0m (2.0m s )t ] j
求:(1)质点的轨迹方程; (2)在t1=1.0s到t2=2.0s时间内的平均速度; (3) t1=1.0s时的速度及切向和法向加速度. (4) t=1.0s时质点所在轨道的曲率半径 ρ
α 3 s x x0 v0t t 467 m 6m
物理学
第五版
选择题答案:P48-49
2-1 D 2-5 A
2-2 A
2-3 C 2-4 B
第 三 章
动量守恒定律和 能量守恒定律
物理学
第五版
本章目录
3- 1 3- 2 * 3- 3 3- 4 3- 5 3- 6 3- 7 3- 8
基础
牛顿运动定律
力的空间累积
瞬时效果
力的时间累积
动量定理 动量守恒定律
动能定理 机械能守恒定律
物理学
第五版
第 一 章
质 点 运 动 学
物理学
第五版
本章目录
1-1 质点运动的描述 1-2 圆周运动 1-3 相对运动
物理学
第五版
第01章 质点运动学
1. 运动的描述
三种坐标系下描述运动的物理量
2. 运动学的两类问题
注意变力、矢量 2. 力的空间累积效应——动能、功、动能定理、 功能原理机械能守恒定律
注意变力的功
物 理 学
物理学
第五版
选题目的: 掌握一维运动下处理变力问题
大学物理 - 1-6章练习附答案
第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。
解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。
质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。
解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。
质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。
解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3).位移
在如图2-2 平面直角坐标系中,有一质点沿曲线从时刻 的点 运动到时刻 的点 ,质点相对原点 的位矢由 变化到 。显然,在时间间隔 内,位矢的长度和方向都发生了变化。我们将由起始点 指向终点 的有向线段 称为点
到点 的位移矢量,简称位移。位移 反映了质点位矢的变化。如把 写作 ,则质点从 点到点 的位移为
2. 质点
物体都有大小和形状,运动方式又都各不相同。例如,太阳系中,行 星除绕自身的轴线自转外, 还绕太阳公转;从枪口射出的子弹,它在空 中向前飞行的同时,还绕自身的轴转动;有些双原子分子,除了分子的平 动、转动外,分子内各个原子还在振动。这些事实都说明,物体的运动情 况是十分复杂的。物体的大小、形状、质量也都是千差万别的。
(2-11b) 由式(2-10)和式(2-11b),可将质点作变速圆周运动时的加速度的表达
式(2-8)写成
(2-12a) 或
(2-12b) 其中切向加速度
是由于速度数值的变化而引起的,法向加速度
则是由于速度方向的变化而引起。
的路径是质点实际运动的轨迹,轨迹的长度为质点所经历的路程, 而位移则是 。当质点经一闭合路径回到原来的起始位置时,其位移为零,而路程 则不为零。所以,质点的位移和路程是两个完全不同的概念。只有 在△t 取得很小的极限情况下,位移的大小| |才可视为与路程 AB 没有区别。
2. 速度 在力学中,若仅知道质点在某时刻的位矢,而不能同时知道该质点是 静还是动,是动又动到什么程度,就不能确定质点的运动状态。所以,还 应引入一物理量来描述位置矢量随时间的变化程度,这就是速度。 (1).平均速度
又由
图2-7
及初始条件t = 0时,r0 = (10 m)i, 积分可得
由上述结果可得质点运动方程的分量式,即
消去参数t,可得运动的轨迹方程
这是一个直线方程,直线斜率
。
图2-8
2.平面极坐标
设有一质点在如图2-8所示 平面内运动,某时刻它位于点 。由坐标原点 到点 的有向线段 称为径矢, 与 轴之间的夹角为 。于是,质点在点 的位置可由( )来确定。这种以( )为坐标的参考系称为平面极坐标系。而在平面直角坐标系内,点 的坐标则为( )。这两个坐标系的坐标之间的变换关系为:
应当注意,加速度 既反映了速度方向的变化,也反映了速度数值的变化。所以质点作 曲线运动时,任一时刻质点的加速度方向并不与速度方向相同,即加速 度方向不沿着曲线的切线方向。在曲线运动中,加速度的方向指向曲线 的凹侧。
式(2-5)可以写成
即
(2-6) 其中
例 有一个球体在某液体中垂直下落,球体的初速度为
亦趋于零,这时
的方向趋于与
垂直,即趋于与
垂直,并且趋于指向圆心。如果,我们在沿径矢而指向圆心的法线 方向上取单位矢量即法向单位矢量
(如上图),那么,在
时,
的极限值为
这样,式(2-8)中第二项可以写成
由于这个加速度的方向是垂直于切向的,故叫做法向加速度,用
表示,有
考虑到
(2-11a)
故上式为
(2-4a) 或 (2-4b) 其中
是速度 在Ox轴和Oy轴上的分量,又称为速度分量。
显然,如以 分别表示速度 在 轴和 上的分速度(注意:它们是分矢量!),那么有
上式亦可以写成 (2-4c) 速度
的方向与 时的极限方向一致。当 时,
趋于和轨道相切,即与点 的切线重合。所以当质点作曲线运动时,质点在某一点的速度方向 就是沿该点曲线的切线方向。如图2-4所示。
如图2-3所示,一个质点在平面上沿轨迹 曲线运动。在时刻 ,它处于点 ,其位矢为
。在时刻 ,它处于点 ,其位矢为 。在 时间内,质点的位移为 。在时间间隔 内的平均速度 为
平均速度可写成
图2-3
其中 是平均速度 在 轴和 轴上的分量。
(2 ). 瞬时速度 当
时,平均速度
的极限值叫做瞬时速度(简称速度),用 表示,有
况。这里,我们既不选择x,也不选择y充当这一描述运动的标量函数,
而是选用另一种所谓“自然坐标”。
在已知运动轨迹上任选一点0为原点,沿质点的轨迹为“坐标
轴”(当然是弯曲的),原点至质点位置的弧
图2-9
长 s 作为质点的位置坐标,弧长 s 称为平面自然坐标,它确定质点
的位置,并在质点所在处A取一单位矢量沿曲线切线且指向自然坐标增
例 设质点的运动方程为 其中 , 求 时的速度。 (2)作出质点的运动轨迹图。
解 这是已知运动方程求运动状态的一类运动学问题,可以通过求导数 的方法求出。
(1)由题意可得速度分量分别为
故 时的速度分量为
于是 时,质点的速度为
速度的值为 ,速度 与 之间的夹角为 (2)由已知运动方程 消去
式(2-8)中第一项
(2-8)
,是由于速度大小的变化而引起的,其方向为
的方向,即与速度
的方向相同。因此,此项加速度分矢量称为切向加速度,用
表示, 另外,可得
式中
为角速度随时间的变化率,叫做角加速度,用符号
表示,有
(2-9) 角加速度
的单位为
, 则切向加速度
(2-10)
第2章 质点运动学
本章要点: 1.质点运动状态的描述,掌握基本概念如质点、位置矢量、速度、加速 度; 2.质点运动的矢量性与瞬时性、相对性; 3.三种常用坐标下各运动学量的表达式; 4.解决运动学基本问题的方法; 5.相对运动及伽利略变换。
物理学是研究物质最普遍、最基本的运动形式的基本规律的一门学 科,这些运动形式包括机械运动、分子热运动、电磁运动、原子和原子 核运动以及其它微观粒子运动等。机械运动是这些运动中最简单、最常 见的运动形式 ,其基本形式有平动和转动。在平动过程中,若物体内各 点的位置没有相对变化,那么各点所移动的路径完全相同,可用物体上任 一点的运动来代表整个物体的运动,从而可研究物体的位置随时间而改 变的情况。在力学中,这部分内容称为质点运动学。
2.1 质点运动的描述
2.1.1 参考系 质点
1.参考系
在自然界中所有的物体都在不停地运动,绝对静止不动的物体是没有 的。在观察一个物体的位置及位置的变化时,总要选取其他物体作为标 准,选取的标准物不同,对物体运动情况的描述也就不同,这就是运动描 述的相对性。
为描述物体的运动而选的标准物叫做参考系。不同的参考系对同一 物体运动情况的描述是不同的。因此,在讲述物体的运动情况时,必须指 明是对什么参考系而言的。参考系的选择是任意的。在讨论地面上物体 的运动时,通常选地球作为参考系 。
(1).平均加速度 如图2-6所示,设在时刻
,质点位于点
,其速度为
,在时刻
,质点位于点
,其速度为
,则在时间间隔
内,质点的速度增量为
,它在单位时间
内的速度增量即平均加速度为
图2-6
(2).瞬时加速度 当 时,平均加速度的极限值叫做瞬时加速度,用 表示,有
(2-5) 的方向是 时 的极限方向,而 的数值是 的极限值。
称为角坐标,它是时间 t 的函数,即 = (t), 为角速度,在圆周运动下, 。
3.自然坐标
(1).自然坐标
一般来说,质点平面运动需用两个独立的变量(是标量)描述,如
在平面直角坐标系中就是用x、y来描述,但质点又有其运动轨迹
y=y(x),则x、y间只有一个是独立的。这就是说,在已知质点轨迹的前
提下,质点的平面运动仅需一个标量函数就能确切描述质点的运动状
式(2-8)中的第二项
图2-10
,则表示切向单位矢量随时间的变化。这一点从图2-10(a)中可以看 出。设在时刻 ,质点位于圆周上点 ,其速度为 ,切向单位矢量为 ;在时刻 ,质点位于点 ,速度为 ,切向单位矢量为 。在时间间隔 内,径矢 转过的角度为 ,速度增量为 ,切向单位矢量的增量则为 。由于切向单位矢量的值为1,即 ,因而,从图(b)可以知道 。当 时,
图2-4
只有当质点的位矢和速度同时被确定时,其运动状态才被确知。所 以位矢 和速度 是描述质点运动状态的两个物理量。这两个物理量可以从运动方程 求出,所以知道了运动方程可以确定质点在任意时刻的运动状态。因 此,概括说来,运动学问题有两类:一是由已知运动方程求解运动状 态;另一是由已知运动状态求解运动方程。
和 来表示。那么位矢 亦可写成
其值为
(2-1)
1
(2). 运动方程
当质点运动时,它相对坐标原点
的位矢
是随时间而变化的。因此,
是时间的函数,即
(2-2) 式(2-2)叫做质点的运动方程;而
、
和
则是运动方程的分量式,从中消去参数
便得到了质点运动的轨迹方程, 所以它们也是轨迹的参数方程。 应当指出, 运动学的重要任务之一就是找出各种具体运动所遵循的
如果我们研究某一物体的运动,可以忽略其大小和形状,或者可以只 考虑其平动,那么, 我们就可把物体当作是一个有一定质量的点,这样的 点通常叫做质点。
质点是经过科学抽象而形成的物理模型。把物体当作质点是有条件 的、相对的,而不是无条件的、绝对的,因而对具体情况要作具体分析。 例如研究地球绕太阳公转时,由于地球至太阳的平均距离约为地球半径 的 104 倍, 故地球上各点相对于太阳的运动可以看作是相同的,所以在 研究地球公转时可以把地球当作质点。但是,在研究地球上物体的运动 情况时,就不能再把地球当作质点处理了。
(2-3a)
图2-2
亦可写成
上式表明,当质点在平面上运动时,它的位移等于在
轴和
轴上的位移矢量和。 若质点在三维空间运动,则在直角坐标系Oxyz中其位移为
(2-3b) 应当注意,位移是描述质点位置变化的物理量, 它只表示位置变 化的实际效果,并非质点所经历的路程。如在图 2-2 中,曲线所示
(1).位置矢量