必修1《对数与对数函数测试题》测试

合集下载

高中数学人教版必修1专题复习—对数与对数函数(含答案)

高中数学人教版必修1专题复习—对数与对数函数(含答案)

必修1专题复习——对数与对数函数1.23log 9log 4⨯=( ) A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .14 3.已知222125log 5,log 7,log 7a b ===则 ( )A .3a b - B .3a b - C .3a b D .3ab4.552log 10log 0.25+=( ) A .0 B .1 C .2 D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数y =A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+21 11.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆ 12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( ) A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a yx c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1a c >>B.1,01ac ><<C.01,1a c <<>D.01,01a c <<<< 15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,xa y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D . 21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。

高一数学必修1《2.2对数与对数函数》单元检测题(含答案)

高一数学必修1《2.2对数与对数函数》单元检测题(含答案)

§2.2 对数与对数函数(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共60分)一、选择题(共12小题,60分)1.对数式b a a =--)5(log 2中,实数a 的取值范围是( )A .)5,(-∞B .(2,5)C .),2(+∞D . )5,3()3,2(2.如果lg lg 3lg 5lg x a b c =+-,那么( )A .3x a b c =+-B .cabx 53=C .53cab x = D .33x a b c =+-3.设函数2lg(5)y x x =-的定义域为M ,函数lg(5)lg y x x =-+的定义域为N ,则( )A .M ∪N=RB .M=NC .M ⊇ND .M ⊆N4.已知 a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<5.若函数22log (43)y kx kx =++的定义域为R ,则k 的取值范围是( )A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,(6.设a ,b ,c ∈R ,且3a= 4b= 6c,则 ( ).A .c 1=a 1+b 1 B .c 2=a 2+b 1 C .c 1=a 2+b 2 D .c 2=a 1+b2 7.下列函数中,在()0,2上为增函数的是( )A .12log (1)y x =+ B.2log y = C .21log y x = D.2log (45)y x x =-+ 8.已知函数)1(log )(3+=x x f ,若1)(=a f ,则=a ( )A .0B .1C .2D .39.已知2log 13a<,则a 的取值范围是( ) A .()20,1,3⎛⎫+∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .2,13⎛⎫ ⎪⎝⎭ D .220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭10.函数y =)A. )1,43(B. ),43(+∞C. ),1(+∞D. ),1()1,43(+∞11.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22-x eB .x e 2C .12+x eD .22+x e12.函数()f x 满足:当x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )A.124B.112C.18D.38第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 13. log12-(3+22) = ____________.14.记3()log (1)f x x =+的反函数为1()y f x -=,则方程1()8f x -=的解x = . 15.已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_____________. 16.函数y=)124(log 221-+x x 的单调递增区间是 .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分) 解下列各题:(Ⅰ)计算:2log 34.0log 10log 2555-+ ;(Ⅱ)已知+∈R y x ,,且6232==yx ,求yx 211+的值.18. (本题满分10分)已知函数222(3)lg 6x f x x -=-,(1)求()f x 的定义域;(2)判断()f x 的奇偶性。

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案高中数学-对数与对数函数测试题满分150分,时间120分钟)班级:__________ 姓名:__________ 成绩:__________ 第Ⅰ卷(选择题,共60分)一、选择题(共12小题,60分)1.对数式loga 25a)b中,实数a的取值范围是()A。

(∞,5) B。

(2,5) C。

(2,+∞) D。

(2,3)∪(3,5)2.如果lgx lga3lgb5lgc,那么()A。

x=a+3b-c B。

x=ab/33 C。

x=a+b/3-c/3 D。

x=a-b/3+c/53.设函数y=lg(x^2-5x)的定义域为M,函数y=XXX(x-5)+lgx的定义域为N,则()A。

M∪N=R B。

M=N C。

M⊊N D。

M⊆N4.已知a = log0.70.8,b = log1.10.9,c = 1.1^9,则a,b,c的大小关系是()A。

a<c<b B。

b<a<c C。

a<b<XXX<c<a5.若函数y=log2kx^2+4kx+3)的定义域为R,则k的取值范围是()A。

(3/4,2) B。

(3/4,3/2) C。

(3/4,∞) D。

(-∞,3/4]∪[2,∞)6.设a,b,c∈R,且3a= 4b= 6c,则()。

A。

a=b+c B。

b=a+c C。

c=a+b D。

a+b+c=0 7.下列函数中,在(0,2)上为增函数的是()A。

y=log1x+1) B。

y=log2x^2-1) C。

y=log21/x D。

y=log1x^2-4x+5)8.已知函数f(x)=log3x+1),若f(a)=1,则a=()A。

2 B。

1 C。

-1 D。

-29.已知loga21,则a的取值范围是()A。

(0,2/3) B。

(2/3,1) C。

(1,2) D。

(2,∞)10.函数y=34x-3)log0.5的定义域为()A。

(0,1) B。

2023届高考数学《对数与对数函数》综合练习题(含答案解析)

2023届高考数学《对数与对数函数》综合练习题(含答案解析)

2023届高考数学《对数与对数函数》综合练习题(含答案解析)1、已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a-1)(b-1)<0 B.(a-1)(a-b)>0C.(b-1)(b-a)<0 D.(b-1)(b-a)>0D[由a,b>0且a≠1,b≠1,及log a b>1=log a a可得,当a>1时,b>a>1,当0<a<1时,0<b<a<1,代入验证只有D项满足题意.]2、已知f(x)=lg(10+x)+lg(10-x),则()A.f(x)是奇函数,且在(0,10)上是增函数B.f(x)是偶函数,且在(0,10)上是增函数C.f(x)是奇函数,且在(0,10)上是减函数D.f(x)是偶函数,且在(0,10)上是减函数D[函数f(x)的定义域为(-10,10),又∵f(-x)=lg(10-x)+lg(10+x)=f(x),∴f(x)为偶函数.又f(x)=lg(100-x2),令t=100-x2,易知t在(0,10)上是减函数,结合复合函数可知,故f(x)在(0,10)上是减函数,故选D.]3、关于函数f(x)=lg x2+1|x|(x≠0,x∈R)有下列命题:①函数y=f(x)的图像关于y轴对称;②在区间(-∞,0)上,函数y=f(x)是减函数;③函数f(x)的最小值为lg 2;④在区间(1,+∞)上,函数f(x)是增函数.其中是真命题的序号为________.①③④[∵函数f(x)=lg x2+1|x|(x≠0,x∈R),显然f(-x)=f(x),即函数f(x)为偶函数,图像关于y轴对称,故①正确;当x >0时,f (x )=lg x 2+1|x |=lg x 2+1x =lg(x +1x ),令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即f (x )在x =1处取得最小值lg2.由偶函数的图像关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.]4、已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明;(3)当a >1时,求使f (x )>0的x 的取值范围.[解] (1)因为f (x )=log a (x +1)-log a (1-x ),所以⎩⎨⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数的定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得x +11-x>1,解得0<x <1.所以x 的取值范围是(0,1).5、设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.(0,1) [由题意知,在(0,10)上,函数y =|lg x |的图像和直线y =c 有两个不同交点,所以ab =1,0<c <lg 10=1,所以abc的取值范围是(0,1).]6、若函数f (x )=log a (2x -a )在区间[12,23]上恒有f (x )>0,求实数a 的取值范围. [解] 当0<a <1时,函数f (x )在区间[12,23]上是减函数,所以log a (43-a )>0,即0<43-a <1,又2×12-a >0,解得13<a <43,且a <1,故13<a <1;当a >1时,函数f (x )在区间[12,23]上是增函数,所以log a (1-a )>0,即1-a >1,且2×12-a >0,解得a <0,且a <1,此时无解.综上所述,实数a 的取值范围是(13,1).一、选择题1、函数y =log 3(2x -1)+1的定义域是( )A .[1,2]B .[1,2)C .⎣⎢⎡⎭⎪⎫23,+∞D .(23,+∞)C [由⎩⎨⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.] 2、若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=() A .log 2x B.12xC .log 12xD .2x -2A [由题意知f (x )=log a x (a >0,且a ≠1).∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x .]3、(2019·全国卷Ⅰ)已知a =log 2 0.2,b =20.2,c =0.20.3,则( )A .a <b <cB .a <c <bC .c <a <bD .b <c <aB [∵a =log 20.2<0,b =20.2>1,c =0.20.3∈(0,1),∴a <c <b .故选B.]4、(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1A [由题意知,m 1=-26.7,m 2=-1.45,所以52lg E 1E 2=-1.45-(-26.7)=25.25, 所以lg E 1E 2=25.25×25=10.1,所以E 1E 2=1010.1.故选A.] 5、设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定A [由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).]二、填空题1、计算:lg 0.001+ln e +2-1+log 23=________. -1 [原式=lg 10-3+ln e 12+2log 232=-3+12+32=-1.]2、函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________.(5,+∞) [由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).]3、设函数f (x )=⎩⎨⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________. [0,+∞) [当x ≤1时,由21-x ≤2,解得x ≥0,所以0≤x ≤1;当x >1时,由1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.]三、解答题1、设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.[解] (1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2.2、已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.[解] (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x ).所以x <0时,f (x )=log 12(-x ), 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f(4)=log14=-2,f(x)是偶函数,2所以不等式f(x2-1)>-2可化为f(|x2-1|)>f(4).又因为函数f(x)在(0,+∞)上是减函数,所以0<|x2-1|<4,解得-5<x<5且x≠±1,而x2-1=0时,f(0)=0>-2,所以-5<x< 5.本课结束。

(完整版)对数和对数函数经典练习题

(完整版)对数和对数函数经典练习题

对数和对数函数练习题1 求下列各式中的x 的值:(1)313x =;(2)6414x =;(3)92x =; (4)1255x 2=;(5)171x 2=-.2 有下列5个等式,其中a 〉0且a ≠1,x 〉0 , y>0①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ⋅=+, ③y log x log 21y x log a a a -=,④)y x (log y log x log a a a ⋅=⋅, ⑤)y log x (log 2)y x (log a a 22a -=-,将其中正确等式的代号写在横线上_____________.3 化简下列各式:(1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+;(3)3lg 70lg 73lg -+; (4)120lg 5lg 2lg 2-+.4 利用对数恒等式N a N loga =,求下列各式的值: (1)5log 4log 3log354)31()51()41(-+ (2)2log 2log 4log 7101.0317103-+(3)6lg 3log 2log100492575-+ (4)31log 27log 12log 2594532+-5 化简下列各式:(1))2log 2(log )3log 3(log 9384+⋅+; (2)6log ]18log 2log )3log 1[(46626⋅⋅+-6 已知a 5log 3=,75b =,用a 、b 的代数式表示105log 63=________.7 (1))1x (log y 3-= 的定义域为_________值域为____________。

(2)22x log y = 的定义域为__________值域为_____________.8 求下列函数的定义域:(1))2x 3(log x 25y a 2--=;(2))8x 6x (log y 2)1x 2(+-=-;(3))x (log log y 212=.9 (1)已知3log d 30log c 3b 30a 303303....====,,,,将a 、b 、c 、d 四数从小到大排列为_____________________.(2)若02log 2log m n >>时,则m 与n 的关系是( )A .m>n>1B .n 〉m>1C .1>m>n>0D .1〉n>m>010 (1)若a>0且a ≠1,且143log a<,则实数a 的取值范围是( ) A .0〈a 〈1 B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a 〉1 (2)若1<x 〈d ,令)x (log log c x log b )x (log a d d 2d 2d ===,,,则( )A .a<b 〈cB .a 〈c 〈bC .c<b 〈aD .c 〈a<b11 已知函数)x 35(log y )4x 2(log y 3231-=+=,.(1)分别求这两个函数的定义域;(2)求使21y y =的x 的值;(3)求使21y y >的x 值的集合.12 已知函数)x 1x lg()x (f 2-+=(1)求函数的定义域;(2)证明f(x)是减函数.【同步达纲练习】一、选择题1.3log 9log 28的值是( ) A .32 B .1 C .23 D .2 2.函数)1x 2x (log )x (f 22+-=的定义域是( )A .RB .(-∞,1)∪(1,+∞)C .(0,1)D .[1,+∞]3.若函数x 2)x (f =,它的反函数是)x (f 1-,)(f c )4(f b )3(f a 111π===---,,,则下面关系式中正确的是( )A .a<b 〈cB .a 〈c< bC .b 〈c<aD .b 〈a<c4.4log 33的值是( ) A .16 B .4 C .3 D .25.)2x 2x (log )x (f 25+-=,使f(x)是单调增函数的x 值的区间是( )A .RB .(-∞,1)C .[1,+∞]D .(-∞,1)∪(1,+∞) 6.2log 3log 3log 2log )3log 2(log 3223223--+的值是( ) A .6log 2 B .6log 3 C .2 D .17.命题甲:a 〉1且x>y>0 命题乙:y log x log a a >那么甲是乙的( )A .充分而非必要条件B .必要而非充分条件C .充分必要条件D .既不充分也不必要条件8.如果0<a<1,那么下列不等式中正确的是( )A .2131)a 1()a 1(-<- B .1)a 1(a 1>-+C .0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+9.5log 222的值是( ) A .5 B .25 C .125 D .62510.函数)x 2(log )x (f 3-=在定义域区间上是( )A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调性11.x log )x (f 2=,若142)a (f 1=--,则实数a 的值是( )A .4B .3C .2D .112.在区间(0,+∞)上是增函数的函数是( )A .1x )32()x (f +=B .)1x (log )x (f 232+=C .)x x lg()x (f 2+=D .x 110)x (f -= 13.3log 15log 15log 5log 52333--的值是( ) A .0 B .1 C .5log 3 D .3log 514.函数2x log y 5+=(x ≥1)的值域是( )A .RB .[2,+∞]C .[3,+∞]D .(-∞,2)15.如果)x 2(log )x (f a -=是增函数,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(0,1)D .(0,2)16.函数)3x 2x (log y 23--=是单调增函数的区间是( )A .(1,+∞)B .(3,+∞)C .(-∞,1)D .(-∞,-1)17.如果02log 2log b a >>,那么下面不等关系式中正确的是( )A .0〈a<b 〈1B .0〈b 〈a 〈1C .a 〉b>1D .b>a>1二、填空题1.函数f(x)的定义域是[-1,2],则函数)x (log f 的定义域是_____________.2.若412x log 3=,则x =_____________.3.若)1x (log )x (f 3-=使f(a)=2,那么a =_____________.4.函数)a ax x (log )x (f 23-+=的定义域是R(即(-∞,+∞)),则实数a 的取值范围是_____________.5.函数x )31(y =的图象与函数x log y 3-=的图象关于直线_____________对称. 6.函数)1x (log )x (f 24-=,若f(a)〉2,则实数a 的取值范围是_____________.7.已知1313)x (f x x +-=,则)21(f 1-=_____________. 8.x log )x (f 21=,当]a a [x 2,∈时,函数的最大值比最小值大3,则实数a =_____________.9.])2(log )41)[(log 2(lg 15121--+=_____________.三、解答题1.试比较22x lg )x (lg 与的大小.2.已知)1a (log )x (f x a -=(a>1)(1) 求f (x)的定义域; (2)求使)x (f )x 2(f 1-=的x 的值.3.实数x 满足方程5)312(log x x 2=-+,求x 值的集合.4.已知b 5log a 7log 1414==,,求28log 35(用a 、b 表示).。

必修一对数与对数函数练习题及答案

必修一对数与对数函数练习题及答案

对数和对数函数一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( ) (A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2 2.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,loga ya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n) 4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7 (B )lg35 (C )35 (D )3516.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( ) (A )(32,1)⋃(1,+∞)(B )(21,1)⋃(1,+∞)(C )(32,+∞)(D )(21,+∞) 8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞] (C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21] 12.log a132<,则a 的取值范围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞) (C )(1,32) (D )(0,32)⋃(32,+∞)16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a 的大小是( )(A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 二、填空题3.lg25+lg2lg50+(lg2)2= 。

高一数学对数函数及其性质测试题(含答案)

高一数学对数函数及其性质测试题(含答案)

高一数学对数函数及其性质测试题〔含答案〕高一数学对数函数及其性质测试题1.(2022年高考天津卷)设a=log54,b=(log53)2,c=log45,那么()A.aC.a解析:选D.a=log541,log53高一数学对数函数及其性质测试2.f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+)上()A.递增无最大值B.递减无最小值C.递增有最大值D.递减有最小值解析:选A.设y=logau,u=|x-1|.x(0,1)时,u=|x-1|为减函数,a1.x(1,+)时,u=x-1为增函数,无最大值.f(x)=loga(x-1)为增函数,无最大值.3.函数f(x)=ax+logax(a0且a1)在[1,2]上的最大值与最小值之和为loga2+6,那么a的值为()A.12B.14C.2D.4解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.4.函数y=log13(-x2+4x+12)的单调递减区间是________. 解析:y=log13u,u=-x2+4x+12.令u=-x2+4x+120,得-2x(-2,2]时,u=-x2+4x+12为增函数,y=log13(-x2+4x+12)为减函数.答案:(-2,2]1.假设loga21,那么实数a的取值范围是()A.(1,2)B.(0,1)(2,+)C.(0,1)(1,2)D.(0,12)解析:选B.当a1时,loga22.假设loga2A.0C.a1D.b1解析:选B.∵loga23.函数f(x)=2log12x的值域为[-1,1],那么函数f(x)的定义域是()A.[22,2]B.[-1,1]C.[12,2]D.(-,22][2,+)解析:选A.函数f(x)=2log12x在(0,+)上为减函数,那么-12log12x1,可得-12log12x12,X k b 1 . c o m解得222.4.假设函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,那么a的值为()A.14B.12C.2D.4解析:选B.当a1时,a+loga2+1=a,loga2=-1,a=12,与a 当0loga2=-1,a=12.5.函数f(x)=loga[(a-1)x+1]在定义域上()A.是增函数B.是减函数C.先增后减D.先减后增解析:选A.当a1时,y=logat为增函数,t=(a-1)x+1为增函数,f(x)=loga[(a-1)x+1]为增函数;当0f(x)=loga[(a-1)x+1]为增函数.6.(2021年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,那么()A.acB.abC.cbD.ca解析:选B.∵1∵0又c-b=12lg e-(lg e)2=12lg e(1-2lg e)=12lg elg10e20,cb,应选B.7.0解析:∵0又∵0答案:38.f(x)=log21+xa-x的图象关于原点对称,那么实数a的值为________.解析:由图象关于原点对称可知函数为奇函数,所以f(-x)+f(x)=0,即log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,所以1-x2a2-x2=1a=1(负根舍去).答案:19.函数y=logax在[2,+)上恒有|y|1,那么a取值范围是________.解析:假设a1,x[2,+),|y|=logaxloga2,即loga21,1 答案:1210.f(x)=6-ax-4ax1logax x1是R上的增函数,求a的取值范围.解:f(x)是R上的增函数,那么当x1时,y=logax是增函数,a1.又当x1时,函数y=(6-a)x-4a是增函数.6-a0,a6.又(6-a)1-4aloga1,得a65.656.综上所述,656.11.解以下不等式.(1)log2(2x+3)log2(5x-6);(2)logx121.解:(1)原不等式等价于2x+305x-602x+35x-6,解得65所以原不等式的解集为(65,3).(2)∵logx12log212log2x1+1log2x0log2x+1log2x-12-1原不等式的解集为(12,1).12.函数f(x)=log12(3x2-ax+5)在[-1,+)上是减函数,务实数a的取值范围.解:令t=3x2-ax+5,那么y=log12t在[-1,+)上单调递减,故t=3x2-ax+5在[-1,+)单调递增,且t0(即当x=-1时t0).因为t=3x2-ax+5的对称轴为x=a6,所以a6-18+aa-8-8。

《对数与对数函数》测试1(北师大必修1)

《对数与对数函数》测试1(北师大必修1)

对数与对数函数同步练习一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( )A 、lg5lg 7B 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +=== 。

数学中的对数方程与对数函数测试题

数学中的对数方程与对数函数测试题

数学中的对数方程与对数函数测试题一、选择题1、函数\(y =\log_{2}(x + 1)\)的定义域是()A \((0, +\infty) \)B \((-1, +\infty) \)C \((1, +\infty) \)D \( 0, +\infty) \)2、若\(\log_{5}\frac{1}{3}\cdot \log_{3}6\cdot \log_{6}x = 2\),则\(x\)等于()A \(9\)B \(\frac{1}{9} \)C \( 25 \)D \(\frac{1}{25} \)3、函数\(y =\log_{a}(x 2) + 1\)(\(a > 0\)且\(a \neq 1\))恒过定点()A \((1,0) \)B \((2,1) \)C \((3,1) \)D \((4,1) \)4、若\(\log_{a}2 <\log_{b}2 < 0\),则()A \( 0 < a < b < 1 \)B \( 0 < b < a < 1 \)C \( 1 < a < b \)D \( 1 < b < a \)5、函数\( f(x) =\log_{2}(3^{x} + 1) \)的值域为()A \((0, +\infty) \)B \( 0, +\infty) \)C \((1, +\infty) \)D \( 1, +\infty) \)二、填空题6、计算:\(\log_{2}8 +\log_{2}\frac{1}{2} =\)_____7、若\(\log_{a}2 = m\),\(\log_{a}3 = n\),则\( a^{m + n} =\)_____8、函数\( y =\log_{\frac{1}{2}}(x^{2} 2x 3) \)的单调递增区间是_____9、方程\(\log_{3}(x^{2} 10) = 1 +\log_{3}x \)的解是_____10、若函数\( f(x) =\log_{a}(x + 1)\)(\(a > 0\)且\(a \neq 1\))的图象过点\((1,0) \),则\( a =\)_____三、解答题11、解方程:\(\log_{2}(x 1) +\log_{2}(x + 1) = 2 \)12、已知函数\( f(x) =\log_{a}(1 x) +\log_{a}(x + 3)\)(\(a > 0\)且\(a \neq 1\))(1)求函数的定义域;(2)若函数的最大值为\(2\),求\(a\)的值。

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

对数函数测试题及答案

对数函数测试题及答案

对数(du ì sh ù)与对数函数(du ì sh ù h án sh ù)测试题一、选择题。

1.的值是( ) A .B .1C .D .22.若log 2=0,则x 、y 、z 的大小(dàxiǎo)关系是( ) A .z <x <y B .x <y <zC .y <z <xD .z <y <x 3.已知x =+1,则lo g 4(x 3-x -6)等于(d ěngy ú)( ) A.B.C.0D.4.已知lg2=a ,lg3=b ,则等于(děngyú)( ) A .B .C .D .5.已知2lg(x -2y )=lg x +lg y ,则的值为( ) A .1 B .4C .1或4D .4或166.函数y =的定义域为( ) A .(21,+∞) B .[1,+∞ C .(21,1 D .(-∞,1)7.已知函数y =log (ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ) A .a >1B .0≤a <1C .0<a <1D .0≤a ≤18.已知f (e x)=x ,则f (5)等于(děngyú)( )A .e5B .5eC .ln5D .log 5e9.若的图像(tú xiànɡ)是( )A B C D 10.若在区间(qū jiān)上是增函数,则的取值范围(fànwéi)是( )A .B .C .D .11.设集合(jíhé)等于( ) A . B .C .D .12.函数的反函数为( )A .B .C .D .二、填空题.13.计算:log 2.56.25+lg+ln +=.14.函数y =log 4(x -1)2(x <1=的反函数为__________. 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.OxyOxy OxyOxy16.函数y =(log x )2-log 41x 2+5在2≤x ≤4时的值域为______.三、解答(jiědá)题.17.已知y =log a (2-ax )在区间(qū jiān){0,1}上是x 的减函数(hánshù),求a 的取值范围(fànwéi).18.已知函数(hánshù)f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R求实数a 的取值范围.19.已知f (x )=x 2+(lg a +2)x +lg b ,f (-1)=-2,当x ∈R 时f (x )≥2x 恒成立,求实数a 的值,并求此时f (x )的最小值?20.设0<x<1,a>0且a≠1,试比较(bǐjiào)|log a(1-x)|与|log a(1+x)|的大小(dàxiǎo).21.已知函数(hánshù)f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论(tǎolùn)f(x)在其定义域上的单调(dāndiào)性;(3)证明函数图象关于y=x对称.22.在对数函数y =log 2x 的图象上(如图),有A 、B 、C 三点,它们的横坐标依次为a 、a +1、a +2,其中a ≥1,求△ABC 面积的最大值.对数(du ì sh ù)与对数函数测试题参考答案一、选择题:ADBCB CDCBA AB 二、填空题:13.,14.y =1-2x(x ∈R ),15.(lg m )0.9≤(lg m )0.8,16.三、解答(jiědá)题:17.解析(jiě xī):先求函数定义域:由2-ax >0,得ax <2又a 是对数(duì shù)的底数, ∴a >0且a ≠1,∴x <由递减(dìjiǎn)区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1∴1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:解得a <-1或a >又a =-1,f (x )=0满足(mǎnzú)题意,a =1,不合(bùhé)题意. 所以(suǒyǐ)a 的取值范围(fànwéi)是:(-∞,-1]∪(35,+∞) 19、解析(jiě xī):由f (-1)=-2,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1, ∴=10,a =10b .又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lgb ≤0,整理得(1+lg b )2-4lg b ≤0 即(lg b -1)2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f (x )=x 2+4x +1=(2+x )2-3 当x =-2时,f (x )min =-3.20.解法一:作差法|log a (1-x )|-|log a (1+x )|=||-||=(|lg(1-x )|-|lg(1+x )|)∵0<x <1,∴0<1-x <1<1+x ∴上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2)[来源:] 由0<x <1,得,lg(1-x 2)<0,∴-|lg |1a ·lg(1-x 2)>0, ∴|log a (1-x )|>|log a (1+x )| 解法二:作商法=|log (1-x )(1+x )|∵0<x <1,∴0<1-x <1+x ,∴|log (1-x )(1+x )|=-log (1-x )(1+x )=log (1-x )由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<(1-x )(1+x )<1,∴x+11>1-x >0 ∴0<log (1-x )x+11<log (1-x )(1-x )=1 ∴|log a (1-x )|>|log a (1+x )| 解法三:平方后比较(bǐjiào)大小∵log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )] =log a (1-x 2)·log a=·lg(1-x 2)·lgxx+-11 ∵0<x <1,∴0<1-x 2<1,0<xx+-11<1 ∴lg(1-x 2)<0,lgxx+-11<0 ∴log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )| 解法(jiě fǎ)四:分类讨论去掉绝对值当a >1时,|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2) ∵0<1-x <1<1+x ,∴0<1-x 2<1 ∴l og a (1-x 2)<0,∴-log a (1-x 2)>0当0<a <1时,由0<x <1,则有log a (1-x )>0,log a (1+x )<0∴|log a (1-x )|-|log a (1+x )|=|log a (1-x )+log a (1+x )|=log a (1-x 2)>0 ∴当a >0且a ≠1时,总有|log a (1-x )|>|log a (1+x )| 21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x 2>x 1 ∵a >1,∴,于是(yúshì)a -<a -则log a (a -a)<log a (a -1xa )即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数(hánshù)(3)证明(zhèngmíng):令y=log a(a-a x)(x<1),则a-a x=a y,x=log a(a-a y)∴f-1(x)=log a(a-a x)(x<1)故f(x)的反函数是其自身,得函数f(x)=log a(a-a x)(x<1=图象关于y=x对称.22.解析:根据(gēnjù)已知条件,A、B、C三点(sān diǎn)坐标分别为(a,log2a),(a+1,log2(a+1)),(a+2,log2(a+2)),则△ABC的面积(miàn jī)S=因为(yīn wèi),所以(suǒyǐ)内容总结(1)对数与对数函数测试题一、选择题。

对数与对数函数测试题

对数与对数函数测试题

对数与对数函数试题一.选择题1.函数y=的图象大致为( ) A . B . C . D .2、下列函数中,其定义域和值域分别与函数y=10lgx 的定义域和值域相同的是 A. y=x B. y=lgx C. y=2x 3,,则的大小关系是 ( ) A . B . C. D .4、对于任意实数,符号[]表示的整数部分,即[]是不超过的最大整数,例如[2]=2;[]=2;[]=, 这个函数[]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。

那么 的值为( )A .21B .76C . 264D .642 5、已知,则的不同取值个数为( )A. B. C. D. 6、若,,则( ) A. B. C. D.20.3b -=,,a b c a b c >>a c b >>c b a >>b a c >>x x x x x 1.22.2-3-x ]64[log ]4[log ]3[log ]2[log ]1[log 22222+++++ {}a b 2,3,4,5,6,7,8,9∈、log a b 535655577、函数的图像大致是( ) A. B. C. D.8、函数的图像必经过点( )A . (0,1)B . (2,1)C . (3,1)D .(3,2)9、三个数从小到大排列 ( ) A. . 73.0 ㏑0.3 B.,㏑0.3, 0.37C. D.10、当时,在同一坐标系中,函数与的图象是( )A .B . C. D . 11、设函数定义在实数集上,,且当≥1时,,则有( )AC12、函数,则的的取值范围是( ) A. D 13、已知,则( )()2log (2)a f x x =+-(01)a a >≠且03770.30.3.,,,㏑,0.370.377,0.3 0.3, 70.3,,㏑70.3ln 3,0.3,701a <<x y a -=log a y x =f(x)f(2x)=f(x)-x f(x)=lnx ()()0.5log 43f x x =-()0f x >()1,+∞()1,⎫+∞⎪⎭lg5,lg7m n ==2log 7=A14、函数y =log a x,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( )A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b二.填空题15、已知表示不大于的最大整数,设函数,得到下列结论: 结论1:当时,;结论2:当时, ;结论3:当时, ;照此规律,得到结论10:__________.16、若,. 1718、已知,则__________. 19、函数的定义域为 .(用集合表示)20、函数则 []x x ()[]2log f x x =12x <<()0f x =24x <<()1f x =48x <<()2f x =()()(0)f m f n m n =>>()⎪⎩⎪⎨⎧<+≥⎪⎭⎫ ⎝⎛=)4(3)4(21)(x x f x x f x=)3(log 2f21、若log a1,则a 的取值范围是 。

新高一对数测试题及答案

新高一对数测试题及答案

新高一对数测试题及答案一、选择题(每题3分,共30分)1. 对数函数y=log_a x(a>0,a≠1)的图象不经过的象限是:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 若log_a 2 + log_a 3 = 2,则a的值为:A. 2B. 3C. 6D. 1/6答案:A3. 计算log_2 8的值是:A. 1B. 2C. 3D. 4答案:B4. 函数y=log_a x(a>1)在区间(0,+∞)上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:A5. 计算log_5 25的值是:A. 1B. 2C. 5D. 0答案:B6. 函数y=log_a x(a>1)的图象关于:A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称答案:A7. 若log_a 5 = 2,则a的值为:A. 5B. 1/5C. √5D. 1/√5答案:A8. 计算log_3 9的值是:A. 1B. 2C. 3D. 6答案:B9. 函数y=log_a x(a>1)的图象在x轴上的截距是:A. 0B. 1C. aD. -a答案:A10. 若log_a 8 = 3,则a的值为:A. 2B. 3C. 4D. 8答案:A二、填空题(每题4分,共20分)1. 计算log_2 16的值为______。

答案:42. 若log_a 4 = 2,则a的值为______。

答案:23. 计算log_10 100的值为______。

答案:24. 若log_a 27 = 3,则a的值为______。

答案:35. 计算log_5 125的值为______。

答案:3三、解答题(每题10分,共50分)1. 求函数y=log_2 (x-1)的定义域。

答案:x > 12. 已知log_a 2 = 1/2,求log_a 8。

答案:23. 已知log_3 2 = 0.63,求log_3 18。

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

高一数学必修一对数与对数的运算练习题及答案

高一数学必修一对数与对数的运算练习题及答案

2.2.1 对数与对数的运算练习一一、选择题1、 25)(log 5a -(a ≠0)化简得结果是( ) A 、-a B 、a 2C 、|a |D 、a2、 log 7[log 3(log 2x )]=0,则21-x等于( ) A 、31B 、321C 、221D 、331 3、 n n ++1log (n n -+1)等于( )A 、1B 、-1C 、2D 、-24、 已知32a =,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -5、 2log (2)log log a a a M N M N -=+,则N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 6、 若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )A 、a<b<cB 、 a<c<bC 、c<b<aD 、c<a<b二、填空题8、 若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________ 9 、若lg2=a ,lg3=b ,则log 512=________10、 3a =2,则log 38-2log 36=__________11、 若2log 2,log 3,m n a a m n a+===___________________ 12、 lg25+lg2lg50+(lg2)2=三、解答题13、 222522122(lg )lg lg (lg )lg +⋅+-+ 14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(b a ab ⋅的值。

人教A版数学必修一《对数与对数函数》单元测试卷.docx

人教A版数学必修一《对数与对数函数》单元测试卷.docx

《对数与对数函数》单元测试卷注意事项:1.考察内容:对数与对数函数 2.题目难度:中等难度题型3.题型方面:8道选择,4道填空,4道解答。

4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试一、选择题1.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a b c >> B. a c b >>C .b a c >> D. c a b>>2.已知2x =72y=A ,且1x +1y=2,则A 的值是A .7B .7 2C .±7 2D .983.若a>0且a ≠1,且143log a <,则实数a 的取值范围是( )A .0<a<1B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a>14.函数y = log 2 ( x 2– 5x – 6 )单调递减区间是( )A .⎪⎭⎫ ⎝⎛∞-25,B .⎪⎭⎫⎝⎛+∞,25C .()1,-∞-D .(+∞,6)5.巳知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )A.(21)n n - B.2(1)n + C.2n D.2(1)n -6.若)1()1(32log ,log ,10+-+-==<<a a aa a aQ P a ,则P 与Q 的大小关系是 ( )A .P >QB .P <QC .P =QD .P 与Q 的大小不确定7.若函数y = log 12| x + a |的图象不经过第二象限,则a 的取值范围是( )(A )( 0,+ ∞ ), (B )[1,+ ∞ ) (C )( – ∞,0 ) (D )( – ∞,– 1 ]8.已知函数6s i n c o s 2111)(++⎪⎭⎫⎝⎛+-=x b x a x f x(a 、b 为常数,且1>a ),8)1000o (lg 8=g l f ,则)2lg (lg f 的值是( )(A) 8 (B) 4 (C) -4 (D) 与a 、b 有关的数二、填空题9.对于实数,,a b c ,若在⑴lg 21a c =--⑵lg32a b =-⑶lg 4222a c =--⑷lg5a c =+⑸lg 61a b c =+--中有且只有两个式子是不成立的,则不成立的式子是 10.已知函数()log (0,1)a f x x a a =>≠,若12()()3f x f x -=,则2212()()f x f x -= . 11.函数2()log (2)f x x =-的单调减区间是 .12.已知函数()()()[]111lg 22+++-=x a x a x f 的定义域为()+∞∞-,,则实数a 的取值范围是________________________.三、解答题13.设方程x 2-10x +2=0的两个根分别为α,β,求log 4α2-αβ+β2(α-β)2的值.14.设关于x 的方程(m+1)x 2-mx+m-1=0有实根时,实数m 的取值范围是集合A ,函数f(x)=lg[x 2-(a+2)x+2a]的定义域是集合B. (1)求集合A ;(2)若A B=B ,求实数a 的取值范围.15.已知函数()ln()(10)xxf x a b a b =->>>.(1) 求函数()f x 的定义域I ;(2) 判断函数()f x 在定义域I 上的单调性,并说明理由; (3)当,a b 满足什么关系时,()f x 在[)1+∞,上恒取正值。

2023-2024学年北京市怀柔区高中数学北师大 必修一对数运算和对数函数章节测试-6-含解析

2023-2024学年北京市怀柔区高中数学北师大 必修一对数运算和对数函数章节测试-6-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市怀柔区高中数学北师大 必修一对数运算和对数函数章节测试(6)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)①②①②⑤③④④⑤1. 已知等式 ,成立,那么下列结论:①;② ;③ ;④ ;⑤.其中可能成立的是( )A. B. C. D. 8910112. 假设某地初始物价为1,其物价每年以5%的增长率递增,当该地物价不低于1.5时,至少需要经过的年数为( )(参考数据:取 ,, )A. B. C. D. 3. 已知集合 , , 则=( )A. B. C. D.a>c >bc >a >bc >b >ab >c >a4. 已知a=log 0.50.3,b=log 30.5,c=0.5﹣0.3 , 则a ,b ,c 的大小关系是( )A. B. C. D. y=﹣log 3x y=3﹣xy=3xy=﹣3x5. 函数y=log 3x 的反函数是( )A. B. C. D.6. 已知实数,,,则有( )A. B. C. D.7. 若 ,则 ( )-11A. B. C. D.28. 已知函数 , 若(其中),则的最小值为( ).A. B. C. D.9. 已知 , , , ,则( )A. B. C. D.1210810. 等比数列的各项均为正数,且 , 则( )A. B. C. D.11. 若 , 则的大小关系是( )A.B.C.D.(﹣∞,4](﹣∞,2](﹣4,4] (﹣4,2]12. 已知函数f (x )=log 2(x 2﹣ax+3a )在[2,+∞)上是增函数,则a 的取值范围是( )A. B. C. D. 13. 计算 ; .14. 下列计算① ;② ;③ ;④ ;正确的有 .(写出所有正确的序号)15. 函数y=log a (x ﹣3)﹣2过的定点是16. 函数 的定义域为 .17. 求满足下列条件的各式的值(1) 若, 求的值;(2) 设,求证:.18. 某产品生产厂家生产一种产品,每生产这种产品(百台),其总成本为万元,其中固定成本为42万元,且每生产1百台的生产成本为15万元总成本固定成本生产成本销售收入万元满足,假定该产品产销平衡即生产的产品都能卖掉,根据上述条件,完成下列问题:(1) 写出总利润函数的解析式利润销售收入总成本;(2) 要使工厂有盈利,求产量的范围;(3) 工厂生产多少台产品时,可使盈利最大?19. 近年来郑州空气污染较为严重.现随机抽取一年(365天)内100天的空气中指数的检测数据,统计结果如下:空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由空气污染造成的经济损失为(单位:元),指数为,当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.附:,其中 .(1) 试写出的表达式;(2) 试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;(3) 若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?0.250.150.100.050.0250.0100.0050.0011.322.07 2.703.74 5.02 6.637.8710.8220. 数列的前项和为满足,且,,成等差数列.(1) 求数列的通项公式;(2) 设,求数列的前和 .21. (1)已知集合A={x|﹣8<x<﹣2},B={x|x<﹣3},求A∪B,A∩(∁R B);(2)设函数f(x)=+ln(x+1)的定义域为C,求C.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)19.(1)(2)(3)20.(1)(2)21.。

[高中数学必修一]221对数与对数函数测试题测试

[高中数学必修一]221对数与对数函数测试题测试

对数与对数函数测试题一、 选择题: 1.3a+5b= A ,且a 1+b1= 2,那么A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.a >0,且10x= lg(10x)+lga1,那么x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.假设x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,那么x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).614.假设log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(21,1) (D).(1,+∞) 5. x =31log 121+31log 151,那么x 的值属于区间( ).(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.lga ,lgb 是方程2x 2-4x +1 = 0的两个根,那么(lgba )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a= 4b = 6c,那么( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b28.函数y = log 5.0(ax 2+2x +1)的值域为R ,那么实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.lg2≈,且a = 27×811×510的位数是M ,那么M 为( ).(A).20 (B).19 (C).21 (D).22 10.假设log 7[ log 3( log 2x)] = 0,那么x21为( ).(A).321 (B).331 (C).21 (D).42 11.假设0<a <1,函数y = log a [1-(21)x]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <0 12.不等式log a (1-21+x )>0的解集是(-∞,-2),那么a 的取值范围是( ). (A).0<a <21 (B).21<a <1 (C).0<a <1 (D).a >1 二、 填空题13.假设lg2 = a ,lg3 = b ,那么lg 54=_____________. 14.a = 7.0,b =1.1,c =9.0,那么a ,b ,c 的大小关系是_______________.15.log12-(3+22) = ____________.16.设函数)(x f = 2x(x ≤0)的反函数为y =)(1x f -,那么函数y =)12(1--x f 的定义域为________.三、 解答题17.lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求xcb 11+·yac 11+·xba 11+的值.18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系.19.设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值.20.log 2[ log 21( log 2x)] = log 3[ log 31( log 3y)] = log 5[ log 51( log 5z)] = 0,试比拟x 、y 、z的大小.21.a >1,)(x f = log a (a -a x). ⑴ 求)(x f 的定义域、值域; ⑵判断函数)(x f 的单调性 ,并证明;⑶解不等式:)2(21--x f>)(x f .22.)(x f = log 21[ax2+2(ab)x -bx2+1],其中a >0,b >0,求使)(x f <0的x 的取值范围.参考答案: 一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D). 提示:1.∵3a+5b= A ,∴a = log 3A ,b = log 5A ,∴a 1+b1= log A 3+log A 5 = log A 15 = 2, ∴A =15,应选(B).2.10x= lg(10x)+lga 1= lg(10x·a1) = lg10 = 1,所以 x = 0,应选(B). 3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg 61,所以x 1x 2=61,应选(D).4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >21,综合得21<a <1,所以选(C). 5.x = log 3121+log 3151= log 31(21×51) = log 31101= log 310,∵9<10<27,∴ 2<log 310<3,应选(D).6.由lga +lgb = 2,lga·lgb =21,又(lg ba )2= (lga -lgb)2= (lga +lgb)2-4lga·lgb = 2,应选(C).7.设3a= 4b = 6c= k ,那么a = log 3k ,b= log 4k ,c = log 6k , 从而c 1= log k 6 = log k 3+21log k 4 =a 1+b 21,故c 2=a 2+b1,所以选(B). 8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,那么函数u(x) = ax 2+2x +1应取遍所有正实数,当a = 0时,u(x) = 2x +1在x >-21时能取遍所有正实数;当a ≠0时,必有⎩⎨⎧≥-=∆.44,0a >a ⇒0<a ≤1.所以0≤a ≤1,应选(A).9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) =30lg2+10≈,∴a = 1003.19,即a 有20位,也就是M = 20,应选(A).10.由于log 3( log 2x) = 1,那么log 2x = 3,所以x = 8,因此 x21-= 821-=81=221=42,应选(D).11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(21)x <1,所以y = log a [1-(21)x ]在定义域上是减函数且y >0,应选(C).12.由-∞<x <-2知,1-21+x >1,所以a >1,应选(D). 二、填空题 13.21a +23b 14.b <a <c . 15.-2. 16.21<x ≤1 提示: 13.lg 54=21lg(2×33) =21( lg2+3lg3) =21a +23b . 14.0<a =7.0<7.0 = 1,b =1.1<0,c =9.0>0= 1,故b <a <c .15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-,∴log 12-(3+22) =log 12-(2-1)2-=-2.16.)(1x f-= log 2x (0<x ≤1=,y =)12(1--x f 的定义域为0<2x -1≤1,即21<x ≤1为所求函数的定义域.二、 解答题17.由lgx = a ,lgy = b ,lgz = c ,得x = 10a,y = 10b ,z = 10c,所以x cb 11+·y ac 11+·x ba 11+=10)()()(cac b b a b c a c a b +++++=10111---= 103-=10001.18.由得,⎩⎨⎧=-=+.,q ab p b a又lg(a +b) = lga +lgb ,即a +b = ab , 再注意到a >0,b >0,可得-p = q >0, 所以p 和q 满足的关系式为p +q = 0且q >0. 19.由a 2-2ab -9b 2= 0,得(b a )2-2(ba)-9 = 0, 令ba = x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9, ∴lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2) = lg 22221546b ab a b ab a ++-+= lg 154622++-+x x x x =lg154)92(6)92(+++-++x x x x= lg)4(6)1(3++x x = lg )4(21++x x = lg )4101(21101++++= lg 1010=-21.20.由log 2[ log 21( log 2x)] = 0得,log 21( log 2x)= 1,log 2x =21,即x = 221;由log 3[ log 31( log 3y)] = 0得,log 31( log 3y) = 1,log 3y =31,即y =331;由log 5[ log 51( log 5z)] = 0得,log 51( log 5z) = 1,log 5z =51,即z = 551.∵y =331= 362= 961,∴x = 221= 263= 861,∴y >x , 又∵x = 221= 2105= 32101,z = 551= 5102= 25101,∴x >z .故y >x >z .21.为使函数有意义,需满足a -a x>0,即a x<a ,当注意到a >1时,所求函数的定义域为(-∞,1),又log a (a -a x)<log a a = 1,故所求函数的值域为(-∞,1). ⑵设x 1<x 2<1,那么a -a 1x >a -a2x ,所以)x (1f -)x (2f = log a (a -a1x )-log a (a-a2x )>0,即)x (1f >)x (2f .所以函数)(x f 为减函数. ⑶易求得)(x f 的反函数为)(1x f -= log a (a -a x) (x <1),由)2(21--x f >)(x f ,得log a (a -a)2(2-x )>log a (a -a x),∴a)2(2-x <a x,即x 2-2<x ,解此不等式,得-1<x <2,再注意到函数)(x f 的定义域时,故原不等式的解为-1<x <1. 22.要使)(x f <0,因为对数函数y = log 21x 是减函数,须使ax2+2(ab)x -bx2+1>1,即ax2+2(ab)x -bx2>0,即ax2+2(ab)x +bx2>2bx2,∴(a x +b x )2>2bx2,又a >0,b >0,∴a x+b x>2b x,即a x>(2-1)b x,所以(ba )x>2-1. 当a >b >0时,x >log ba (2-1);当a =b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).综上所述,使)(x f <0的x 的取值范围是:当a >b >0时,x >log ba (2-1);当a =b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《对数与对数函数测试题》测试一、 选择题:1.已知3a =5b = A ,且a 1+b1= 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).2252.已知a >0,且10x = lg(10x)+1lg x,则x 的值是( ).(A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2) lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).614.若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(21,1) (D).(1,+∞) 5. 已知x =31log 121+31log 151,则x 的值属于区间( ).(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lgba )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a= 4b= 6c,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ). (A).20 (B).19 (C).21 (D).22 10.若log 7[ log 3( log 2x)] = 0,则x 21为( ).(A).321 (B).331 (C).21 (D).42 11.若0<a <1,函数y = log a [1-(21)x]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <012.已知不等式log a (1-21+x )>0的解集是(-∞,-2),则a 的取值范围是( ). (A).0<a <21 (B).21<a <1 (C).0<a <1 (D).a >1 二、 填空题13.若lg2 = a ,lg3 = b ,则lg 54=_____________.14.已知a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是_______________. 15.log12-(3+22) = ____________.16.设函数)(x f = 2x (x ≤0)的反函数为y =)(1x f -,则函数y =)12(1--x f的定义域为________.三、 解答题17.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求x cb 11+·yac 11+·xba 11+的值.18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系.19.设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值.20.已知log 2[ log 21( log 2x)] = log 3[ log 31( log 3y)] = log 5[ log 51( log 5z)] = 0,试比较x 、y 、z 的大小.21.已知a >1,)(x f = log a (a -a x).⑴ 求)(x f 的定义域、值域;⑵判断函数)(x f 的单调性 ,并证明;⑶解不等式:)2(21--x f >)(x f .22.已知)(x f = log 21[a x 2+2(ab)x -b x 2+1],其中a >0,b >0,求使)(x f <0的x 的取值范围.参考答案: 一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D). 提示:1.∵3a +5b = A ,∴a = log 3A ,b = log 5A ,∴a 1+b1= log A 3+log A 5 = log A 15 = 2,∴A =15,故选(B).2.10x = lg(10x)+lga 1= lg(10x·a1) = lg10 = 1,所以 x = 0,故选(B). 3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg61,所以x 1x 2=61,故选(D). 4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >21,综合得21<a <1,所以选(C). 5.x = log 3121+log 3151= log 31(21×51) = log 31101= log 310,∵9<10<27,∴ 2<log 310<3,故选(D). 6.由已知lga +lgb = 2,lga·lgb =21,又(lg ba )2= (lga -lgb)2= (lga +lgb)2-4lga·lgb = 2,故选(C). 7.设3a = 4b = 6c= k ,则a = log 3k ,b= log 4k ,c = log 6k ,而c 1= log k 6 = log k 3+21log k 4 =a 1+b21,故B 8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,则函数u(x) = ax 2+2x +1应取遍所有正实数, 当a = 0时,u(x) = 2x +1在x >-21时能取遍所有正实数; 当a ≠0时,必有⎩⎨⎧≥-=∆.44,0a >a ⇒0<a ≤1.所以0≤a ≤1,故选(A).9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a =1003.19,即a 有20位,也就是M = 20,故选(A).10.由于log 3( log 2x) = 1,则log 2x = 3,所以x = 8,因此 x21-= 821-=81=221=42,故选(D). 11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(21)x <1,所以y = log a [1-(21)x ]在定义域上是减且y >0, 12.由-∞<x <-2知,1-21+x >1,所以a >1,故选(D). 13.21a +23b 14.b <a <c . 15.-2. 16.21<x ≤1 提示:13.lg 54=21lg(2×33) =21( lg2+3lg3) =21a +23b . 14.0<a = log 7.00.8<log 7.00.7 = 1,b = log 1.10.9<0,c = 1.19.0>1.10= 1,故b <a <c .15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-,∴log 12-(3+22) =log 12-(2-1)2-=-2. 16.)(1x f-= log 2x (0<x ≤1=,y =)12(1--x f的定义域为0<2x -1≤1,即21<x ≤1为所求函数的定义域. 17.由lgx = a ,lgy = b ,lgz = c ,得x = 10a,y = 10b,z = 10c,所以x cb 11+·y ac 11+·x ba 11+=10)()()(cac b b a b c a c a b +++++=10111---= 103-=10001. 18.由已知得,⎩⎨⎧=-=+.,q ab p b a 又lg(a +b) = lga +lgb ,即a +b = ab ,再注意到a >0,b >0,可得-p = q >0,所以p 和q 满足的关系式为p +q = 0且q >0. 19.由a 2-2ab -9b 2= 0,得(b a )2-2(ba)-9 = 0, 令ba = x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9, ∴lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2) = lg 22221546b ab a b ab a ++-+= lg 154622++-+x x x x = lg 154)92(6)92(+++-++x x x x = lg)4(6)1(3++x x = lg )4(21++x x = lg )4101(21101++++= lg 1010=-21.20.由log 2[ log 21( log 2x)] = 0得,log 21( log 2x)= 1,log 2x =21,即x = 221;由log 3[ log 31( log 3y)] = 0得,log 31( log 3y) = 1,log 3y =31,即y =331;由log 5[ log 51( log 5z)] = 0得,log 51( log 5z) = 1,log 5z =51,即z = 551.∵y =331= 362= 961,∴x = 221= 263= 861,∴y >x , 又∵x = 221= 2105= 32101,z = 551= 5102= 25101,∴x >z .故y >x >z .21.为使函数有意义,需满足a -a x >0,即a x <a ,当注意到a >1时,所求函数的定义域为(-∞,1), 又log a (a -a x )<log a a = 1,故所求函数的值域为(-∞,1). ⑵设x 1<x 2<1,则a -a1x >a -a2x ,所以)x (1f -)x (2f = log a (a -a1x )-log a (a -a2x )>0,即)x (1f >)x (2f .所以函数)(x f 为减函数. ⑶易求得)(x f 的反函数为)(1x f -= log a (a -a x) (x <1),由)2(21--x f >)(x f ,得log a (a -a)2(2-x )>log a (a -a x ),∴a)2(2-x <a x ,即x 2-2<x ,解此不等式,得-1<x <2,再注意到函数)(x f 的定义域时,故原不等式的解为-1<x <1. 22.要使)(x f <0,因为对数函数y = log 21x 是减函数,须使ax2+2(ab)x -bx2+1>1,即ax2+2(ab)x -bx2>0,即ax2+2(ab)x +bx2>2bx2,∴(a x +b x )2>2bx2,又a >0,b >0,∴a x +b x >2b x ,即a x >(2-1)b x,所以(ba )x>2-1. 当a >b >0时,x >log ba (2-1);当a =b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).综上所述,使)(x f <0的x 的取值范围是:当a >b >0时,x >log ba (2-1);当a =b >0时,x ∈R ;当b >a >0时,x <log ba (2-1).。

相关文档
最新文档