有理数的加法和简便运算
有理数加法脱式计算简便运算题
有理数加法是初中数学中的基础知识之一,掌握有理数加法的脱式计算方法对学生提高计算效率、巩固数学基础具有重要意义。
下面将介绍有理数加法脱式计算的简便运算题,供学生练习和巩固掌握有理数加法的计算方法。
一、正数加正数1. 5 + 2 =2. 8 + 7 =3. 15 + 9 =4. 23 + 46 =5. 102 + 38 =二、正数加负数1. 5 + (-2) =2. 8 + (-7) =3. 15 + (-9) =4. 23 + (-46) =5. 102 + (-38) =三、负数加正数1. (-5) + 2 =2. (-8) + 7 =3. (-15) + 9 =4. (-23) + 46 =5. (-102) + 38 =四、负数加负数1. (-5) + (-2) =2. (-8) + (-7) =3. (-15) + (-9) =4. (-23) + (-46) =5. (-102) + (-38) =以上是有理数加法脱式计算的简便运算题,通过练习这些题目,学生可以加深对有理数加法脱式计算方法的理解和掌握,提高计算能力和数学素养。
希望学生们认真对待有理数加法的学习,勤加练习,通过不断反复的练习来提高自己的运算能力,巩固数学基础,为进一步学习数学打下坚实的基础。
有理数加法是初中数学中的基础知识之一,有理数加法的理解和熟练掌握对学生打下坚实的数学基础具有重要意义。
在加法运算中,正数与正数相加、正数与负数相加、负数与正数相加、负数与负数相加分别对应着不同的计算规则,学生们需要通过大量的练习来加深对有理数加法的理解和掌握,提高计算能力和数学素养。
有理数加法的脱式计算方法是学生们在初中阶段需要掌握的重要计算技巧之一。
脱式计算方法能够帮助学生们快速准确地完成有理数加法运算,提高计算效率,为接下来更复杂的数学知识打下坚实的基础。
为了帮助学生们更好地掌握有理数加法脱式计算方法,下面将继续介绍有理数加法的脱式计算的简便运算题,并针对不同类型的题目进行练习和讲解。
有理数的加减运算
有理数的加减运算有理数是指能够表示成两个整数的比值的数,包括正整数、负整数、零和分数。
有理数的运算分为加法和减法两种。
一、有理数的加法运算有理数的加法运算是指将两个有理数相加,得到一个新的有理数。
1. 同号的有理数相加:两个正数相加时,直接将它们的绝对值相加,符号不变。
例如:3 + 5 = 8两个负数相加时,直接将它们的绝对值相加,结果再加负号。
例如:-2 + (-4) = -62. 异号的有理数相加:两个有理数的符号不同,先将它们的绝对值相减,然后取绝对值较大的数的符号。
例如:5 + (-9) = -4二、有理数的减法运算有理数的减法运算是指将一个有理数减去另一个有理数,得到一个新的有理数。
1. 同号的有理数相减:两个正数相减时,直接将它们的绝对值相减,结果为正数。
例如:7 - 3 = 4两个负数相减时,直接将它们的绝对值相减,结果为负数。
例如:-4 - (-2) = -22. 异号的有理数相减:一个正数减去一个负数,可以转化为加法运算,去掉减号,将被减数的相反数加上减数。
例如:6 - (-5) = 6 + 5 = 11注意事项:1. 在有理数的加减运算中,可以根据需要进行括号化简,先计算括号内的运算,再进行整体的加减运算。
2. 加法和减法的结果仍然是有理数。
3. 有理数的运算满足交换律和结合律。
即,两个有理数相加/减的结果与次序无关,多个有理数相加/减的结果与加/减的次序无关。
总结:有理数的加减运算包括同号的有理数相加、异号的有理数相加、同号的有理数相减和异号的有理数相减。
在运算过程中,需要注意符号的变化和运算规则。
加法和减法的运算结果仍然是有理数。
有理数的运算满足交换律和结合律,次序可以任意调整,不影响最终结果。
通过掌握有理数的加减运算规则,可以更好地解决与有理数相关的问题。
有理数的加法运算规则及简便方法
有理数的加法运算规则及简便方法有理数是数学中的一类数,包括整数、分数和小数。
它们可以用来表示各种实际问题中的量,如温度、时间、距离等等。
在进行有理数的运算中,加法是常见且重要的一种运算。
本文将介绍有理数的加法运算规则及简便方法,以帮助读者更好地理解和运用。
一、有理数的加法运算规则1. 同号整数相加:当两个整数的符号相同时,只需将它们的绝对值相加,然后保留它们的符号,即可得到它们的和。
例如:(-3) + (-5) = -8,(-7) + (-2) = -92. 异号整数相加:当两个整数的符号不同时,我们可以按照以下步骤进行运算:a. 求两个整数的绝对值之差。
b. 取绝对值较大的整数的符号作为和的符号。
例如:(-4) + 7,先计算绝对值之差,即 |(-4)| - |7| = 3;因为绝对值较大的整数是7,所以和的符号为正,即:(-4) + 7 = 33. 小数和整数相加:将小数和整数转化为分数形式,然后再进行运算。
例如:1.5 + 2 = 1.5 + 2.0 = 3.54. 分数相加:分数相加的一般步骤如下:a. 确定两个分数的公共分母。
b. 将两个分数的分子相加,分母保持不变。
c. 对所得的分数进行约分,得到最简形式。
例如:1/3 + 2/5,公共分母为3和5的最小公倍数15,所以1/3 + 2/5 = (1 * 5)/(3 * 5) + (2 * 3)/(5 * 3) = 5/15 + 6/15 = 11/15二、有理数加法的简便方法有理数加法的规则虽然清晰,但在实际计算中可能会比较繁琐。
为了简化计算,我们可以使用一些常见的简便方法,如下所示:1. 利用数轴进行计算:将有理数在数轴上表示出来,根据符号和数轴上的位置进行加法运算。
这种方式直观且易于理解,尤其适合初学者。
2. 利用整数的法则:将有理数化为整数的和,然后按照整数的加法法则进行计算。
最后再根据题目要求将结果转换为有理数形式。
3. 利用分数的法则:将有理数化为分数的和,然后按照分数的加法法则进行计算。
有理数加减混合运算中的简便计算
(2)49-58+35-49+38-45; 解:-290
(3)(-0.5)-(-314)+2.75-(-712).
解:13
【变式训练】 1. 计算: (1)-2.4+3.5-4.6+3.5; 解:0
(2)(-478)-(-512)+(-414)-(+3187);
解:-834
(3)1+(-2)+3+(-4)+5+(-6)+7+(-8)+…+197+(-198).
6. 去年7月份小明到银行开户,存入1500元钱,以后每月根据收支情况存取 一笔钱,下表为小明从8月份到12月份的存款情况: 则截止到去年12月份,存折上共有__00
9 -200
10 +500
11 +300
12 -250
三、解答题 7. 计算: (1)456-335-(-316)-125; 解:3
解:(1)因为-9+11+7-14-6+13-6-8=(11+7+13)+(-9-14-6-6 -8)=-12(km),故C地在A地的正西方且相距A地12 km (2)因为-9+11+ 7-14=(11+7)+(-9-14)=-5,所以B点在A点的正西方5 km处,画出的 数轴如图所示:
9. (广州模拟)试分别在120,130,140,150,160,170,180,190的前面添上“+” 或“-”号,使这些正数与负数的和为 1,你能写出两种不同的添法吗?
D.-13+34-16-14=14+34-13-16
4. (深圳月考)算式 11213-11212+11216的值为( B ) A.-112 B.112 C.0 D.108
二、填空题 5. 计算: (1)-(-512)+1627+(-15.5)-(-357)=___1_0___;
(2)2.5+(-214)-1.75+(-12)=__-__2___; (3)-3+5-7+9-11+13=____6____.
有理数加法的简便计算
a+(b+c) 加法结合律: (a+b)+c=__________
灵活运用加法运算律可使有理数多位数加法运算边的简便快速。
例4 每袋小麦的标准重量为90千克,10袋小百货称重记录如图所示,与标 准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总 重量 是多少?
91.5 89 91.2
91
91
91.3
88.7
88.8
91.8
91.1
解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 =905.4 再计算总计超过多少千克 905.4-90X10=5.4
90X10+5.4=905.4
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克。
有人建议向火星发射如下图 案,它叫做幻方,其中9个 格中的点数分别是1,2,3, 4,5,6,7,8,9。每一横 行、每一竖列以及两条斜对 角线上的点数的和都是15, 如果火星上有智能生物,那 么他们可以以这种”数学语 言“了解到地球上也有智能 生物(人)。
你能将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图 幻方的9个空格中,使得处于同一横行,同一竖列、同一斜对角线上的3 个数相加都得0吗?
你是将0填入中央的格中吗?
是
有理数的加法中: 两个数相加,交换加数的位置,和不变。 加法交换律: a+b=
b+c
有理数加法中: 三个数相加,先把前两个数相加,或者先 把后两个数相加,和不变。
例4 每袋小麦的标准重量为90千克,10袋小百货称重记录如图所示,与标 准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总 重量 是多少?
有理数简便运算方法
有理数简便运算方法理数是可以表示为整数或者有限小数的数。
有理数的运算可以通过将有理数转化为分数来进行简化。
以下是有理数的简便运算方法。
一.有理数的加法和减法运算1.同号有理数相加:若两个有理数同为正数或同为负数,则只需将它们的绝对值相加,然后给结果加上相同的符号。
例如:2+3=5,(-2)+(-3)=-52.异号有理数相加:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相减,然后给结果取两个数绝对值较大的符号。
例如:3+(-2)=3-2=1,(-3)+2=2-3=-13.有理数的减法:有理数的减法可以转化为加法运算,即将减数变为其相反数,然后进行加法运算。
例如:2-3=2+(-3)=-1二.有理数的乘法运算1.同号有理数相乘:若两个有理数同为正数或同为负数,则只需将它们的绝对值相乘,然后给结果加上相同的符号。
例如:2×3=6,(-2)×(-3)=62.异号有理数相乘:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相乘,然后给结果加上负号。
例如:2×(-3)=-(2×3)=-6,(-2)×3=-(2×3)=-6三.有理数的除法运算有理数的除法可以转化为乘法运算,即将被除数乘以除数的倒数,即除数的倒数是除数分子与分母交换位置得到的分数。
例如:2÷3=2×(1/3)=2/3,(-2)÷(-3)=(-2)×(1/(-3))=2/3四.有理数的混合运算有理数的混合运算可以按照四则运算的顺序进行:先进行括号内的运算,然后进行乘除法运算,最后进行加减法运算。
例如:2+(3×4)=2+12=14,3-(2+1)×4=3-3×4=3-12=-9以上是有理数的简便运算方法,通过将有理数转化为分数进行运算,可以简化计算的步骤,方便快捷地进行有理数的加减乘除运算。
专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)-2024-2025学年七年级
专题1.5 有理数加减混合运算解题技巧和方法(知识梳理与考点分类讲解)纵观整个初中阶段,学生在重视数学思维的时候,对计算能力的培养往往不够,到了初三及中考时,往往在计算上正确率不高,或计算效率不高,这往往就是基础计算没有打牢,尤其是计算的方法和技巧不够,初一上学期,有多章计算题,对于很多在小学阶段计算薄弱的同学要特别注意,本篇主要介绍有理数加减混合运算中常见的技巧和方法,在计算过程中可以试着使用,会将一些稍复杂的计算简单化。
常见的有理数加减混合运算技巧与方法:【技巧1】相反数结合法互为相反数的两个数和为0,我们在计算时,可以将互为相反数的两个数先结合进行计算。
【技巧2】同号结合法在有理数的加减混合运算中,比小学多引入了负数的加减运算,有些同学在计算时会将减号与负号混淆,不知道如何计算,因此我们在计算时可以将同号相结合,最后再按照有理数的加减法则进行计算。
【技巧3】同分母结合法在计算时,我们可以将同分母的先进行计算,异分母需要通分,有时计算上会比较繁琐。
【技巧4】凑整法在进行计算时,我们经常会遇到小数、分数、百分数等相加减,我们除了要熟练掌握三者之间的关系外,在计算时,也可以利用凑整法将题目简便化。
【技巧5】拆分法有时遇到带分数时,我们可以将之拆分成整数与真分数的和进行计算,有些计算中也可以将某个数拆分成两个数之和(差)或乘积。
具体解题过程的的解题方法与技巧往往不是单一的方法与技巧,而是综合灵活运用方法与技巧进行解题,学生应当适当多练习巩固。
【技巧1】相反数结合法【例1】:计算:11 0.53 2.75542⎛⎫⎛⎫---+-+⎪ ⎪⎝⎭⎝⎭【答案】0【分析】先将带分数化为小数,然后去掉括号,利用加法结合律和交换律进行计算即可求出答案.解:原式0.5 3.25 2.75 5.5=-++-()()0.5 5.5 3.25 2.75=--++ 66=-+0=【点拨】本题考查有理数的加减运算,解题的关键是熟练运用有理数的加减运算法则,本题属于基础题型.【举一反三】【变式1】计算: ()31282869+-++;【分析】把互为相反数的两数相加;解:()31282869+-++, ()31282869=⎡⎤⎣-⎦+++,31069=++,100=;【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【变式2】计算:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】15-【分析】利用有理数加法的交换律和结合律计算,即可求解. 解:1241123523⎛⎫⎛⎫⎛⎫+---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1121422335⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-+---- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()4015=+-+15=-.【点拨】本题主要考查了有理数简便算法,熟练掌握有理数加法的交换律和结合律是解题的关键.【技巧2】同号结合法【例2】用简便方法运算(1)1.4+(-0.2)+0.6+(-1.8); (2)(1)()21112 2.75524⎛⎫----+-+ ⎪⎝⎭【分析】(1)利用加法的运算律解通过同号结合得到互为相反数解答即可;(2)先化简绝对值、将分数化成小数,再利用有理数的加减运算法则和运算律利用同号结合法进行计算即可得;解:(1)1.4+(-0.2)+0.6+(-1.8) (2) ()21112 2.75524⎛⎫----+-+ ⎪⎝⎭=(1.4+0.6)+(-0.2-1.8) 0.4 1.5 2.25 2.75=---- =2+(-2) ()()0.4 1.5 2.25 2.75=-+-+ =0; 1.95=--【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律并通过同号结合和相反数和为0是解题关键.【举一反三】【变式1】用简便方法运算.(1)()()()()0.5 3.2 2.8 6.5---++-+; (2) 13211()()()25323-++-++-.【答案】(1)1-; (2)25-【分析】按照有理数的加减法运算法则和运算律进行计算.解:(1)原式0.5 3.2 2.8 6.5=-++- (2)11213()()22335=-+-++()()0.5 6.5 3.2 2.8=--++ 3015=-+()76=-+ 25=-1=-.【点拨】本题考查了有理数的加减混合运算,解题的关键是掌握有理数的加减法运算法则和运算律.【技巧3】同分母结合法【例3】计算:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.【答案】 2.25-【分析】先算括号里,再算括号外,转化为同分母相加减即可解答.解:15533.2542244⎡⎤⎛⎫⎛⎫----+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫=--++-+ ⎪⎢⎥⎝⎭⎣⎦15533.2542244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦155193.252244⎡⎤⎛⎫⎛⎫=--++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦73.2522⎛⎫=-+ ⎪⎝⎭3.25 5.5=- 2.25=-.【点拨】本题考查有理数加减混合运算.解题的关键是熟记有理数加减法则,混合运算顺序,运算定律,准确熟练地进行计算.【举一反三】【变式1】计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是( ) A .127533648787⎡⎤⎡⎤⎛⎫⎛⎫+-++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦B .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦C .271536347887⎡⎤⎡⎤⎛⎫⎛⎫-+++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦D .172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦【答案】D【分析】根据运算律在简便运算中运用方法,先计算同分母分数,再算加法即可得出结论. 解:计算127533648787⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭时运算律用得最合理的是172536348877⎡⎤⎡⎤⎛⎫⎛⎫++-+- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦;故选:D .【点拨】此题考查了有理数的加法的简便运算,掌握有理数简便运算中运算律的运用方法是解题的关键.【变式2】嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是( )A .2111(43)(2)3322+-+B .2111(42)(3)3223-++C .2111(43)(2)3322+--D .2111(43)(2)3322---【答案】C【分析】原式利用加法交换律和结合律将分母相同的结合即可.解:嘉琪同学在计算21114233223-++时,运算过程正确且比较简便的是2111(43)(2)3322+--.故选:C .【点拨】此题考查了有理数的加减混合运算,熟练掌握加法交换律与加法结合律是解本题的关键.【技巧4】凑整法【例4】用简便方法运算:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【答案】8解析:可把相加得到整数的数相加. 解:3222654115353⎛⎫⎛⎫⎛⎫⎛⎫++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3222645115533⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭,()113=+-,8=.【点拨】本题考查了有理数的加减混合运算的简便运算,合理地运用有理数的加法运算律使计算简化是解题的关键.【举一反三】【变式1】()()()2.48 4.337.52 4.33-++-+-=______.【答案】-10【分析】用加法交换律和加法结合律进行计算即可. 解:原式=()()()[ 2.487.52][4.33 4.33]-+-++-=10-. 故答案为:10-.【点拨】本题主要考查了有理数的混合运算,熟练掌握有理数的运算顺序和运算法则,以及加法交换律和结合律在有理数范围同样适用是解题的关键.【变式2】计算:31120.2572 1.5 2.75424⎛⎫⎛⎫-++-+-++ ⎪ ⎪⎝⎭⎝⎭. 【答案】8-【分析】可利用加法交换律和结合律以及分数与小数的互化进行有理数的加减运算即可求解.解:原式 2.750.257.5 2.25 1.5 2.75=-+--++()()()2.75 2.750.25 2.257.5 1.5=-++-+-+026=--8=-.【点拨】本题考查有理数的加减混合运算,解答的关键是熟练掌握运算法则和运算顺序,会利用加法运算律进行简便运算.【技巧5】拆分法【例5】阅读:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,可以按如下方法计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭.上面这种方法叫拆项法.仿照上面的方法,请你计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】1312-【分析】利用拆项法计算即可.解:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()75120222021140442486⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()75120222021140442486⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-+-+-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦261302412⎛⎫=+-=- ⎪⎝⎭.【点拨】本题主要考查有理数加减法的计算,熟练掌握有理数加减法的运算法则是解题的关键.【举一反三】【变式1】.计算:5212018201740351632⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】3-【分析】先将带分数拆分成两项,再利用有理数的加减运算法则和运算律进行计算即可得.解:原式5212018201740351632⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5212018201740351632=----+--()5214035201820171632⎛⎫=----++ ⎪⎝⎭5431666⎛⎫=--++ ⎪⎝⎭12=--3=-.【点拨】本题考查了化简绝对值、有理数的加减混合运算,熟练掌握有理数的加减运算法则和运算律是解题关键.【变式2】计算:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】113-【分析】先分组,将222009401833⎛⎫-+ ⎪⎝⎭放在一起计算得到整数,再将结果相加即可;解:522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭225120094018200813362⎛⎫⎛⎫⎛⎫=-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5120092008162⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭11162=- 131=-;【点拨】此题考查有理数的加减混合运算,掌握正确的计算顺序是解题的关键.。
七年级上册数学简便运算题
七年级上册数学简便运算题
一、有理数加法的简便运算
1. 计算:公式
解析:
我们可以利用加法交换律和结合律来简便计算。
首先将公式结合在一起,公式结合在一起。
公式,公式。
然后将这两个结果相加:公式。
2. 计算:公式
解析:
同样利用加法交换律和结合律,把相邻的两个数相加。
公式
每一组的结果都是公式,一共有5组。
所以结果为公式。
二、有理数乘法的简便运算
1. 计算:公式
解析:
根据乘法交换律和结合律。
先将公式和公式结合起来相乘。
公式,再乘以公式,公式。
2. 计算:公式
解析:
这里运用乘法分配律公式。
公式
计算可得公式。
三、整式加减中的简便运算(合并同类项的简便应用)
1. 化简:公式
解析:
首先找出同类项,公式和公式是同类项,公式和公式是同类项。
根据合并同类项的法则,同类项的系数相加。
公式。
2. 计算:公式
解析:
把公式和公式分别看作整体。
先合并公式的同类项:公式。
原式变为公式。
再去括号:公式。
有理数的加减混合运算专题
有理数的加减混合运算专题一、绝对值补充 例:若0211=-+-b a ,求ab 2的值。
练习:已知3,2==y x ,且y x <,求y x +的值。
利用绝对值来确定整数利用绝对值来确定整数时,先由绝对值的意义在数轴上找出数的范围,再确定这个范围内的整数。
例:⑴求绝对值小于5的整数。
⑵求绝对值不小于5的整数。
⑶求绝对值大于5的整数。
⑷求绝对值不大于5的整数。
二、有理数的加减法1、有理数加法的简便运算⑴互为相反数的两个数先相加——“相反数结合法”; 例:计算3125.5312++-。
⑵符号相同的两个数先相加——“同号结合法”; 计算⎪⎭⎫ ⎝⎛-++-2135.5312⑶分母相同的数先相加——“同分母结合法”; 计算322216317++-⑷几个数相加得到整数,先相加——“凑整法”;计算3.26.55.02.7+++⑸整数与整数、小数与小数相加——“同形结合法”。
计算2.76)5()3.2(3++-+-+。
2、巩固提升 ⑴⎪⎭⎫ ⎝⎛+-+315213212 ⑵⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++814432125.075.0⑶75.7613437613++⎪⎭⎫ ⎝⎛-+- ⑷()()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++3、有理数减法步骤:①将减号转化为加号 ②按有理数加法法则进行运算⑴口答:___)5(0=--;____0)5(=--;____2176=-;____9)2(=--。
⑵习题:计算①)8()3()5()23(-----+- ② 132612743-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+-4、有理数加减混合运算一般步骤:①把式子中的减法转化成加法,去掉括号和加号②进行加法的简便运算。
⑴计算下列各题①31483652175.2+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-- ②4123132153212--⎪⎭⎫ ⎝⎛---③15.12156.24135.0+-++- ④31272319151173-+-+-+-5、有理数减法的应用有理数的减法往往和学过的相反数、绝对值等知识相结合,在解决这类题目时,关键是理解其他相关的概念。
有理数加减运算
有理数加减运算知识要点:1、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.1、有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差2、有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a • b =b • a (加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变(a b) c二a (b c)(加法结合律)3、有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算③多个加数相加时,若有互为相反数的两个数,可先结合相加得零④若有可以凑整的数,即相加得整数时,可先结合相加⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.4、有理数减法法则:减去一个数,等于加这个数的相反数.a - b二a • (_b)5、有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.6、有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:(3) (-0.15)七一9 (5) (-11)=3-0.15-9 5-11,它的含义是正3,负0.15,负9,正5,负11的和.(4)22+ (-2 - ) + (-1 —) 5 8 12+43+ (-11 ) +(-3 1 );5 8 12⑹—0.5 - 37 (3)例题精讲:【例1】计算下列各式。
有理数的加法与减法运算
有理数的加法与减法运算一、有理数加法运算:1.定义:有理数的加法是将两个有理数相加得到一个新的有理数。
2.加法法则:a)同号相加,保留同号,并把绝对值相加。
b)异号相加,保留绝对值较大的符号,并把绝对值相减。
3.加法运算顺序:先算同号相加,再算异号相加。
4.加法运算中的特殊现象:a)两数相加等于其中一数。
b)两数相加等于0。
二、有理数减法运算:1.定义:有理数的减法是已知两个有理数,求其中一个有理数比另一个有理数少多少。
2.减法法则:a)将减法转换为加法,即减去一个数等于加上这个数的相反数。
b)按照加法法则进行计算。
3.减法运算顺序:先算同号相减,再算异号相减。
4.减法运算中的特殊现象:a)两数相减等于其中一数。
b)两数相减等于0。
三、有理数加减混合运算:1.定义:有理数的加减混合运算是有理数加法和减法的组合。
2.运算顺序:先算加法,再算减法。
3.运算中的特殊现象:a)加减混合运算中出现0。
b)加减混合运算中出现负数。
四、有理数加减法运算的计算法则:1.先算绝对值,再确定符号。
2.异号相加,保留绝对值较大的符号。
3.同号相加,保留同号,并把绝对值相加。
4.减法转换为加法,即减去一个数等于加上这个数的相反数。
五、有理数加减法运算的应用:1.解决实际问题:例如,计算购物后的总价,计算距离等。
2.简化表达式:例如,化简代数式,求解方程等。
3.数学证明:例如,证明恒等式,证明不等式等。
以上是对有理数的加法与减法运算的详细归纳,希望对您的学习有所帮助。
习题及方法:1.习题:计算2 + 3。
解题思路:根据加法法则,同号相加,保留同号,并把绝对值相加。
2.习题:计算-2 + 3。
解题思路:根据加法法则,异号相加,保留绝对值较大的符号,并把绝对值相减。
3.习题:计算5 - 2。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
4.习题:计算-5 + 3。
解题思路:根据减法法则,将减法转换为加法,即减去一个数等于加上这个数的相反数,然后按照加法法则进行计算。
北师大版七年级上册数学《有理数的加法》有理数及其运算教学说课复习课件
有理数的加法法则
从上述①- ⑥所写出的算式中 ,你能总结出一些规律吗 ?
① ( + 20) + ( + 30) = + 50 ② ( - 20) + ( - 30) = - 50 ③ ( + 20) + ( - 30) = -10 ④ ( - 20) + ( + 30) = +10 ⑤ ( + 30) + ( - 30) = 0 ⑥ ( -30) + 0 = -30
情境导入
在小学里我们知道,数的加法满足交换律: 例如: 5+3. 5 =3. 5+5; 结合律: 例如:(5+3.5) +2.5 = 5 + (3.5 +2.5).
思考
引进了负数以后,这些运算律是否还成立呢? 例如:将上面两个等式中,5、3.5和2. 5换成任意的有理数, 是否仍然成立呢?
新课讲解
解法一:这10听罐头的总质量为 444+ 459+ 454+ 459+ 454+ 454+ 449+ 454+ 459+ 464 = 4 550(g). 解法二:把超过标准质量的克数用正数表示,不足的用负数表示, 列出 10听罐头与标准质量的差值表:
听号
1
234
5
与标准质量的差/g -10 +5 0 +5 0
有理数的加法法则
●
●
-20 -10 0 10 20 30 40 50 60
第一次向西走20米 ,第二次向东走 30米,由数轴表示运动过程可知: 小明位于原来位置的东边10米处即(+10米)
∴( -20) + ( + 30) = + 10,
有理数加减法 简便运算
数学学科学生辅导讲义学员编号: 年 级:七年级 课 时 数:3 学员姓名:辅导科目:数学学科教师:应志伟授课类型T 有理数的加法 T 有理数的减法 C 简便运算授课日期及时段教学内容(大脑放电影~)知识点一: 有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数.知识点二: 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.知识点三:有理数加法的运算律①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c ++=++(加法结合律)T 同步——同步训练同步知识梳理知识点四:有理数加法的运算技巧①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.(热个身先~~~)题型一:有理数的加法法则例1. ﹣10+3的结果是()A. ﹣7B. 7C. ﹣13D. 13例2. 计算│-5+3│的结果是()A. -8B. 8C. -2D. 2例3. 下列交换加数的位置的变形中,正确的是()A. 1﹣4+5﹣4=1﹣4+4﹣5B. 1﹣2+3﹣4=﹣(2﹣1+4﹣3)C.13111311=34644436-+--+--D. 4.5﹣1.7﹣2.5+1.8=4.5+2.5﹣1.8﹣1.7例4. 如果两个数的和是负数,那么这两个数()A. 至少有一个为正数B. 同是正数C. 同是负数D. 至少有一个为负数例5. 化简下列各式+(﹣7)= ,﹣(+1.4)= , +(+2.5)= ,﹣[+(﹣5)]= ;﹣[﹣(﹣2.8)]= ,﹣(﹣6)= ,﹣[﹣(+6)]= .例6. 运用交换律和结合律计算:(1)3-10+7=3________7______10=________;(2)-6+12-3-5=______6______3______5______12=______.同步题型分析例7. 王无生到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为﹣1.李先生从1楼出发,电梯上下楼层依次记录如下(单位:层)+5,﹣3,+10,﹣8,+12,﹣6,﹣1(1)请你通过计算说明李先生最后是否回到出发点1楼;(2)若该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度,根据李先生现在所处的位置,请你算一算、当他办事时电梯需要耗电多少度?例8. 计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3)121546333⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭;(4)23+(-72)+(-22)+57+(-16);(5)() 515133242 6565⎛⎫⎛⎫+-+-++-⎪ ⎪⎝⎭⎝⎭;(6)2.25+(-414)+(-2.5)+212+3.4+(-175)(7)()6441623 5 3.125738326 1171187117⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-++-+-+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭题型二:有理数的加法法则的一般应用例1. 若a>0,b<0,|a|<|b|,则a与b的和是()A. ﹣|a|﹣|b|B. ﹣(|a|﹣|b|)C. |a|+|b|D. ﹣(|b|﹣|a|)例2. 若|x+3|+|y﹣2|=0,则x+y的值为()A. 5B. ﹣5C. ﹣1D. 1例3. 绝对值大于2且小于5的所有整数的和是()A. 0B. 7C. 14D. 28例4. 绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.例5. 有理数a,b,c在数轴上的对应点如图所示,计算a-b+c________0(填“>”“<”或“=”).例6. 邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(3) C村离A村有多远?(3)邮递员一共骑了多少千米?题型三:有理数加法的实际应用例1. 某银行的一个蓄储所某天上午在一段时间内办理了5件蓄储业务(存入为正,取出为负):+1080元,-900元,+990元,+1000元,-1100元;这时银行现款增加了()A. .1080元B. 1070元C. 1060元D. 1050元例2. 五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖总重量是 _____________千克.例3. 为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?(你都掌握了没有呢~~~)1. 计算()()()6375-+--+-结果是( )A. -7B. -9C. 5D. -342. 在1,-1,-2这三个数中,任意两个数之和的最大值是( ) A. -3 B. -1 C. 0 D. 23. 若有理数a 、b 互为相反数,则下列等式中一定成立的是( ) A. a b 0-= B. a b 0+= C. ab l = D. ab 1=-4. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损) 星期 一 二 三 四 五 盈亏 +220-30+215-25+225则这个周共盈利( )A. 715元B. 630元C. 635元D. 605元 5. 两个有理数的和为负数,那么这两个数一定( ) A. 都是负数 B. 绝对值不相等 C. 有一个是0 D. 至少有一个负数 6. 若5a =,6b =,且a b >,则a b + 的值为( )A. ﹣1或11B. 1或﹣11C. ﹣1或﹣11D. 117. 填空:(1)-12+11=______; (2)19+(-8)=______; (3)-18+(-7)=______;(4)12-18=_______; (5)-13-5=_________; (6)0-(-6)=_______;8. |a|=4,|b|=3且a <b ,则a+b=_____.9. 慈善篮球赛,每个队员的得分以20分为标准,超过的部分记为正,不足的部分记为负,已知 5位主力队员得分情况分别是(单位:分):4,2,3,﹣7,﹣1. (1)这5位主力队员中,最低得分是多少分?(2)若主力队员每得1分赞助商就额外捐款2000元,那么本次慈善篮球赛赞助商共额外捐款多少课堂达标检测(大脑放电影~)知识点一:有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+- 知识点二:有理数减法的运算步骤 ①把减号变为加号(改变运算符号) ②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算. 知识点三:有理数加减混合运算的步骤 ①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.(热个身先~~~)题型一:有理数的减法法则例1. 计算﹣3﹣1的结果是( )例2. 在算式( )+6=-8中,括号里应填( ) A. 2 B. -2 C. 14 D. -14例3. 用算式表示“比﹣4℃低6℃的温度”正确的是( ) A. ﹣4+6=2 B. ﹣4﹣6=﹣10 C. ﹣4+6=﹣10 D. ﹣4﹣6=﹣2例4. 将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:_____.例5. 比较大小:_____.T 同步——同步训练同步知识梳理同步题型分析例12. 出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为每行驶100km耗用汽油7L,这天上午老王耗油多少升?题型二:有理数减法法则的应用例1.元月份某一天,北京市的最低气温为﹣6℃,长泰县的最低气温为15℃,那么这一天长泰县的最低气温比北京市的最低气温高()A. 15℃B. 20℃C. ﹣21℃D. 21℃例2.如图,加工一种轴时,轴直径在299.5毫米到300.2毫米之间的产品都是合格品,在图纸上通+0.2来表示这种轴的加工要求,这里φ300表示直径是300毫米,+0.2表示最大限度可常用φ300﹣0.5以比300毫米多0.2毫米,﹣0.5表示最大限度可以比300毫米少0.5毫米.现加工四根轴,轴直径+0.03,下列数据是加工成的轴直径,其中不合格的是()的加工要求都是φ50﹣0.02A. 50.02B. 50.01C. 49.99D. 49.88例 3.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么下列说法中正确的是()A. 汉城与纽约的时差为13小时B. 北京与纽约的时差为13小时C. 北京与纽约的时差为14小时D. 北京与多伦多的时差为14小时例6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?例7. 10袋小麦每袋150千克为标准,超出的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,﹣1,﹣1,﹣2,+7,+3,+4,﹣3,﹣2,+1(1)与标准质量相比较,这10袋小麦总计超出或不足多少千克?(2)求这10袋小麦的平均质量.课堂达标检测(你都掌握了没有呢~~~)1. 计算﹣2﹣(﹣4)的结果是______.2. 我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是_____℃.3. 把6﹣(+3)﹣(﹣7)+(﹣2)改成加法并写成省略加号的形式是_____.4. 2018南1月24日是腊八节,这天哈尔滨市的最低气温是﹣35℃,最高气温是﹣24℃,这一天哈尔滨市的温差为()A. 9℃B. 10℃C. 11℃D. 59℃5. 某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430B. 530C. 570D. 4709. 计算:(1)7-(-4)+(-5);(2)12-(-18)+(-7)-15;(3)1211839-+-+;(4)-7.2-0.8-5.6+11.6;(5)351527676⎛⎫⎛⎫⎛⎫-+--+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(6)-(+2.7)-(-1.6)-(-2.7)+(+2.4);10. 某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)(画竹必先成竹于胸!)专题一: 利用有理数的加法运算律进行巧算 技巧1:同号结合法1. 计算:(-3)+4+(+2)+(-6)+7+(-5)技巧2:相反数结合法 2. 计算:(+41)+(+81)+6+(-83)+(-85)+(-6)技巧3:同形结合法3. 计算:54+75+(-72)+43+(-41)+(-52)C 专题——简便运算知识典例专题二:利用有理数的加减解与数轴、绝对值有关的问题例1.已知a,b,c,d为有理数,其中a,b,c,d在数轴上的位置如图所示,试求|a-b|-|b-c|+|c|-|b+d|的值.专题三:综合例1.阅读第(1)小题的计算方法,再用这种方法计算第(2)小题.(1)计算:5231591736342⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭解:原式=()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+++-+-⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤-+-++-+-+-++-⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦=1014⎛⎫+-⎪⎝⎭=114-,上面这种解题方法叫做拆项法.(4)计算:522120001999400016332⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例2.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?(举一反三增能力!)1、已知有理数、、在数轴上的位置如图所示,则等于()A. B. C. D.2、小刚同学做“伴你学习新课程”练习题时,遇到了这样一道题:“计算:”,其中“”是被污损看不清的一个数,他翻开后面的答案知该题计算的结果是,则“”表示的数是()A. 或B. 或C.D.3、在下列各式中,与的值相等的是()A. B.C. D.4、下列计算中,不正确的是()A. B. C. D.5、计算所得的结果是( )A. B. C. D.6、有理数,在数轴上的位置如图所示,则的值()A. 大于B. 小于C. 小于D. 大于7、等于()A. B. C. D.强化练习8、,,的和比它们的绝对值的和小()A. B. C. D.9、“这三个数,,的代数和”与“它们的绝对值的和”的差为()A. B. C. D.10、计算的正确结果为()A. B. C. D.11、计算的结果是()A. B. C. D.12、与的和为的数是()A. B. C. D.13、比小的数是()A. B. C. D.14、点为数轴上表示的点,将点沿数轴向右平移个单位到点,则点表示的数是()A. B. C. D. 或15、下列说法正确的有()个①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相减,差一定小于被减数;⑤两数相加,和一定大于任何一个加数.A. B. C. D.16、计算:.(如果答案为分数,则填b/a)17、已知,,,且,则_________.18、已知是的相反数,比的相反数小,则等于.19、比小_______.20、绝对值大于而小于的所有负整数之和为.21、计算:.22、计算:.23、计算学法提炼(吾日三省吾身)1、专题特点:有理数减法法则的实质是将减法转化为加法,其转化的方法是“两变”:一是“变”减号为加号;二是将减数“变”为它的相反数.2、解题方法:(1)用减法法则将减法转化为加法;(2)写成省略括号和加号的和的形式;(3)进行有理数的加法运算3、注意事项:运用运算律使运算更加简便.一般情况下,常采用同类结合法、凑整法、为零相消法等.学法升华一、知识收获:有理数的加法法则;有理数的减法法则.二、方法总结:(1)在有理数的加法计算中首先判断属于加法中的何种类型,再按该类型法则计算. (2)在求和的绝对值前先确定和的符号,注意符号优先.三、技巧提炼:(1)同号:把正数和负数分别结合相加.(2)凑整:把和为整数的几个数相加.(3)凑零:把和为零的数相加.(4)分数相加:分母相同或易于通分的分数相加.(5)带分数相加:把带分数的整数部分、真分数部分分别相结合.(6)小数相加:整数部分、纯小数部分分别结合相加.注:以上方法不是固定不变的,可以灵活运用.课后作业1、把写成省略括号的和是()A. B.C. D.2、计算的结果为()A. B. C. D.3、把写成省略括号的形式是()A. B.C. D.4、计算所得的结果是()A. B. C. D.5、下列各式可以写成的是()A. B.C. D.6、一天早晨的气温是,中午上升了,晚上又下降了,晚上的气温是()A. B. C. D.7、下面哪个式子可以用来验证小明的计算是否正确?()A. B. C. D.8、今年元旦,某风景区的最低气温为,最高气温为,则这个风景区今年元旦的最高气温比最低气温高()A. B. C. D.9、比小的数是()A. B. C. D.10、计算的结果等于()A. B. C. D.11、的相反数加上,结果是()A. B. C. D.12、若,则括号内的数是()A. B. C. D.13、下列算式中,与相等的是()A. B. C. D.14、下列说法正确的有()个①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相减,差一定小于被减数;⑤两数相加,和一定大于任何一个加数.A. B. C. D.15、一种零件的直径尺寸在图纸上是(单位:),它表示这种零件的标准尺寸是,加工要求尺寸最大不超过()A. B. C. D.16、( )17、把写成省略加号的和的形式是___________.18、已知,,,且,那么_______.19、计算的结果是.20、计算等于21、22、计算:.23、计算:.。
有理数加减混合运算简便方法
有理数加减混合运算简便方法1. 引言在我们的日常生活中,数学其实无处不在,尤其是有理数的加减运算,简直就像吃饭一样常见。
不过,说实话,很多人一提到数学就像见了鬼,心里不免打个冷颤。
其实,有理数加减混合运算并没有那么可怕,咱们可以用一些简便的方法来解决,让这项看似复杂的工作变得轻松幽默,直击你的小心脏。
2. 理清概念2.1 什么是有理数?先来说说什么是有理数。
简单来说,有理数就是可以表示成分数的数,比如说( frac{1{2 ) 或者 3,都是有理数。
记住了,它们可都是“亲戚”,只要能够整除就能亲密接触。
2.2 加减运算的基本原则接下来,咱们要明白加减运算的基本原则。
比如说,正负相结合的原则就像交朋友一样,两个正数在一起肯定是热火朝天,而一个正数和一个负数则像是争吵的朋友,得找到个折中的办法。
3. 加减混合运算的简便方法3.1 分步走,别着急当你遇到复杂的加减混合运算时,记得分步走,别心急。
比如你看到 ( 5 3 + 2 ),可以先算 ( 5 3 ),得 2,然后再加 2,最终结果就是 4。
这就像吃一块蛋糕,先切一块,再慢慢享用,才不会呛着。
3.2 利用相反数另一个绝招就是利用相反数。
如果你有个负数,比如说 4,遇到加法时就可以想成减去相同绝对值的正数。
比如 ( 3 + (4) ) 可以想成 ( 3 4 ),最终结果就是 1。
运用相反数,数学题就像变魔术一样,简简单单!4. 实际应用4.1 日常生活中的例子在日常生活中,你可能会用到这些运算,比如说买东西的时候,打折和找钱。
这时候,你可以把打折的金额当成负数,来计算最终的支出。
例如,原价100元,打8折,实际花费就是 ( 100 80 = 20 ) 元。
看看,生活中的数学可真是活学活用。
4.2 培养良好的习惯当然,想要熟练掌握这些方法,还得培养良好的习惯。
每天花点时间练习,就像每天锻炼身体一样,逐渐增强“数学肌肉”。
当你在运算时,脑海中就会自然浮现出这些简便的方法,轻松应对各种题目,绝对是“步步为营,胜券在握”。
有理数混合运算简便算法与技巧
有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。
一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。
二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721) =-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。
有理数加减乘除、乘方、科学计数法
一、(一)有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加,如:(3)(9)(________)_______+++=+= (2)(5)(________)_______-+-=-=2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,如:(5)(7)__________________-++== (10)(8)__________________-++==3、互为相反的两个数相加得零。
如:(4)(4)_______-++=4、一个数与零相加,仍得这个数。
如:(6)0_______-+=(二)有理数加法仍然可以灵活运用加法运算律进行简化运算。
1、加法交换律:可用字母表示为:a +b =b +a 。
如:由(5)(7)______-+-=,(7)(5)______-+-=, 所以:(5)(7)____(7)(5)-+--+-2、加法结合律:可用字母表示为:(a +b )+c =a +(b +c )。
如:[][](2)(4)(9)(2)(4)(9)(2)(4)(9)__________-+-++=-+-++=-+-++=二、经典归纳考点一 有理数加法【例1】计算:(1))12()1(+++(2))19()4(-+-(3))9()4(++-【例2】41-的相反数与绝对值等于41的数的和应等于( )。
A .21B .0C .21-D .21或0【例3】若x 是-3的相反数,y =5,求x +y 的值。
【例4】若320a b ++-=,则a+b 的值为( ) A .5B .-1C .1D . -5考点二 简便计算【例1】利用运算律,用简便方法计算下列各题:(1)(6)539(4)(7)+++++---解:原式=[])935()7()4()6(+++-+-+-(2)4)5.0()5.2()7.3()5.2(+-+++-+-解:原式=考点三 实际应用【例】出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午行车里程如下:(单位:千米)+11, -2, +15, -12, +10, -11, +5, -15, +18, -16 (1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的收费标准为7元,这天下午的营业额为多少?(与路程有关,与方向无关)(3)若成本为1.5元/千米,这天下午他盈利为多少元?有理数减法和加减混合运算一、知识清单(一)探索新知在上一讲中,同学们已经学习了有理数的加法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加法和简便运算
一.解答题(共30小题)
1.(2015秋•富顺县月考)(﹣15)+(+9)
2.(2015秋•太和县月考)计算:
(1)(﹣25)+(﹣35);
(2)(﹣12)+(+3);
(3)(+8)+(﹣7);
(4)0+(﹣7).
3.(2014秋•南康市校级期中)计算:.
4.(2014秋•北流市期中)利用适当的方法计算:﹣4+17+(﹣36)+73.5.(2014秋•黄冈校级月考)直接写出计算结果:
(1)(﹣12)+13=
(2)﹣3+(﹣2)=
(3)+(﹣1)=
(4)(﹣3.5)+2=
(5)=
(6)=
6.(2014秋•河源校级月考)计算:3+(﹣2)+5+(﹣8)
7.(2014秋•长沙校级月考)计算题
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)
(3)1+(﹣1)++(﹣1)+(﹣3)
(4)+(﹣)+(﹣)+(﹣)+(﹣)
(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5
(6)(﹣1)+(﹣6)+(﹣2.25)+.
8.(2014秋•新华区校级月考)(1)+(﹣)++(﹣)+(﹣);
(2)(﹣0.5)+3+2.75+(﹣5)
(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)
(4).
9.(2013秋•永定县校级月考)18.56+(﹣5.16)+(﹣1.45)+(+5.16)+(﹣18.56)10.(2013秋•白云区校级月考)计算:
(1)直接写出下列结果:
①50+(﹣30)=
②3+(﹣3)=
③(﹣6)+0=
④(﹣13)+(﹣9)=
⑤(﹣38)+(+12)=
(2)3.4+(﹣0.8)+2.3+(﹣7.2)+(﹣2)
(3)(+1)+(﹣2)+(+3)+(﹣4)+…+(+19)+(﹣20)
11.(2013秋•保亭县校级月考)计算
(1)(﹣3)+(+7);
(2)+(﹣);
(3)(﹣0.25)+(﹣0.75);
(4)(+26)+(﹣18)+5+(﹣16);
(5)(﹣1.75)+1.5+(+7.3)+1.75+(﹣2.8).
12.(2013秋•惠山区校级月考)(1)(﹣1.25)+1;
(2)+(﹣1);
(3)(﹣6)+(﹣16);
(4)(﹣23)+72+(﹣31)+(+47);
(5)(﹣1.6)+(﹣3)+|﹣1.8|;
(6)(+1.25)+(﹣)+(﹣)+(+1)
13.(2011秋•单县校级月考)计算:
(1)(﹣15)+19+(﹣16)+7+(﹣23)+24
(2)+(﹣)+(﹣)+
(3)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64
(4)1+(﹣2)++.
14.(2010秋•常宁市校级月考).
15.(+12)+(﹣4);
(﹣5)+(﹣7);
(+6)+(﹣9);
+(﹣);
(﹣)+;
(﹣3)+(﹣1)
16.用简便方法计算:
(1)0.75+(﹣)+0.125+(﹣)+(﹣4);
(2)(+3)+(﹣2)+(﹣3)+(﹣1)+(+5)+(+5);(3)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣).
17.计算下列各题:
(1)(﹣25)+34+156+(﹣65);
(3)(﹣42)+57+(﹣84)+(﹣23);
(5)(﹣301)+125+301+(﹣75);
(7)41+(﹣23)+(﹣31)+0.
18.计算:
(1)(﹣8)+(﹣9);
(2)(﹣17)+21;
(3)(﹣12)+25;
(4)45+(﹣23);
(5)(﹣45)+23;
(6)(﹣29)+(﹣31);
(7)(﹣39)+(﹣45);
(8)(﹣28)+37;
(9)(﹣13)+0.
19.计算:
(1)(﹣10)+(+4);
(2)(+16)+(﹣8);
(3(﹣48)+(﹣33);
(4)(﹣)+(﹣)
20.计算:
(1)(﹣4)+(+3);
(2)(﹣3.125)+(+3);
(3)(﹣36.35)+(﹣7.25)+26.35+(+7);
(4)(﹣)+(﹣89)+(﹣5)+(+)+(﹣0.75).
21.计算:
(1)(﹣1.9)+3.5
(2)(﹣)+(﹣)
(3)2+(﹣3)
(4)+(﹣)
(5)(﹣6)+8+(﹣4)+12.
22.计算:
(1)3+(﹣1)+(﹣3)+1+(﹣4)
(2)(﹣9)+4+(﹣5)+8
(3)(﹣36.35)+(﹣7.25)+26.35+(+7)(4)+1++(﹣2)
(5)(﹣)+(﹣)++(﹣)
(6)(﹣)+(+)+(+)+(﹣1)
23.计算:
(1)(+3)+(+11)
(2)(﹣)+(﹣)
(3)(﹣4.5)+2.7
(4)(﹣5)+(+8)
24.用适当的方法计算:
(1)(﹣24)+18+(﹣16)+12;
(2)4+(﹣13)+(﹣0.5)+9+;
(3)(﹣3)+(+15.5)+(﹣16)+(﹣5);(4)(﹣1.5)+(+3)+2.75+(﹣5)
25.计算:
(1)(﹣0.9)+(﹣2.7);
(2)3.8+(﹣8.4);
(3)(﹣0.5)+3;
(4)3.92+1.78;
(5)7+(﹣3.04);
(6)(﹣2.9)+(﹣0.31);
(7)(﹣9.18)+6.18;
(8)4.23+(﹣6.77).
26.计算:
(1)+(﹣);
(2)(﹣)+(﹣);
(3)(﹣)+;
(4)(﹣)+(﹣);
(5)+(﹣2);
(6)(﹣)+(﹣1);
(7)(﹣1)+(﹣2);
(8)3+(﹣1).
27.计算:
(1)(﹣26)+(﹣73);
(2)(+15)+(﹣8);
(3)(﹣23)+(+7);
(4);
(5);
(6);
(7).
28.计算:
(1)(﹣17)+59+(﹣37);
(2)(﹣18.65)+(﹣6.15)+18.15+6.15;(3)(﹣4)+(﹣3)+6+(﹣2);(4)(﹣0.5)+3+2.75+(﹣5).29.计算:
(1);
(2)(﹣2.2)+3.8;
(3)+(﹣5);
(4)(﹣5)+0;
(5)(+2)+(﹣2.2);
(6)(﹣)+(+0.8);
(7)(﹣6)+8+(﹣4)+12;
(8);
(9)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;
(10)9+(﹣7)+10+(﹣3)+(﹣9).
30.计算:
(1)(﹣100)+(﹣200);
(2)(﹣3)+(+2);
(3)(﹣1)+(+1.75);
(4)﹣5.1+0;
(5)18.56+(﹣5.16)+(﹣1.44)+(+5.16)+(﹣18.56);(6)4.1+(+)+(﹣)+(﹣10.1)+7.。