传动轴结构分析与设计(精)
轴的结构分析
二、轴上零件的定位
轴肩----阶梯轴上截面变化之处。起轴向定位作用。 零件的轴向定位由轴肩或套筒来实现。
4、5间的轴肩使齿轮在轴上定位,1、2间的轴肩使带轮定位,6、7间的轴肩使右端滚动轴承定位。
套筒
轴肩
长沙交通学院专用
三、轴上零件的固定 轴向固定由轴肩、套筒、螺母或轴端挡圈来实现。
齿轮受轴向力时,向右是通过4、5间的轴肩,并由6、7间的轴肩顶在滚动轴承的内圈上; 向左则通过套筒顶在滚动轴承的内圈上。带轮的轴向固定是靠1、2间的轴肩和轴端当圈。
30˚ B R B位置d/4 d 卸载槽 也可以在轮毂上增加卸载槽
长沙交通学院专用
d/4
r
过渡肩环
凹切圆角
轴端挡圈 带轮 轴承盖 套筒 齿轮 滚动轴承
§14-3
轴的结构设计
典型 轴系 结构
长沙交通学院专用
一、制造安装要求 为便于轴上零件的装拆,一般轴都做成从轴端逐渐向 中间增大的阶梯状。零件的安装次序 装零件的轴端应有倒角,需要磨削的轴端有砂轮越程槽, 车螺纹的轴端应有退刀槽。 倒角
①
②
③
④
⑤⑥ ⑦
长沙交通学院专用
T 方案 a 方案b
Q
当轴上有两处动力输出时,为了减小轴上的载荷, 应将输入轮布置在中间。
Q
输出
输入
输出
输出
输出 输入
T2 T1 T2 T1+T2 T1 T1+T2
合理
长沙交通学院专用
Tmax = T1
不合理
Tmax= T1+T2
2.减小应力集中 合金钢对应力集中比较敏感,应加以注意。 应力集中出现在截面突然发生变化的。 措施: 1. 用圆角过渡; 2. 尽量避免在轴上开横孔、切口或凹槽; 3. 重要结构可增加卸载槽B、过渡肩环、凹切圆角、 增大圆角半径。也可弹性挡圈或紧定螺钉来实现。
传动轴设计及应用解读
• 准等速万向节:是指输入轴和输出轴以近似等速传递运动 的万向节。双联式万向节、凸块式万向节和三销轴式万向 节等为准等速万向节。主要用于转向驱动桥。
• 等速万向节:等速万向节是指输入轴和输出轴以等速传递 运动的万向节。球笼式万向节和球叉式万向节等为等速万 向节。主要用于轿车和驱动桥。 • 挠性万向节:挠性万向节依靠其中弹性零件的弹性变形来 保证在相交两轴间传动时不发生干涉。它能减小传动系的 扭转振动、动载荷和噪声,结构简单,使用中不需润滑, 一般用于两轴间夹角不大和很小轴向位移的万向传动场合。
传动轴的动平衡
• 传动轴总成不平衡是传动系弯曲振动的一个激 励源,当高速旋转时,将产生明显的振动和噪 声。所以传动轴装配后必须100%进行动平衡 检验,并在传动轴两端焊平衡片校正不平衡量, 其剩余不平衡量不应低于GB 9293中规定的G40 平衡品质等级。 • 影响传动轴动平衡品质的因素: 1、万向节十字轴的轴向间隙; 2、传动轴滑动花键副中的间隙; 3、传动轴总成两端连接处定心精度; 4、高速回转时传动轴的弹性变形。
传动轴额定载荷的确定
• • 传动轴的额定载荷是根据车型的配置参数计算出来的。先按发动机最大扭矩 计算,再按车轮的最大附着力计算,取二者中的小值作为额定扭矩。 1、按发动机最大扭矩计算: Mg=Memax×ik1×ip1/n 式中 Mg—按发动机最大扭矩计算时传动轴承受的扭矩,N.m Memax—发动机最大扭矩,N.m ik1 —变速箱一档速比 ip1 —分动箱低档速比 n —使用分动器低档时的驱动轴数目 2、按车轮最大附着力计算: Mφmax=G×rk×ψ/io 式中 Mφmax—按附着力计算时传动轴承受的扭矩,N.m G—满载时驱动轴上的载荷,N rk —车轮的滚动半径,m ψ —轮胎与地面的附着系数(在良好的沥青路面上取0.8) io —减速器速比
万向传动轴设计范文
万向传动轴设计范文万向传动轴(Universal Joint Shaft)是一种能够实现两个轴线的不同角度传动的机械传动装置,广泛应用于汽车、机械设备和工业生产线等领域。
本文将详细介绍万向传动轴的设计原理、结构特点以及设计优化方法。
一、设计原理当传动输入轴转动时,中心轴通过两个交叉连接轴的连杆传递旋转力矩,并使输出轴也产生旋转。
由于交叉连接轴的特殊结构,万向传动轴能够使传动输入轴和输出轴存在不同的旋转角度,从而解决了轴线不同角度对传动的限制。
二、结构特点在设计过程中,需要考虑以下几个关键参数:1.轴间角度:指传动输入轴与输出轴之间的夹角。
该角度越大,传动轴工作时的额定转速越低,并且还会增加传动过程中的振动和噪音。
2.传动扭矩:表示输入轴传递给输出轴的力矩大小。
在设计中需要根据传动系统的需求确定传动轴的最大扭矩。
3.长度和直径:传动轴的长度和直径需要根据具体应用条件和承载要求进行确定。
三、设计优化方法在进行万向传动轴的设计时,可以采用以下几种优化方法:1.结构材料选择:传动轴的结构材料对其承载能力和耐久性具有重要影响。
可以通过优化材料选择,如选用高强度合金钢,来提高传动轴的耐久性能。
2.回转角度优化:通过合理设计传动轴的长度和交叉板角度,使得传动轴的回转角度在设计范围之内,从而提高传动效率并减少振动和噪音。
3.杆件直径优化:传动轴的杆件直径直接影响其承载能力。
可以采用有限元分析方法来优化杆件的直径,以满足传动系统的扭矩和振动要求。
4.轴承选择与布局:传动轴的轴承选择与布局对其旋转平衡性和耐久性有重要影响。
可以通过优化轴承的类型和布局,如选用角接触球轴承和双排球轴承,来提高传动轴的工作稳定性和寿命。
总之,万向传动轴作为一种重要的机械传动装置,在众多领域都有广泛应用。
其设计涉及到结构原理、材料选择、回转角度优化、杆件直径优化以及轴承选择与布局等多个方面,需要综合考虑承载能力、回转角度和振动噪音等设计要求,以实现传动系统的高效、稳定和可靠工作。
重型汽车传动系统结构分析与优化设计
重型汽车传动系统优化设计
轻量化设计
减轻重量:通过使 用轻质材料和优化 结构设计,降低传 动系统的重量
提高效率:减轻重 量可以提高传动系 统的效率,降低能 耗
增加寿命:轻量化 设计可以降低传动 系统的磨损,提高 使用寿命
环保节能:减轻重 量可以降低燃油消 耗,减少排放,符 合环保要求
智能化:采用智能控制技术, 优化传动系统效率,降低能 耗
未来重型汽车传动系统的发展趋势
节能环保:提 高燃油效率, 减少排放
轻量化:减轻 重量,提高燃 油经济性
智能化:实现 自动变速、智 能驾驶等功能
模块化:提高 通用性,降低 成本
电动化:发展 纯电动、混合 动力等新能源 汽车
网联化:实现 车辆与车辆、 车辆与基础设 施的互联互通
THANK YOU
汇报人:
离合器的功能是实现发动 机与传动系统的分离和结 合,保证汽车平稳起步和 换挡。
变速器的功能是改变传动 比,扩大驱动轮转矩和转 速的变化范围,以适应不 同行驶条件的需要。
传动轴的功能是将动力传 递给驱动桥,实现动力的 传递。
差速器的功能是实现左右 驱动轮的差速转动,保证 汽车在转弯时的行驶稳定 性。
驱动桥的功能是将动力传 递给驱动轮,实现汽车的 行驶。
智能化设计的应用:在重型汽车传动系 统优化设计中,智能化设计已经得到了 广泛的应用,如自动变速器、电控系统 等。
重型汽车传动系统性能评价
传动效率评价
影响传动效率的因素:齿轮 啮合、轴承摩擦、油液粘度 等
传动效率的定义:输入功率 与输出功率的比值
提高传动效率的方法:优化 齿轮设计、降低轴承摩擦、
机械加工工艺1.2.1分析传动轴零件的结构工艺性
2.绘制正确的零件结构图 下图为改进后的传动轴零件结构示意图,完成了以下修 改工作:①增加了两表面粗糙度为0.4微米的外圆柱面 的越程槽;②修改了A-A剖面处的平键结构;③增加了 右侧表面M16螺纹处的退刀槽,以准确车削外螺纹;④ 增加了右侧光孔120度的底部锥孔,便于使用钻头钻孔。
改进结构如图:
工作任务1.2.1:分析传动轴零件的结构工艺性
零件图的研究 • 检查零件的完整性和正确性
• 零件的技术要求分析 • 审查零件材料选用是否恰当 • 零件的结构工艺性分析
零件的技术要求分析
– 零件加工表面的尺寸精度 – 主要加工表面的形状精度 – 主要加工表面间的相互位置精度 – 表面粗糙度、表面微观质量、热处理要求 – 其他要求(如动平衡、未注圆角或倒角、去毛刺、
图示传动轴零件为某企业需要大批量加工的产品, 现在需要详细分析该零件的结构工艺性,指出不足 并绘制正确的零件结构。
1.分析零件结构工艺性的不合理之处 图示传动轴零件结构上,主要存在以下不合理之处: ①左侧两表面粗糙度为0.4微米的外圆柱面处缺少磨 削用的越程槽; ②A-A剖面处的平键结构错误,两端部应有圆头, 便于铣削加工; ③M16螺纹表面缺少退刀槽,无法准确车削螺纹; ④右侧直径为6毫米的光孔无锥度底孔,钻头无法加 工。
毛坯要求等)
返回
结构工艺性分析
– 零件的结构工艺性是指所设计的零件在满足使 用要求的前提下,制造的可行性和能以较高的生产率和最低的成本而方便的 加工出来。
零件机械加工结构工艺性的对比
结构工艺改进
(c) (e)
改进结构如图: (e)
传动轴结构分析与设计
传动轴结构分析与设计传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。
传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。
为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。
但这种结构较复杂,成本较高。
有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。
传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。
传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。
设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。
传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。
在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。
所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。
传动轴的临界转速为2228102.1C cC k L dD n +⨯= (4—13)式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。
在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。
由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。
另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。
传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。
传动轴的设计及校核
第一章轻型货车原始数据及设计要求发动机的输出扭矩:最大扭矩·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克设计要求:第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。
主要用于在工作过程中相对位置不节组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化。
万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。
一般万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。
重型载货汽车根据驱动形式的不同选择不同型式的传动轴。
一般来讲4×2驱动形式的汽车仅有一根主传动轴。
6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。
6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。
在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。
传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。
一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。
因此,一组传动轴是配套出厂的,在使用中就应特别注意。
图 2-1 万向传动装置的工作原理及功用图 2-2 变速器与驱动桥之间的万向传动装置基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等第三章轻型货车万向传动轴结构分析及选型由于货车轴距不算太长,且载重量吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。
汽车设计 第6版 第4章 万向传动设计
尺寸大,零件多,结构较复杂,传递转矩有限
当应用于转向驱动桥中,由于轴向尺寸大,为 使主销轴线的延长线与地面交点到轮胎的印迹 中心偏离不大,需要较大的主销内倾角
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
1.球笼式万向节
(1)固定型球笼式万向节
星形套7以内花键与主动轴1相连,其外表面设置有 6条凹槽(形成内滚道)。球形壳8的内表面设置有 对应的6条凹槽(形成外滚道)。6个钢球分别嵌装 在6条滚道中,并由保持架4使之保持在同一平面内。 动力由主动轴1经过钢球6、球形壳8输出。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
二、十字轴式万向节
滚针轴承的润滑和密封
毛毡油封:因防漏油、防水、防尘效果差,已淘汰 双刃口复合油封:防漏油、防水、防尘效果好。在 灰尘较多的环境中万向节寿命显著提高。 多刃口油封:防漏油、防水、防尘效果更好。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
2.三枢轴式万向节
三枢轴式万向节能允许最大轴间交角为43°
万向节安装位置或相连接总成
离合器-变速器;变速器-分动器 (相连接总成均安装在车架上)
驱动桥 传动轴
汽车满载 静止夹角
行驶中的 极限夹角
一般汽车 越野汽车 一般汽车 越野汽车
α不大于
1°~3°
6° 12° 15°~20° 30°
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
三、双联式万向节
汽车工程系
传动轴和万向节设计
传动轴和万向节设计一、传动轴设计原理传动轴是将发动机产生的动力传递到车辆的驱动轮上的一个重要部件。
其主要功能是在发动机和驱动轮之间传递扭矩,并且能够适应车辆悬挂系统的运动。
传动轴一般采用圆柱形或者扁平形的结构,其内部有若干根同轴排列的精密钢管。
在正常情况下,传动轴的转速较低,承受的扭矩相对较小,所以设计上一般使用空心结构,以减轻重量,并提高整车的燃油经济性。
在传动轴的设计过程中,需要考虑以下几个方面:1.强度设计:传动轴在传递高扭矩时需要具备足够的弯曲强度和抗扭强度,以防止其发生破坏。
强度设计一般采用有限元分析方法,考虑材料的强度和结构的几何形状,以确保传动轴的可靠性。
2.动平衡设计:传动轴在旋转时会产生一定的离心力,为了避免引起车辆的振动和噪音问题,需要进行动平衡设计。
动平衡主要通过改变传动轴的结构和通过在不平衡部位安装平衡块的方式来实现。
3.转向角度设计:传动轴需要能够适应车辆悬挂系统的运动,所以需要根据车辆的悬挂行程和转向角度来设计传动轴的长度和角度。
过大的转向角度会造成传动轴的变形和断裂,过小的转向角度则会影响车辆的灵活性。
二、万向节设计原理万向节是传动轴和车轮之间连接的关键部件,其主要功能是实现传动轴与驱动轮间的角度传递,并在转向时能够适应轮胎的转向角度。
万向节一般由内球和外球组成,内球有两个半球形的凹槽,外球有两个凸槽,内外球通过一个钢球来连接。
当传动轴发生转动时,内外球可以相对转动,以适应车轮的角度变化。
在万向节的设计中,需要考虑以下几个因素:1.角度传递:万向节需要能够在不同角度下传递扭矩,并且保持稳定的工作状态。
在设计中需要注意内外球的形状和尺寸,以确保扭矩的传递效果和稳定性。
2.脱落力设计:万向节在工作过程中会产生较高的脱落力,为了保证其可靠性,需要进行脱落力分析和设计。
一般采用优化设计或者增加连接脱落力的结构,以确保万向节在承受高负荷时不发生脱落。
3.寿命设计:万向节在工作过程中会产生较大的摩擦和磨损,所以需要进行寿命设计。
HGC1050万向传动轴结构设计
黑龙江工程学院本科生毕业设计摘要万向传动装置是汽车传动系统中的重要组成部分,万向传动装置位于变速箱和驱动桥之间,一般由万向节、传动轴和中间支承组成。
万向节能实现变角度动力传递;传动轴把变速器的转矩传递到驱动桥上;中间支承能补偿传动轴轴向和角度方向的安装误差和车辆行驶过程中由于发动机窜动或车架等变形所引起的位移。
万向传动装置的功用是在汽车行驶过程中,在轴间夹角及相互位置经常发生变化的两个转轴之间传递动力。
本文主要是对汽车的十字轴式万向传动装置进行设计。
根据车辆使用条件和车辆参数,按照传动系统的设计步骤和要求,主要进行了以下工作:选择相关设计参数主要为:十字轴、万向节、传动轴、中间支承的参数确定,并进行了总成设计主要为:十字轴的设计,万向节的设计、传动轴的设计以及中间支承的设计等。
并通过Pro/E 建模和有限元ANSYS软件对设计万向传动装置进行结构分析,根据分析结果对万向传动装置进行改进设计得出合理的设计方案。
关键词:万向传动装置;十字轴;万向节;传动轴;有限元分析I黑龙江工程学院本科生毕业设计ABSTRACTThe automobile universal transmission device is in the automobile transmission system important constituent,is located between the gear box and the driving axle . Generally by the universal joint, the drive shaft and the middle supporting is composed. The universal joint energy conservation realization changes the angle power transmission;Transmit the torque of the gear box to the transaxle with drive shaft;The middle supporting can compensate the drive shaft axial and the angle direction in the wiring error and the vehicles travel process because the engine flees moves the displacement which or distortions and so on frame causes. The rotary transmission device function is in the automobile travel process, the included angle and the mutual position changes between the revolution axis in the axis between to transmit the power frequently.This article mainly is carries on the design to the automobile cross shaft type rotary transmission device. According to vehicles exploitation conditions and vehicles parameter, according to transmission system design procedure and request, Mainly has carried on following work:Mainly has carried on following work choice correlation design variable mainly is: Cross axle, universal joint, drive shaft, middle supporting parameter determination, and has carried on the unit design mainly is: Cross axle design, universal joint design, drive shaft design as well as middle supporting design and so on. And to designs the rotary transmission device through the finite element Pro/E and ANSYS software to carry on the structure analysis, Carries on the improvement design according to the analysis result to the rotary transmission device to obtain the reasonable design proposal.Keywords:U niversal Transmission Device; Cross Axle; Universal Joint; Transmission shaft; Finite Element AnalysisII黑龙江工程学院本科生毕业设计目录摘要 (I)Abstract ...........................................................................................................I I 第1章绪论 . (1)1.1 概述 (1)1.2汽车传动轴的国内外研究现状 (2)1.3研究汽车万向传动轴的目的和意义 (3)1.3.1研究汽车万向传动轴的目的 (3)1.3.2研究汽车传动轴的意义 (3)1.4 万向传动轴的结构特点及基本要求 (4)1.5本课题研究的主要内容 (5)第2章汽车传动轴的结构方案分析与选择 (7)2.1汽车传动轴的结构方案概述 (7)2.1.1万向节与传动轴的结构型式 (7)2.1.2传动轴管、伸缩花键及中间支承结构型式 (7)2.1.3万向节类型 (10)2.2传动轴设计方案 (12)2.3本章小结 (13)第3章万向传动轴的设计 (14)3.1HGC1050汽车的主要技术参数 (14)3.2传动轴总成设计计算及校核 (15)3.2.1传动轴计算载荷的确定 (15)3.2.2传动轴轴管的选择及校核 (16)3.2.3中间支承的结构设计 (21)3.3十字轴总成的设计计算及校核 (24)3.3.1万向节的受力分析 (24)3.3.2十字轴万向节的设计及校核 (26)3.3.3十字轴滚针轴承的校核 (27)3.3.4万向节叉的设计及校核 (28)III黑龙江工程学院本科生毕业设计第4章传动轴总成建模与装配 (30)4.1 Pro/ENGINEER软件简介 (30)4.2利用Pro/ENGINEER软件进行三维实体建模 (31)4.2.1十字轴的创建 (31)4.2.2凸缘叉的创建 (31)4.2.3轴承差的创建 (32)4.2.4传动轴管的创建 (32)4.2.5带花键的传动轴管的创建 (33)第5章万向传动装置的有限元静力学分析 (34)5.1 ANSYS软件简介 (34)5.2Pro/E与ANSYS接口的创建 (34)5.3利用ANSYS对望向传动装置进行有限元受力分析 (36)5.3.1十字轴有限元受力分析 (36)5.3.2凸缘叉有限元受力分析 (40)5.3.3传动轴有限元受力分析 (41)5.4本章小结 (42)结论 (43)参考文献 (44)致谢 (45)附录:传动轴简介IV黑龙江工程学院本科生毕业设计1第1章 绪 论1.1 概述万向节传动用于在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
传动轴介绍
F2j = =
L2
T 2
T1 sin L2
(4-4)
式中, L 为万向节中心至从动叉轴支承间的距离。 此时,万向节也承受与上述力大小相等、方向相反的力。 与此方向相反的反作用力矩则由主动叉轴的支承承受。同 样,T1 使主动叉轴支承承受周期性变化的径向载荷,万向 节也承受与其大小相等、方向相反的力。在从动轴支承和 万向节上造成大小相等、方向相反的侧向载荷为
挠性万向节能减小传动系的扭转振动动载荷和噪声结构简单使用中不需润滑一般用于两轴间夹角不大一般为3和有很小轴向位移的万向传动场合如它常在乘用车三万向节传动中被用来作为靠近变速器的第一万向节或在载质量较大的商用车中用于发动机与变速器之间变速器与分动器之间以消除制造安装误差和车架变形对传动的影响
万向传动轴
分析:1、单十字轴万向节传动 当十字轴万向节的主、从动轴之间的夹角为α时, 主、从动轴的角速度 、 1 2 之间存在如下关系
2 1
=
cos 1 sin
2
cos 1
2
(4-1)
式中, 1为主动叉转角,定义为万向节主动 叉所在平面与万向节主、从动轴所在平面 的夹角。
由于 cos 1是周期为2π的周期函数,所以 也为同周期的周期函数。当ψ1为0、π时, 达最大 值, = cos ;当ψ1为 2 3 2 时, 达最小值, 、 = cos 。因此,当主动轴以等角速度转动时, 从动轴时快、时慢,此即为普通十字轴万向节传 动的不等速性。
2008.4.28
一 . 组成 二 . 用途 三 . 设计要求 四 . 使用范围 五 . 分类(万向节) 六 . 十字轴式万向节(分析)
一.组 成
传动轴设计说明书
传动轴设计说明书商⽤汽车万向传动轴设计摘要万向传动轴在汽车上应⽤⽐较⼴泛。
发动机前置后轮或全轮驱动汽车⾏驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输⼊轴轴线之间的相对位置经常变化,因⽽普遍采⽤可伸缩的⼗字轴万向传动轴。
本设计注重实际应⽤,考虑整车的总体布置,改进了设计⽅法,⼒求整车结构及性能更为合理。
传动轴是由轴管、万向节、伸缩花键等组成。
伸缩套能⾃动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输⼊轴两轴线夹⾓发⽣变化时实现两轴的动⼒传输;万向节由⼗字轴、⼗字轴承和凸缘叉等组成。
传动轴的布置直接影响⼗字轴万向节、主减速器的使⽤寿命,对汽车的振动噪声也有很⼤影响。
在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺⼨,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的⾓度。
关键字:万向传动轴、伸缩花键、⼗字轴万向节、临界转速、扭转强度概述汽车上的万向传动轴⼀般是由万向节、轴管及其伸缩花键等组成。
主要是⽤于在⼯作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。
在动机前置后轮驱动的汽车上,由于⼯作时悬架变形,驱动桥主减速器输⼊轴与变速器输出轴间经常有相对运动,普遍采⽤万向节传动(图1—1a、b)。
当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提⾼传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节⽤三个。
此时,必须在中间传动轴上加设中间⽀承。
在转向驱动桥中,由于驱动桥⼜是转向轮,左右半轴间的夹⾓随⾏驶需要⽽变,这是多采⽤球叉式和球笼式等速万向节传动(图1—1c)。
当后驱动桥为独⽴悬架结构时也必须采⽤万向节传动(图1—1d)。
万向节按扭转⽅向是否有明星的弹性,可分为刚性万向节和挠性万向节两类。
刚性万向节⼜可分为不等速万向节(常⽤的为普通⼗字轴式),等速万向节(球叉式、球笼式等),准等速万向节(双联式、凸块式、三肖轴式等)。
轴的结构设计
轴旳毛坯:一般用圆钢或锻件,有时也用铸钢或球墨铸铁。
如用球墨铸铁制造曲轴和凸轮轴,具有成本低廉、吸振性很好、相应力集中旳敏感较低、强度很好等优点。
表15-1 轴旳常用材料及其主要力学性能
材料及热处理
毛坯直径 mm
硬度 强度极限σb 屈服极限σs
HBS
MPa
弯曲疲劳极限σ-1
应用阐明
Q235
440
240
类
型 按轴旳形状分有:
发动机
传动轴
后桥
青岛科技大学专用
潘存云教授研制
§15-1 概 述
一、轴旳用途及分类
功用:用来支撑旋转旳机械零件,如齿轮、带轮、 链轮、凸轮等。
分类:
转轴---传递扭矩又承受弯矩
按承受载荷分有: 传动轴---只传递扭矩
类
心轴---只承受弯矩
型 按轴旳形状分有:
自行车
车厢重力
前轮轴
对于只传递扭转旳圆截面轴,强度条件为:
T
T WT
9.55106 P 0.2d 3n
[ T ]
解释各符
MPa 号旳意义
及单位
设计公式为:d 3
9.55 106
0.2[ ]
3
P n
A0 3
P n
mm
计算成果为:最小直径! 考虑键槽对轴有减弱,可按下列方式修正轴径:
轴径d>100mm
轴径d≤100mm
按轴旳形状分有:
阶梯轴
青岛科技大学专用
潘存云教授研制
§15-1 概 述
一、轴旳用途及分类
功用:用来支撑旋转旳机械零件,如齿轮、带轮、 链轮、凸轮等。
分类:
转轴---传递扭矩又承受弯矩
传动轴设计说明书
IV
广西大学专业课程设计说明书
4.3.1 滚针轴承初选尺寸 .................................. 16 4.3.2 一个滚针所受的最大载荷 ............................ 17 4.3.3 滚针轴承的接触应力 ................................ 17 4.4 传动轴初步设计 .......................................... 17 4.4.1 传动轴初选尺寸 .................................... 17 4.4.2 传动轴临界转速 .................................... 18 4.4.3 传动轴强度校核 .................................... 18 4.5 花键轴设计 ............................................. 19 4.5.1 花键轴初选尺寸 .................................... 19 4.5.2 花键齿侧挤压应力 .................................. 20 4.5.3 花键轴杆部扭转应力 ................................ 20 4.6 万向节凸缘叉连接螺栓设计 ............................... 21 4.7 万向节凸缘叉叉处断面校核 ............................... 21 4.7.1 弯曲应力 .......................................... 22 4.7.2 扭转应力 .......................................... 22 5 中间支承的设计 ............................................... 24 5.1 中间支承的结构分析与选择 ................................ 24 6 万向传动装置总成的技术要求、材料及使用保养 ................... 26 6.1 普通万向传动轴总成的主要技术要求 ........................ 26 6.2 万向传动轴的使用材料 ................................... 26 6.3 传动轴的使用与保养 ..................................... 27 小结 ........................................................... 28 参考文献 ....................................................... 29 致谢 ........................................................... 30
第四章 万向传动轴设计
•式中,d1 为十字轴轴颈直径;d2 为十字轴油道孔直径;s 为 合力 F 作用线到轴颈根部的距离;[σw]为弯曲应力许用值, 为250~350MPa。
• 十字轴轴颈的切应力 τ 应满足
4F 2 2 (d1 d 2 )
式中,[τ]为切应力 τ 许用值,为 80~120MPa。
值与最小值之间每一转变化两次。
附加弯曲力偶矩的分析
具有夹角 的十字轴万向节,仅在主 动轴驱动转矩和从动轴反转矩的作用下是 不能平衡的。从万向节叉与十字轴之间的 约束关系分析可知,主动叉对十字轴的作 用力偶矩,除主动轴驱动转矩T1之外,还 ' 有作用在主动叉平面的弯曲力偶矩 T 。同 1 理,从动叉对十字轴也作用有从动轴反转 ' 矩T2和作用在从动叉平面的弯曲力偶矩T2 。 在这四个力矩作用下,使十字轴万向节得 以平衡。 当主动叉 1 处于0和 时位置时(图4
变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传 动轴。在转向驱动桥中,多采用等速万向传动轴。
第二节 万向节结构方案分析
万向节分为刚性万向节和挠性万向节。
刚性万向节可分为不等速万向节(如十字轴式)、准等速万向节 (如双联式、凸块式、三销轴式等)和等速万向节(如球叉式、球笼式
等)。
不等速万向节是指万向节连接的两轴夹角大于零时,输出轴和输入 轴之间以变化的瞬时角速度比传递运动的万向节。
图4-5 十字轴万向节的力偶矩
1 = b) 1 = /2, 1 =3 /2 a) 1 =0,
当主动叉 1 处于 /2和3 /2位置时 (图4-5b),同理可知 T2=0,主 动叉上的附加弯矩T1' =T1tanα。 分析可知,附加弯矩的大小是 在零与上述两最大值之间变化,其 变化周期为 ,即每一转变化两次。 附加弯矩可引起与万向节相连零部 件的弯曲振动,可在万向节主、从 动轴支承上引起周期性变化的径向 载荷,从而激起支承处的振动。因 此,为了控制附加弯矩,应避免两 轴之间的夹角过大。
传动轴机械分析报告范文
传动轴机械分析报告范文一、引言传动轴作为机械设备中的关键部件之一,其性能和可靠性直接影响整个设备的运行效率和安全性。
本报告对某型号传动轴进行了机械分析,旨在评估其性能和可靠性,并提出改进建议。
二、传动轴结构和工作原理该传动轴采用了两个万向节连接,通过传递动力和扭矩实现不同部件之间的传动。
其中,万向节由内外套、十字轴和滚针组成,通过润滑脂进行润滑,以减小摩擦和磨损。
三、性能和可靠性评估1. 轴材料性能评估:该传动轴使用高强度合金钢制造,具有良好的强度和韧性,能够承受较大的扭矩和载荷;2. 传递效率评估:传动轴在工作过程中会出现一定的功耗,通过实际测试,传递效率达到了设计要求,性能良好;3. 润滑效果评估:润滑脂的使用能够有效减小摩擦和磨损,通过观察和测量,润滑效果良好;4. 动平衡性评估:传动轴在高速旋转时会出现一定的不平衡,通过动平衡测试,传动轴的不平衡程度在允许范围内,不会对设备的正常运行产生明显影响;5. 可靠性评估:传动轴在长时间使用后,仍能保持较好的性能和可靠性,没有出现明显的疲劳和断裂现象。
四、改进建议1. 加强润滑管理:定期检查润滑脂的使用情况,并及时更换和补充,以确保传动轴的润滑效果;2. 提高动平衡性:在制造过程中采取更加精细的加工和调整,以减小传动轴在高速旋转时的不平衡程度;3. 引入新材料:考虑采用更高性能的材料,如高强度钛合金等,以进一步提高传动轴的承载能力和耐久性;4. 增加安全保护措施:在传动轴的设计中,增加安全保护装置,如断裂传感器和过载保护装置,以预防传动轴断裂和过载导致的设备事故。
五、结论通过对该型号传动轴的机械分析和评估,可以得出结论:该传动轴在性能和可靠性方面表现良好,但仍可以通过加强润滑管理、提高动平衡性、引入新材料和增加安全保护措施等改进措施,进一步提高其性能和可靠性。
这对于设备的正常运行和安全性具有重要意义。
传动轴简介
Numberof OD[mm] GTfactor PCD[mm]
balls
[cm^3]
6
82.2
50.75
7
82.2
50.75
8
82.2
50.75
*:ideal ball diameters,nostandardsizes
55.5 56.99 58.16
ball diameter
[mm]
17.46 15.95(*) 14.77(*)
7
8
Number of balls
40
h
6,7&8粒钢球的设计研究------ 内星轮
10
Inner Race Wall Thickness [mm]
5
0
6
7
8
Number of balls
好处:
增加钢球可以增加内星轮的壁厚,同时允许增大内花键直径。
产品没有优势:
尽管这样,轴的粗细应与6粒钢球一样,除非降低摆角能力, 然而这样将不能平衡设计。
12
h
M6固定节各零件的货源
外星轮、内星轮、球笼和实轴是由SDS自制 夹箍、齿圈和钢球国内采购 护套、油脂和卡紧环从国外进口
13
h
护套
▪
实轴
M6---AAR2600i 改进型移动节
护套夹箍 滚轮总成
三销轴叉
卡簧
三销轴
护套夹箍
润滑
▪采用KY进口油脂
14
h
移动节端各组成零件的功能(一)
三销轴叉
h
三销万向节〔移动节〕
AARi GIi
GIi 移动节常用工作角度小于6°,AARi 移动节常用工作角度小于10° AARi 移动节的NVH性能优于GIi,AARi系列万向节是目前世界上最好的移动节。
长安五十铃货车传动轴设计(全)
目录第一章五十铃货车原始数据及技术参数 (2)第二章万向传动轴的结构特点及基本要求………………………………………错误!未定义书签。
第三章五十铃万向传动轴结构分析及选型 (3)3. 1传动轴管选择 (3)3. 2伸缩花键选择 (4)第四章万向传动轴计算及强度校核 (4)4. 1传动轴的临界转速 (4)4. 2传动轴计算转矩 (4)4. 3传动轴长度选择 (5)4. 4传动轴管内外径确定 (5)4. 5传动轴扭转强度校核 (5)4. 6花键内外径确定 (5)4. 7花键挤压强度校核 (6)4. 8传动轴形位公差确定 (6)参考文献 (8)五十铃货车传动轴设计第一章五十铃货车原始数据及设计要求发动机的输出扭矩:最大扭矩318.5N·m/2000r/min;轴距:3360mm;变速器传动比: 五挡0.787 ,一挡6.378,轮距:前轮1760毫米,后轮1610毫米,载重量5000千克设计要求:只设计直轴部分,进行受力分析,弯、扭,强度校核,画图第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。
主要用于在工作过程中相对位置不节组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化。
万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。
一般万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。
重型载货汽车根据驱动形式的不同选择不同型式的传动轴。
一般来讲4×2驱动形式的汽车仅有一根主传动轴。
6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。
6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。
在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。
传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节传动轴结构分析与设计
传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。
传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。
为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。
但这种结构较复杂,成本较高。
有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。
传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。
传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。
设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。
传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。
在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。
所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。
传动轴的临界转速为
22
2
8
10
2.1
C c
C k L d
D n +
⨯
= (4—13)
式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。
在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。
由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。
另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。
传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。
轴管的扭转切应力τc应满足
)
(1644c C S C c d D T D -=πτ≤[τc ] (4—14) 式中,[τc ]为许用扭转切应力,为300MPa ;其余符号同前。
对于传动轴上的花键轴,通常以底径计算其扭转切应力T h ,许用切应力一般按安全系数为2~3确定,即 316h
S h d T πτ= (4—15) 式中,d h 为花键轴的花键内径。
当传动轴滑动花键采用矩形花键时,齿侧挤压应力为
0)2
)(4('n L d D d D K T h h h h h S y -+=σ (4—16) 式中,K ′为花键转矩分布不均匀系数,K ′=1.3~1.4;D h 和d h 分别为花键外径和内径;L h 为花键的有效工作长度;n o 为花键齿数。
对于齿面硬度大于35HRC 的滑动花键,齿侧许用挤压应力为2550MPa ;对于不滑动花键,齿侧许用挤压应力为50~100MPa 。
渐开线花键应力的计算方法与矩形花键相似,只是计算的作用面是按其工作面的投影进行。
传动轴总成不平衡是传动系弯曲振动的一个激励源,当高速旋转时,将产生明显的振动和噪声。
万向节中十字轴的轴向窜动、传动轴滑动花键中的间隙、传动轴总成两端连接处的定心精度、高速回转时传动轴的弹性变形、传动轴上点焊平衡片时的热影响等因素,都能改变传动轴总成的不平衡度。
提高滑动花键的耐磨性和万向节花键的配合精度、缩短传动轴长度增加其弯曲刚度,都能降低传动轴的不平衡度。
为了消除点焊平衡片的热影响,应在冷却后再进行动平衡检验。
传动轴的不平衡度,对于轿车,在3000~6000r /min 时应不大于25~35g ·cm ;对于货车,在1000~4000r /min 时不大于50~100g ·cm 。
另外,传动轴总成径向全跳动应不大于0.5~0.8mm 。