旋转与圆的对称性练习

合集下载

有关旋转的证明题

有关旋转的证明题
容,以确保旋转轴在各种工况下的安全性和可靠性。
物理学中的旋转运动
要点一
总结词
涉及旋转运动在物理学中的应用,包括角动量守恒定律、 科里奥利力等。
要点二
详细描述
在物理学中,旋转运动是一种重要的运动形式,涉及到许 多物理定律和效应。例如,角动量守恒定律是描述旋转系 统的一个重要定律,它指出在没有外力矩作用的情况下, 系统的角动量保持不变。此外,科里奥利力是描述旋转参 考系中物体运动受到的力,它在地球自转的影响下会导致 大气和洋流的偏转。
示例
在三角形ABC和三角形DEF中,已知AB=DE, BC=EF, 且角BAC=角EDF。证明三角形ABC 全等于三角形DEF。可以通过将三角形DEF绕点D逆时针旋转一定的角度,使得角EDF与 角BAC重合,然后利用边角边全等定理证明三角形ABC全等于三角形DEF。
圆形的旋转证明题
要点一
总结词
通过旋转圆形,利用圆周角定理和圆 的性质进行证明。
在四边形ABCD中,已知AB=CD, AD=BC, 且角BAD=角BCD。证明四 边形ABCD是平行四边形。可以通过 将四边形ABCD绕点A逆时针旋转一 定的角度,使得角BAD与角BCD重合 ,然后利用平行四边形的性质和旋转 的性质进行证明。
Part
05
练习题与答案
基础练习题
题目
证明三角形绕其重心旋转180度后与原图 形重合。
VS
答案
设三角形为$triangle ABC$,其重心为 $G$。将$triangle ABC$绕$G$旋转180度, 得到$triangle A'B'C'$。由于旋转中心是 重心,根据旋转性质,线段$AG=A'G$、 $BG=B'G$、$CG=C'G$。由于重心将中 线分为2:1的比例,因此$triangle ABC$和 $triangle A'B'C'$的三边对应相等,从而 证明两个三角形重合。

3.2 圆的对称性(练习)(解析版)

3.2 圆的对称性(练习)(解析版)

第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。

图形的旋转练习题

图形的旋转练习题

图形的旋转练习题一、选择题1. 一个图形绕某点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 无法确定D. 形状不变,大小变小2. 如果一个图形绕其对称中心旋转180度,其位置:A. 不变B. 改变C. 无法确定D. 形状改变3. 一个正方形绕其中心点旋转45度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变4. 一个等边三角形绕其一个顶点旋转120度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变5. 一个圆绕其圆心旋转任意角度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变二、填空题6. 一个图形绕某点旋转______度后,其形状和位置都不变。

7. 如果一个图形绕其对称中心旋转______度,其位置不变。

8. 一个图形绕某点旋转180度后,其形状______,位置______。

9. 一个图形绕某点旋转90度后,其形状______,位置______。

10. 一个图形绕其对称中心旋转任意角度后,其形状______,位置______。

三、简答题11. 描述一个正方形绕其中心点顺时针旋转90度后,其四个顶点的新位置。

12. 解释为什么一个圆在绕其圆心旋转任意角度后,其形状和位置都不变。

13. 如果一个正六边形绕其中心点旋转60度,描述其顶点的新位置。

14. 一个矩形绕其对角线中点旋转180度后,其四个顶点的新位置是什么?15. 解释为什么一个图形绕其对称中心旋转180度后,其位置不变。

四、应用题16. 一个时钟的时针在12小时内绕钟面中心点旋转了多少度?17. 如果一个图形被设计为可以围绕其对称中心旋转,那么在旋转过程中,它的对称性如何保持?18. 一个图形绕其一个顶点旋转,如果旋转角度是360度的整数倍,图形的最终位置是什么?19. 在一个平面直角坐标系中,一个点绕原点旋转θ度后,其新的坐标如何计算?20. 如果一个图形绕其对称中心旋转了θ度,那么它的对称轴会如何变化?五、综合题21. 给出一个图形的旋转矩阵,并说明如何使用它来计算图形绕某点旋转后的新位置。

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

九年级数学苏科版上册随堂测试第2单元《 2.2 圆的对称性》 练习试题试卷 含答案

随堂测试2.2圆的对称性1.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C 为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB的延长线上一点,BP=2cm,则OP等于()A.cm B.3cm C.cm D.cm4.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.25.如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A.50m B.40m C.30m D.25m6.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm7.如图是某个球放进盒子内的截面图,球的一部分露出盒子外,已知⊙O交矩形ABCD的边AD于点E,F,已知AB=EF=2,则球的半径长为()A.B.C.D.8.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm9.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m,某天下雨后,水管水面上升了0.4m,则此时排水管水面宽CD等于m.10.如图,已知AB、CD是⊙O中的两条直径,且∠AOC=50°,过点A作AE∥CD交⊙O 于点E,则的度数为.11.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=度.12.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.13.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF ⊥AD.(1)证明:点E是OB的中点;(2)若AE=8,求CD的长.16.如图,MN是⊙O的直径,MN=2,点A是半圆上一个三等分点,点B为的中点,点P是直径MN上的一个动点,求P A+PB的最小值.17.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.18.如图,点A、B、C在⊙O上,=.(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O 不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.19.如图1,点P表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O为圆心,5m为半径的圆.若⊙O被水面截得的弦AB长为8m,求水车工作时,盛水筒在水面以下的最大深度.20.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?参考答案1.B.2.B.3.D.4.C.5.D.6.B.7.C.8.C.9.3.2.10.80°.11.60.12.200.13.6.14..15.(1)证明:连接AC,如图,∵直径AB垂直于弦CD于点E,∴=,∴AC=AD,∵过圆心O的线段CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,OE=OC,∴OE=OB,∴点E为OB的中点;(2)解:∵△ACD是等边三角形,AB⊥CD,∴∠CAE=30°,∴CE=,∵直径AB垂直于弦CD于点E,∴CD=2CE=.16.解:作B点关于MN的对称点B′,连接OB、OB′、AB′,AB′交MN于P′,如图,∵点A是半圆上一个三等分点,点B为的中点,∴∠AON=60°,∠BON=30°,∵B点和B′关于MN的对称,∴∠B′ON=30°,∴∠AOB′=90°,∴△OAB′为等腰直角三角形,∴AB′=OA=,∵P A+PB=P A+PB′≥AB′(点A、P、B′共线时取等号),∴P A+PB的最小值=AB′,即P A+PB的最小值为.17.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.18.解:(1)连接CO.∵═,∴∠AOC=∠BOC,∵D、E分别是半径OA、OB的中点,∴,,∴OD=OE,在△ODC和△OEC中,∵OD=OE,∠AOC=∠BOC,OC=OC,∴△ODC≌△OEC(SAS)∴CD=CE;(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,∴∠CQO=90°,即CQ⊥OB.∵∠AOC=∠BOC,∴CP=CQ,当CP与OA不垂直时,如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.∵∠AOC=∠BOC,∴CM=CN,又∵∠AOB=90°,∴∠MCN=90°,∴四边形CMON是正方形,∵∠PCQ=90°,∴∠PCM=∠QCN,∴△PCM≌△QCN(AAS)∴CP=CQ,∴,∴当CP取得最小值即CM的长时,PQ有最小值,∴,PQ的最小值为4.19.解:过O点作半径OD⊥AB于E,∴,在Rt△AEO中,,∴ED=OD﹣OE=5﹣3=2.答:水车工作时,盛水桶在水面以下的最大深度为2m.20.解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=2.96(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥。

第五章2圆的对称性课堂练习题含2021中考题

第五章2圆的对称性课堂练习题含2021中考题

75° .
数学
7.如图所示,AB,CD 是☉O 的两条直径,CE∥AB,求证:=.
证明:如图所示,连接 OE.
∵CE∥AB,
∴∠BOC=∠C,
∠AOE=∠E.
∵OC=OE,∴∠C=∠E,
∴∠BOC=∠AOE,
∴=.
数学
8.如图所示,已知在☉O 中,=,D,E 分别为半径 OA,OB 的中点,你认为 CD 和 CE 有何关系?为什么?
(1)求证:=.
(2)能否求出 BD 的长?若能,求出 BD 的长;若不能,说明理由.
(1)证明:∵∠1=∠2,∴∠1+∠COB=∠2+∠COB,即∠DOB=∠COA,
∴=.
(2)解:能.∵=,∴BD=AC.
∵AC=3 cm,∴BD=3 cm.
数学
13.如图所示,A,B 是圆 O 上的两点,∠AOB=120°,C 是劣弧的中点.
A.25°
B.30°
C.50°
D.60°
4.在☉O 中,=2,则 AB 与 CD 的大小关系是(
C )
A.AB=2CD B.AB>2CD
C.AB<2CD D.无法确定
5.如图所示,AC 是☉O 的直径,的度数为 60°,则∠ACB 的度数为 30°
.
B )
数学
6.如图所示,在☉O 中,=,∠A=30°,则∠B 的度数为
∴四边形 OACB 是菱形.
数学
(2)延长OA至点P,使得AP=OA,连接PC,若圆O的半径R=2,求PC的长.
解:(2)∵AP=OA,AC=OA,∴AP=AC,

∴∠P=∠ACP= ∠OAC=30°,

∴∠OCP=90°.

圆的对称性练习题

圆的对称性练习题
(1)如图所示,过点 O 作 OD⊥AB 于点 D,则 BD =AD=3 cm,∴PD=PA+AD=6+3=9(cm),在 Rt△ POD 中,OD= PO2-PD2= 122-92=3 7(cm).在 Rt△OBD 中,OB= BD2+OD2= 32+(3 7)2=6 2 (cm).∴⊙O 的半径为 6 2 cm.
OA2+OB′2= 2,即 PA+PB 的最小值为 2.
A.到 CD 的距离保持不变 B.位置不变 C.平分B︵D D,半径为 5 的⊙A 中,弦 BC,ED 所对的圆心角分别是
∠BAC,∠EAD.已知 DE=6,∠BAC+∠EAD=180°,则弦 BC 的弦心
距等于( D )
A.
41 2
B.
34 2
C.4
D.3
9.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,BG=8 cm, AG=1 cm,DE=2 cm,则EF=__6__c_m___.
1.如图,在⊙O 中,A︵B=A︵C,∠A=30°,则∠B=( B ) A.150° B.75° C.60° D.15°
2.下列判断正确的是( C ) A.平分弦的直径垂直于弦 B.平分弦的直径必平分弦所对的两条弧 C.弦的垂直平分线必平分弦所对的两条弧 D.平分一条弧的直线必平分这条弧所对的弦
3.如图,在⊙O 中,A,C,D,B 是⊙O 上四点,OC,OD 交 AB 于 点 E,F,且 AE=FB,下列结论中不正确的是( C )
(2)设他在不弯腰的情况下向 CD 左侧活动时他的头顶与A︵C的接触点 为点 E,向 CD 右侧活动时他的头顶与B︵C的接触点为点 F,连结 EF,则 EF⊥OC.设垂足为点 G,连结 OE.由题意,得 OG=3-2.3+1.7=2.4(m).在 Rt△OEG 中,EG= OE2-OG2= 32-2.42=1.8(m),∵OC⊥EF,∴EF= 2EG=3.6 m,∴该菜农在不弯腰的情况下,横向活动的范围有 3.6 m.

圆的对称性练习题

圆的对称性练习题

圆的对称性(一)练习题1.下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等2.在e O中,圆心角∠AOB=80°,圆心角∠COD=40°,那么下列说法中正确的是()A.»»2AB CD=B.»»2AB CD>C.»»2AB CD<D.AB=2CD3.如图,C,D为半圆上的三等分点,则下列说法正确的有()①AD=CD=BC②∠AOD=∠DOC=∠BOC③AD=CD=OC④△AOD沿OD翻折与△C OD重合A.1个B.2个C.3个D.4个4.若e O内一条弦把圆周分为3∶1的两段弧,且e O的半径为R,那么这条弦的长为()A.R B.2RC.2R D.3R5.如图,O是∠EPF的平分线上的一点,以点O为圆心的圆与该角的两边所在直线分别交于点A,B和C,D,则AB与CD的关系是()A.AB=CD B.AB>CDC.AB<CD D.无法确定6.如图,AB,CD是e O的直径,若弦DE∥AB,则弦AC与AE的大小关系为__________.7.如图,在e O中弦AB=AC,AD是e O的直径,试判断弦BD与CD是否相等,并说明理由.8.如图,在ABCD中,以A为圆心,以AB为半径作圆交A D于点F,交BC于点G,BA的延长线交e A于点E,求证:»»EF FC=.9.如图,AB,CD是eO的弦,OC,OD分别交AB于点E,F,且OE=OF,请你来猜想一下,»»AC BD=吗?请加以说明.圆的对称性(二)练习题1.下列说法中正确的是( )A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴2.如图,AB 是e O 的直径,CD 是弦,CD ⊥AB 于点E , 则下列结论中不一定成立的是( ) A .∠COE =∠DOE B .CE =DEC .OE =BED .»»BDBC 3.如图所示,e O 的弦AB 垂直平分半径OC , 则四边形OACB 是( )A .正方形B .长方形C .菱形D .以上答案都不对4.如图,AB 是e O 的弦,半径OC ⊥AB 于点D ,且AB =6cm , OD =4cm ,则DC 的长为( )A .5cmB .2.5cmC .2cmD .1cm 5.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )A .0.5cmB .1cmC .1.5cmD .2cm6.右图是一个单心圆隧道的截面,若路面AB 宽为10m , 拱高CD 为7m ,则此隧道单心圆的半径OA 是( )A .5mB .377mC .375m D .7m7.如图,AB ,AC 分别是e O 的直径和弦,OD ⊥AC 于点D ,连接BC ,若BC =12,则OD =__________ 8.如图,在e O 中,直径AB ⊥弦CD 于点M , AM =18,BM =8,则CD 的长为_________. 9.如图,已知e O 的半径为5,弦AB =6,M是AB上任意一点,则线段OM 的长可能是( ) A .2.5 B .3.5 C .4.5 D .5.510.在半径为5cm 的圆内有两条平行弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为__________.11.在直径为650mm 的圆柱形油桶内装进一些油后,其截面如图所示,若油面宽为600mm ,求油的最大深度.12.有一座弧形的拱桥,桥下的水面宽度为7.2m ,拱顶高出水面2.4m ,现有一艘宽3m ,船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过这座拱形桥吗?。

圆的对称性专项练习1

圆的对称性专项练习1

圆的对称性专项练习1. 若圆的半径为3,圆中一条弦为,则此弦中点到弦所对劣弧的中点的距离为.2. 若AB 是O 的直径,弦CD AB ⊥于E ,16AE =,4BE =,则CD = ,AC = .3. 已知CD 为O 直径,AB 是弦,AB CD ⊥于M ,15cm CD =,若:3:5OM OC =,则AB = .4. 一条弦AB 分圆的直径为3cm 和7cm 两部分,弦和直径相交成60角,则AB =.5. 如图,在半径为6cm 的O 中,弦AB CD ⊥,垂足为E ,若3cm CE =,7cm DE =,则AB = .6. 如图,O 的直径为10,弦8AB =,P 是弦AB 上的一个动点,那么OP 的取值范围是.7. 在O 中,已知5AB CD =,那么下列结论正确的是()A.5AB CD > B.5AB CD = C.5AB CD < D.不确定 8. 弓形弦长为24,弓形高为8,则弓形所在圆的直径是( )A.10 B.26 C.13 D.59. 如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,10cm AB =,6cm CD =,那么AC 的长为( )A.0.5cm B.1cm C.1.5cm D.2cm10. EF 是O 的直径,5cm OE =,弦8cm MN =,则E 、两点到直线MN 距离的和等于( )B.6cm C.8cmD.3cm11. 如图,O 的直径AB 与弦CD 相交于M 点,AE CD ⊥于E ,BF CD ⊥于F ,若4CM =,3MD =,:1:3BF AE =,则O 的半径是() A.4 B.5 C.6 D.812. 如图,O 的两弦AB ,CD 互相垂直于H ,4AH =,6BH =,3CH =,8DH =,求O 的半径. 13. 如图,O 的直径AB 和弦CD 相交于点E ,已知6cm AE =,2cm EB =,30CEA ∠=,求CD 的长.14. 如图,ABCD 是直角梯形,以斜腰AB 为直径作圆,交CD 于点E ,F ,交BC 于点G .求证:(1)DE CF =;(2)AE GF =.15. 如图,已知AB ,在AB 上作点C ,D ,E ,使AC CD DE EB ===.8AB =,弦16. 在O 中,弦AB 的垂直平分线交O 于C ,D 两点,5AC =,求O 的直径.17. 如图,O 中,AB BC ⊥,OM BC ⊥,ON AB ⊥,垂足分别为M ,N ,若16cm AB =,12cm BC =,则ON =cm,OM =cm ,O 的半径= cm .18. 如图,在△ABC 中,90ACB ∠=,25B ∠=,以C 为圆心,CA 为半径的圆交AB 于D ,交BC 于E ,则DE 的度数为 .19.如图,已知O 中,弦12cm AB =,O 点到AB 的距离等于AB 的一半,则AOB ∠的度数为,圆的半径为 .D20. 如图,已知O 的半径为10cm ,AB 是120,那么弦AB 的弦心距是( )A.5cmB.C.21. 如图,AB是O 的弦,从圆上任意一点作弦CD AB ⊥,作OC D ∠的平分线交O 于点P ,若5AP =,则BP 的值为( )A.4 B.5C.5.5D.622. 如图,如果AB 是O 的直径,弦CD AB ⊥,垂足为E ,那么下面结论中,错误的是( ) A.CE DE = B.BC BD = C.BAC BAD ∠=∠ D.AC AD >23 在半径为5cm 的O 内有一点P ,若4OP =,过点P 的最大弦长是 cm ,过点P 的最短弦的长是 cm .24 O 的半径为5cm ,点P 到圆的最小距离与最大距离之比为2:3,求OP 的长.25. 已知:如图,AB 是O 的直径,CD 是弦,AE CD ⊥,垂足是E ,BF CD ⊥,垂足是F ,求证:CE DF =.26.在O 中,弦AB 的长恰好等于半径,则弦AB 所对的圆心角为 度,弦AB 所对的圆周角为度.27. 圆的一条弦分圆为4:5两部分,其中优弧的度数为 .28. 同圆中的两条弦长为1m 和2m ,圆心到两条弦的距离分别为1d 和2d ,且12d d >,那么1m ,2m 的大小关系是( )A.12m m > B.12m m < C.12m m = D.12m m ≤ 29.如图,在O 中,AB AC =,70B ∠=.求C ∠度数.P30. 如图,AB 是O 的直径,BC ,CD ,DA 是O 的弦,且BC CD DA ==,求BOD ∠的度数.31. 如图,点O 是EPF ∠的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A ,B 和C ,D , (1)AB 和CD 相等吗?为什么?(2)若角的顶点P 在圆上,或在圆内,本题的结论是否成立?请说明理由.32. 如图,将半径为2cm 的O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连结PM ,则图中阴影部分的面积是 cm 233. 如图,AB 是的直径,弦CD 垂直平分OB ,则BDC ∠的度数为( ) A.15 B.20 C.30 D.4534.O 中AB 是直径,AC 是弦,点B ,C 间的距离是2cm ,那么圆心到弦AC 的距离是 cm .35. 半径为5cm 的圆内有两条互相平行的弦长度分别为6cm 和8cm ,则这两弦间的距离为 cm .36. 如图,AB 是O 的直径,AC ,CD ,DE ,EF ,FB 都是O 的弦,且AC CD DE EF FB ====,求AOC ∠与COF ∠的度数.37.圆是以 为对称中心的中心对称图形,又是以 为对称轴的轴对称图形.38.O 的半径为6cm ,P 是O 内一点,2OP =cm ,那么过P 的最短的弦长等于 cm ,过P 的最长的弦长为 cm .39. 下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有( )A.3个 B.2个 C.1个 D.0个AP40. 如图,O 的直径AB 垂直于弦CD ,AB ,CD 相交于点E ,100COD ∠=,求COE ∠,DOE ∠的度数.41. 如图,有一座石拱桥的桥拱是以O 为圆心,OA 为半径的一段圆弧.(1)请你确定弧AB 的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)若120AOB ∠=,4OA =m ,请求出石拱桥的高度. 42. 在半径为1)A.30 B.45C.60D.9043.O 的半径为R ,弦AB 的长也是R ,则AOB ∠的度数是 .44. 如图,有一圆弧形拱桥,桥的跨度16m AB =,拱高4m CD =,则拱桥的半径是.45. 如图,已知O ,线段CD 与O交于A ,B 两点,且OC OD =.试比较线段AC 和BD的大小,并说明理由.46. 如图,在△AOB 中,AO AB =,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD BO =.试说明BD DE =,并求A ∠的度数.47.在直径为1m 的圆柱形油槽内装入一些油后,截面如图所示,若油面宽0.6m AB =,则油的最大深度为 m .OP48. 如图,弦DC ,FE 的延长线交于圆外一点P ,PAB 经过圆心,试结合现有图形,添加一个适当的条件 ,使12∠=∠. 49. 如图,在O AB O OC AB O C 圆中,弦等于圆的半径,⊥交圆于, 则ABC ∠= 度.50. 如图,A B O 是的直径,C 、E 是圆周上关于AB 对称的两个不同点,CD AB EF BC AD M AF BE N ∥∥,与交于,与交于.(1)在A 、B 、C 、D 、E 、F 六点中,能构成矩形的四个点有哪些?请一一列出(不要求证明);(2)求证:四边形AMBN 是菱形.51. 平面直角坐标系中,点(29)A ,、(23)B ,、(32)C ,、(92)D ,在P 上. (1)在图中清晰标出点P 的位置;(2)点P 的坐标是 .52. 如图所示,要把破残的圆片复制完整.已知弧上的三点A B C 、、.(1) 用尺规作图法找出BAC 所在圆的圆心.(保留作图痕迹,不写作法)(2) 设ABC △是等腰三角形,底边8BC =cm ,腰5AB =cm .求圆片的半径R .垂径定理一.选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5AB★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )A. B. C. D.图 4★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________★★9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为m★★11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm ★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 ★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米 ★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

北京课改版九年级数学上册 《圆的对称性》 同步练习(含答案)

北京课改版九年级数学上册  《圆的对称性》  同步练习(含答案)

北京课改版九年级上册圆的对称性同步练习一.选择题(共10小题,3*10=30)1.如图,直径AB 平分弦CD ,交CD 于点E ,则下列结论错误的是( ) A.AC ︵=AD ︵ B.BC ︵=BD ︵C .AB ⊥CD D .OE =BE2.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC =AB B .∠C =12∠BODC .∠C =∠BD .∠A =∠BOD3.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为() A .2 B .4C .6D .84.下列命题中正确的是( )A .弦的垂线平分弦所对的弧B .平分弦的直线垂直于这条弦C .过弦的中点的直线必经过圆心D .弦所对的两条弧的中点连线垂直平分这条弦且过圆心5.如图,AB 是半圆O 的直径,半径OM 垂直于弦AC ,垂足为E ,MN ⊥AB 于N ,下列结论:①AM ︵=CM ︵;②∠OMN =∠OAE ;③BC ︵=MC ︵;④MN =12AC.其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④6. 如图,AB 是⊙O 的直径,点M 在弦CD 上,CM =DM ,下列结论不成立的是( )A .AB ⊥CD B .CB =DBC .∠ACD =∠ADC D .OM =MD7. 如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( )A .10 cmB .16 cmC .24 cmD .26 cm8. 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,则AB =8 cm ,则AC 的长为( )A .2 5 cmB .4 5 cmC .2 5 cm 或4 5 cmD.2 3 cm或4 3 cm9. 如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8 cm,AE=2 cm,则OF的长度是( )A.3 cm B. 6 cmC.2.5 cm D. 5 cm10.在半径为5 cm的⊙O中,弦AB的长为6 cm,当弦AB的两个端点A,B在⊙O上滑动时,AB的中点在滑动过程中所经过的路线为()A.圆B.直线C.正方形D.多边形二.填空题(共8小题,3*8=24)11.世界上因为有了圆的图案,万物显得更富有生机,以下图形(如图)都有圆,它们看上去是多么美丽和谐,这正是因为圆具有轴对称性.图中的三个图形是轴对称图形的有____________;(分别用三个图的序号填空)12.如图,AB,AC分别是⊙O的弦,D,E分别是AB,AC的中点,∠DOE=120°,则∠DAC的度数为_______.13.如图,已知AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,且AE=3 cm,BF=5 cm,若⊙O的半径为5 cm,求CD的长.14.如图,若⊙O 的半径为13 cm ,点P 是弦AB 上的一个动点,且到圆心的最短距离为5 cm ,则弦AB 的长为_______cm.15.如图,⊙O 的直径AB 平分CAD ︵,AB 交CD 于E ,AE 与BE 的长度之比为5∶1,CD =16 cm ,则⊙O 的半径为_______cm.16.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G ,B ,F ,E ,GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =________.17.如图所示,以O 为圆心的同心圆,大圆的弦AB 交小圆于C ,D ,如果AB =3cm ,CD =2cm ,那么AC =__ __cm.18. 如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为_______.三.解答题(共7小题,46分)19. (6分) 如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,求DM 的长.20. (6分) 如图,AB 为⊙O 的直径,从圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O于P ,求证:AP ︵=BP ︵.21. (6分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,求该铅球的直径.22.(6分) “圆材埋壁”是我国古代著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 题目用现在的数学语言表达是:如图所示,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD 的长.23. (6分) 已知以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到AB的距离为6,求AC的长.24. (8分) 已知⊙O的弦CD与直径AB垂直于点F,点E在CD上,且AE=CE.(1)求证:CA2=CE·CD;(2)已知CA=5,EA=3,求sin∠EAF25. (8分) 已知圆的半径为5 cm,两弦AB∥CD,AB=8 cm,CD=6 cm,则两弦AB,CD 的距离是多少?参考答案1-5DBDDB 6-10DCCDA11. ①②③12. 60°13. 6 cm14. 2415. 245516. 6cm17. 0.518. 419. 解:连结AO ,∵OM ⊥AB ,∴AM =12AB =4. 在Rt △AOM 中,AO =5,AM =4,∴由勾股定理得OM =3,则DM =5+3=8.20. 解:连结OP ,∵OC =OP ,∴∠OCP =∠P ,又∠DCP =∠OCP ,∴∠DCP =∠P ,∴CD ∥OP ,∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵21. 解:如图所示,依题意,得AB =10 cm ,CD =2 cm.连结OA ,作OC ⊥AB 于点D ,交圆O 于点C ,∴AD =12AB =12×10=5(cm). 设铅球的半径为k cm ,则OD =(k -2)cm ,在Rt △AOD 中,AD 2+OD 2=OA 2,∴52+(k -2)2=k 2,解得k =7.25,∴2k =14.5.22. 解:连结OA.∵CD ⊥AB 于E ,CD 为直径,∴AE =12AB =12×10=5(寸). 在Rt △AEO 中,设AO =x ,则OE =(x -1)寸.由勾股定理得x 2=52+(x -1)2,解得x =13,∴OA =13寸,∴CD =2OA =26寸,∴直径CD 的长为26寸.23. 解:(1)作OH ⊥CD 于点H ,在小圆中,CH =DH ;在大圆中,AH =BH ,∴AH -CH =BH -DH ,即AC =BD(2)在Rt △OCH 中,CH =OC 2-OH 2=82-62=27,在Rt △OAH 中,AH =OA 2-OH 2=102-62=8,∴AC =8-2724. 解:(1)∵CD ⊥AB ,∴AC ︵=AD ︵,∴∠D =∠C ,又∵AE =EC ,∴∠CAE =∠C ,∴∠CAE =∠D ,∠C 是公共角,∴△CEA ∽△CAD ,∴CA CD =CE CA,即CA 2=CE·CD (2)∵CA 2=CE·CD ,AC =5,EC =EA =3,∴52=CD×3,∴CD =253, 又∵CF =FD ,∴CF =12CD =12×253=256,∴EF =CF -CE =76, 在Rt △AFE 中,sin ∠EAF =EF AE =763=71825. 解:如图:分2种情况。

圆的对称性的练习题

圆的对称性的练习题

圆的对称性的练习题圆的对称性的练习题圆是我们日常生活中经常遇到的几何形状之一,它具有独特的对称性。

对称性是几何学中一个重要的概念,它表明一个图形或物体在某种变换下保持不变。

在圆的对称性中,我们可以探索一些有趣的练习题,以加深对圆的理解和应用。

练习一:圆的旋转对称首先,我们来看圆的旋转对称性。

旋转对称是指一个图形可以通过某个中心点旋转一定角度后,与原来的图形完全重合。

对于圆来说,它的旋转对称性非常明显,因为圆的每一个点都可以作为旋转的中心点。

现在,我们来做一个练习题。

画一个半径为5厘米的圆,然后选择一个点作为旋转中心,将圆旋转180度。

你会发现,旋转后的圆与原来的圆完全重合。

这就是圆的旋转对称性的体现。

练习二:圆的轴对称除了旋转对称,圆还具有轴对称性。

轴对称是指一个图形可以通过某条直线对折后,两边完全重合。

对于圆来说,它的轴对称性是通过直径来体现的,因为直径将圆分为两个完全相同的半圆。

现在,我们来做第二个练习题。

画一个半径为6厘米的圆,并且在圆上选择两个点A和B,连接这两个点得到一个直径。

然后,将这个圆沿着这个直径对折。

你会发现,对折后的两边完全重合,这就是圆的轴对称性的体现。

练习三:圆的镜像对称除了旋转对称和轴对称,圆还具有镜像对称性。

镜像对称是指一个图形可以通过某个镜面对折后,两边完全重合。

对于圆来说,它的镜像对称性可以通过与圆的边界垂直的直线来体现。

现在,我们来做第三个练习题。

画一个半径为8厘米的圆,并且在圆上选择一个点C。

然后,画一条与圆的边界垂直的直线,并选择一个点D在这条直线上。

接下来,将这个圆与直线对折。

你会发现,对折后的两边完全重合,这就是圆的镜像对称性的体现。

练习四:圆的应用除了对称性的练习,圆还有许多实际应用。

例如,我们可以利用圆的对称性来设计各种各样的艺术品和建筑物。

圆形的建筑物如圆形剧场和圆形体育馆,不仅具有美观的外观,还能够提供更好的声学效果和观赛体验。

此外,圆的对称性还在科学和技术领域有广泛的应用。

九年级数学上册 圆的对称性练习 试题

九年级数学上册  圆的对称性练习 试题

轧东卡州北占业市传业学校圆的对称性知识点:点在圆外,即这个点到圆心的距离 ________________半径; 点在圆上,即这个点到圆心的距离 ________________半径; 点在圆内,即这个点到圆心的距离 ________________半径; 反过来,也成立〔即判定位置关系的方法〕圆是 图形,其对称轴是 ,因此有 条对称轴。

定理一: 〔垂径定理〕定理二: 〔垂径定理逆定理〕 定理三: 定理四: 例一:⊙0的面积为25π。

(1)假设PO=,那么点P 在________;〔2〕假设PO=4,那么点P 在________; 〔3〕假设PO=________,那么点P 在⊙0上。

例二:设AB=3cm ,作图说明:到点A 的距离小于2cm ,且到点B 的距离大于2cm③、:如图,矩形ABCD 的对角线AC 和BD 相交于点0,它的四个顶点A、B 、C 、D 是否在以点0④、如图,在△ABC 中,BD 、CE 是高。

求证:A 、B 、C 、D 、E 在同一个圆上。

⑤、设AB=3cm ,作图说明满足以下要求的图形:〔1〕到点A 和点B 的距离都等于2cm 的所有点组成的图形。

〔2〕到点A 和点B 的距离都小于2cm 的所有点组成的图形。

【例1】判断正误: 〔1〕直径是圆的对称轴.〔2〕平分弦的直径垂直于弦.B【例2】假设⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,假设直线EF平移到与直径AB相交于点P〔P不与A、B重合〕,在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.〔〕⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.〔〕⑶经过弦的中点的直径一定垂直于弦.〔〕⑷圆的两条弦所夹的弧相等,那么这两条弦平行. 〔〕⑸弦的垂直平分线一定平分这条弦所对的弧. 〔〕2、:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,假设油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞〞,我利用国债资金修建的,横跨南渡江的琼州大桥〔如图3-2-16〕已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图〔1〕.最高的圆拱的跨度为110米,拱高为22米,如图〔2〕那么这个圆拱所在圆的直径为米.三、课后练习:1、,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两局部,求:圆心O到弦AB的距离3、:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两局部,求:弦AB的长.5、:AB为⊙O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证:AE=BF6、:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵ CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF【例1】A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.二、课内练习:1、判断题〔1〕相等的圆心角所对弦相等〔〕〔2〕相等的弦所对的弧相等〔〕2、填空题⊙O中,弦AB的长恰等于半径,那么弦AB所对圆心角是________度.3、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,假设AC=2.5 cm,ED=1.5 cm ,OA =5 cm ,那么AB 长度是___________. A 、6 cm B 、8 cm C 、7 cm D 、7.5 cm 三、课后练习:1 〕A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.以下说法中,正确的选项是〔 〕 A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3 〕A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对 4.半径为R 的圆中,垂直平分半径的弦长等于〔 〕A .43R B .23R C .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,那么弦CD 的长为〔 〕 A .23B .3C .5D .256.:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,那么⊙O 的半径为〔 〕 A .4cmB .5cmC .42cmD .23cm7.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为〔 〕 A .3:2B .5:2C .5:2D .5:48.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,假设两弦的弦心距分别为OE 、OF ,那么OE :OF=〔 〕 A .2:1B .3:2C .2:3D .09.在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,那么⊙O 的直径的长为〔 〕 A .42B .82C .24D .1610.如果两条弦相等,那么〔 〕 A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中假设直径为25cm,弦AB的弦心距为10cm,那么弦AB的长为.12.假设圆的半径为2cm,圆中的一条弦长23cm,那么此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,那么AB= .14.半径为5的⊙O内有一点P,且OP=4,那么过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,那么弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两局部,那么弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,那么∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.〔1〕求证:AC=DB;〔2〕如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24.一弓形的弦长为46,弓形所在的圆的半径为7,求弓形的高.25.如图,⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,⌒⌒EFCD ,O1M和O2M相等吗?为什么?。

27.1《圆的对称性》同步练习

27.1《圆的对称性》同步练习

《圆的对称性》同步练习一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.53.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.同圆中优弧与劣弧的差必是优弧4.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.45.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧6.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定7.过圆内一点A可以作出圆的最长弦有()A.1条B.2条C.3条D.1条或无数条8.下列结论错误的是()A.圆是轴对称图形B.圆是中心对称图形C.半圆不是弧D.同圆中,等弧所对的圆心角相等9.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm10.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定二.填空题(共8小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.12.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是.13.已知⊙O的半径为5,点A在⊙O外,那么线段OA的取值范围是.14.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.15.圆上各点到圆心的距离都等于,到圆心距离等于半径的点都在.16.下列说法正确的是()填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.17.与已知点A的距离为3cm的点所组成的平面图形是.18.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它们分别是.三.解答题(共2小题)19.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.。

《圆的对称性》练习题

《圆的对称性》练习题

14.如图,已知⊙O 的半径等于 1 cm,AB 是直径,C,D 是⊙O 上的 ︵ ︵ ︵ 两点,且AD=DC=CB,则四边形 ABCD 的周长等于( B ) A.4 cm B.5 cm C.6 cm D.7 cm
15.(导学号:37554049)如图,在扇形 OAB 中,∠AOB=110°, ︵ 将扇形 OAB 沿过点 B 的直线折叠,点 O 恰好落在AB上的点 D 处, ︵ 折痕交 OA 于点 C,则AD所对的圆心角的度数为( B A.40° B.50° C.60° D.70° )
20.如图,A,B,C 是半径为 2 的圆 O 上的三个点,其中点 A 是弧 BC 的中点,连接 AB,AC,点 D,E 分别在弦 AB,AC 上,且满足 AD=CE. (1)求证:OD=OE; (2)连接 BC,当 BC=2 2时,求∠DOE 的度数.
(1) 证明:连接 OA , 图略.∵点 A 是弧 BC 的中点 , ∴∠ AOB = ∠AOC.∵OA=OB=OC,∴∠ABO=∠BAO=∠ACO,∵AD=CE, ∴△AOD≌△COE,∴OD=OE (2)连接 BC 交 OA 于点 F,图略.由 三线合一知 OA⊥BC,BF= 2.在 Rt△BFO 中,由勾股定理可求 OF= 2 , ∴ BF = OF , ∴∠ AOB = 45 ° . ∵△ AOD ≌△ COE , ∴∠ AOD = ∠COE,∴∠BOD=∠AOE,∴∠DOE=∠AOB=45°
︵ 的三 连接 AC,BD,图略.∵在⊙O 中,半径 OA⊥OB,C,D 为AB 1 1 等分点,∴∠AOC=∠COD=∠BOD= ∠AOB = ×90°=30°, 3 3 AC=CD=BD.∵OA=OB ,∴∠OAB =∠OBA=45°,∵∠AOC= ∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同 理∠OFE=75°,∵OA=OC,OB=OD,∠AOC=∠BOD=30°, 180°-30° ∴∠ACO=∠BDO= =75°.∵∠AEC=∠OEF=75°, 2 ∠ BDO =∠OFE = 75 ° , ∴∠ ACO =∠AEC , ∠ BDO =∠BFD , ∴ AE=AC,BD=BF,又∵AC=CD=BD,∴AE=BF=CD

圆的对称性压轴题六种模型全攻略(解析版)

圆的对称性压轴题六种模型全攻略(解析版)

圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .【答案】 7554【分析】根据垂径定理构造直角三角形即可得到OA 的长度;根据题意做出示意图再利用勾股定理列出方程即可.【详解】解:连接AB ,过点O 作OC ⊥AB ,垂足为C ,如图,∵OA =OB ,AB =90cm ,∴AC =BC =12AB =45cm ,∵点A ,点B 离地高度均为15cm ,∴OC =OA -15,∴在Rt △AOC 中,OC 2+AC 2=OA 2,∴OA -15 2+452=OA 2,∴OA =75cm ,故答案为75;过点B 作BE ⊥OA ,BF 垂直于地面,垂足分别是E 、F ,如图,∵BE =AF ,设BF =AE =x ,OA =OB =75cm ,∴OE =OA -AE =75-x ,∴在Rt △BOE 中,BE 2=OB 2-OE 2,在Rt △BEA 中,BE 2=AB 2-AE 2,∴752-75-x 2=902-x 2,∴x =54cm .∴则点B 离地面的高度应小于54cm .故答案为:54.【点睛】本题考查了垂径定理,勾股定理,解一元一次方程等相关知识点,熟记垂径定理是解题的关键.三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.【答案】80°【分析】根据圆的性质进行计算即可得.【详解】解:在⊙O 中,AB 是⊙O 的直径,∴∠AOB =180°,又∵BC=CD,∴∠BOC =∠COD =50°,∴∠AOD =180°-50°-50°=80°.【点睛】本题考查了圆的性质,解题的关键是掌握同弧所对的圆心角相等.12(2023·江苏·九年级假期作业)如图,OA =OB ,AB 交⊙O 于点C ,D ,OE 是半径,且OE ⊥AB 于点F .(1)求证:AC =BD .(2)若CD =8,EF =2,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)由垂径定理得到CF =DF ,由等腰三角形的性质得到AF =BF ,从而证明AC =BD ;(2)设⊙O 的半径是r ,由勾股定理,垂径定理列出关于r 的方程,即可求出⊙O 的半径.【详解】(1)证明:∵OE ⊥AB ,∴CF =DF ,∵OA =OB ,∴AF =BF ,∴AF -CF =BF -DF ,∴AC =BD ;(2)解:连接OC ,设⊙O 的半径是r ,∵CO 2=CF 2+OF 2,CF =12CD =4∴r 2=42+(r -2)2,∴r =5,∴⊙O 的半径是5.【点睛】本题考查垂径定理,勾股定理,等腰三角形的性质,关键是由勾股定理,垂径定理列出关于半径的方程.13(2023春·全国·九年级专题练习)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,AE =2,CD =8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.【答案】(1)⊙O的半径长为5(2)OF的长为5【分析】(1)连接OD,设⊙O的半径长为r,OE=OA-AE=r-2,得到r-22+42=r2,求解即可.(2)勾股定理求得BC,垂径定理求得BF,勾股定理求出OF即可.【详解】(1)连接OD,如图,设⊙O的半径长为r,∵AB⊥CD,AE=2,CD=8,∴∠OED=90°,CE=DE=12CD=4,OE=OA-AE=r-2,在Rt△ODE中,∴r-22+42=r2,解得r=5,故⊙O的半径长为5.(2)在Rt△BCE中,∵CE=4,BE=AB-AE=10-2=8,∴BC=42+82=45,∵OF⊥BC,∴∠OFB=90°,CF=FB=12CB=25在Rt△BOF中,OF=52-252=5,故OF的长为5.【点睛】本题考查了勾股定理,垂径定理,熟练掌握两个定理是解题的关键.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.【答案】(1)支撑杆CD的高度为9cm.(2)手机的宽度为8cm.【分析】(1)如图,连结OA,由题意可得:⊙O的直径为10,AB=6, 由OD⊥AB, 先求解OD, 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明AE =CD =BF =AB , 设AD =BD =x ,则AE =CD =BF =AB =2x ,则OD =2x -5, 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:⊙O 的直径为10,AB =6,∴OA =5,∵CD ⊥AB , 即OD ⊥AB , ∴AD =BD =3, ∴OD =52-32=4, ∴CD =OC +OD =9.所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:AB =AE ,∠E =∠EAB =∠ABF =90°, ∴四边形AEFB 为正方形,∵CD ⊥EF ,∴AE =CD =BF =AB ,∵CD ⊥AB , ∴设AD =BD =x ,则AE =CD =BF =AB =2x ,∵OA =OC =5, ∴OD =2x -5,由勾股定理可得:52=x 2+2x -5 2, 解得x 1=0,x 2=4,经检验x =0不符合题意,舍去,取x =4, AB =8(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.【答案】(1)见解析(2)见解析(3)13【分析】(1)连接DE ,利用圆内接四边形的性质,等腰三角形的两个底角相等的性质证明即可.(2)连接OA =OB ,证△OAM ≌△OBN ,得OM =ON ,得OP -OM =OQ -ON ,可证明PM =NQ .(3)连接OB ,证∠OAM =∠OBN ,OB =OE ,结合已知,得∠CNO =60°,等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,设GN =m ,可得ON =2m ,OG =3m ,GC =3m ,OE =OQ =2m+32,EG =3m -112,Rt △OGE 中勾股得2m +32 2=3m -112 2+3m 2,计算即可.【详解】(1)如图,连接DE ,∵四边形ADEB 是⊙O 的内接四边形,∴∠CDE =∠B ,∠CED =∠A ;∵AC =BC ,∴∠B =∠A ;∴∠CDE =∠CED ;∴CD =CE .(2)连接OA ,OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵PQ ∥AB ,∴∠CAB =∠CMN ,∠CBA =∠CNM ,∴∠CMN =∠CNM ,∴CM =CN ,∴CA -CM =CB -CN ,∴MA =NB ,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAM =∠OBN ,∴MA =NB∠OAM=∠OBN OA =OB,∴△OAM ≌△OBN ,∴OM =ON ,∵OP =OQ ,∴OP -OM =OQ -ON ,∴PM =NQ .(3)连接OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵OA =OB ,∴∠OAB =∠OBA ,∴∠CAO =∠CBO ,∵∠EON +∠CAO =120°,21∴∠EON +∠CBO =120°,∵OB =OE ,∴∠OEB =∠CBO ,∴∠EON +∠OEN =120°,∴∠CNO =60°,∵CM =CN ,∴等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,则BE =2EG ,∵CE =CD =112,NQ =32,设GN =m ,则ON =2m ,OG =3m ,∴CN =4m ,∴GC =CN -GN =3m ,OE =OQ =2m +32,EG =3m -112,Rt △OGE 中,根据勾股定理,得2m +32 2=3m -1122+3m 2,解得m 1=4,m 2=78, ∵3m -112>0,∴m =4,∴BE =2EG =23m -112=13.【点睛】本题考查了圆的性质,垂径定理,等边三角形的判定和性质,等腰三角形的性质,圆的内接四边形的性质,勾股定理,一元二次方程的解法,熟练掌握圆的性质,勾股定理,一元二次方程的解法是解题的关键.。

第07讲 圆与对称性(5种题型)(解析版)

第07讲 圆与对称性(5种题型)(解析版)

第07讲圆与对称性(5种题型)1.在探索过程中认识圆,理解圆的本质属性;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;一.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.四.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.五.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.一.圆的认识(共3小题)1.(2022秋•邗江区校级月考)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•江阴市校级月考)下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【分析】利用圆的有关定义和性质分别判断后即可确定正确的选项.【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.故选:D.【点评】考查了圆的有关概念,解题的关键是了解圆的有关定义及性质,难度不大.3.(2022秋•启东市校级月考)画圆时圆规两脚间可叉开的距离是圆的()A.直径B.半径C.周长D.面积【分析】画圆时,圆规两脚分开的距离,即圆的半径,据此解答即可.【解答】解:画圆时圆规两脚间可叉开的距离是圆的半径.故选:B.【点评】本题主要考查了圆的认识,认识平面图形,解答本题关键是抓住圆规画圆的方法.二.点与圆的位置关系(共6小题)4.(2022秋•连云港期中)已知⊙O的半径为3,点P在⊙O外,则OP的长可以是()A.1B.2C.3D.4【分析】由⊙O的半径及点P在⊙O外,可得出OP的长大于3,再对照四个选项即可得出结论.【解答】解:∵⊙O的半径为3,点P在⊙O外,∴OP的长大于3.故选:D.【点评】本题考查了点与圆的位置关系,牢记“①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r”是解题的关键.5.(2021秋•无锡期末)已知⊙O的半径为4,OA=5,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为4,OA=5,∴OA>半径,∴点A在⊙O外.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.(2022秋•江阴市校级月考)已知⊙O的半径是4,OA=3,则点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=3知d<r,据此可得答案.【解答】解:∵⊙O的半径r=4,且点A到圆心O的距离d=3,∴d<r,∴点A在⊙O内,故选:A.【点评】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7.(2022秋•如皋市期中)在数轴上,点A所表示的实数为4,点B所表示的实数为b,⊙A的半径为2,要使点B在⊙A内时,实数b的取值范围是()A.b>2B.b>6C.b<2或b>6D.2<b<6【分析】首先确定AB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为2,若点B在⊙A内,∴AB<2,∵点A所表示的实数为4,∴2<b<6,故选:D.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.(2022秋•梁溪区校级期中)已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P与⊙O的位置关系为()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】求出方程的根,再根据点到圆心的距离与半径的大小关系判断位置关系即可.【解答】解:x2﹣4x﹣5=0的根为x1=5,x2=﹣1<0(舍去),于是点P到圆心O的距离d=5,而半径r=4,∴d>r,所以点P在⊙O的外部,故选:C.【点评】本题考查点与圆的位置关系,解一元二次方程,求出方程的根是解决问题的前提,掌握点到圆心的距离与半径的大小是判断点与圆位置关系的关键.9.(2022秋•东台市期中)如图,点A,B的坐标分别为A(3,0)、B(0,3),点C为坐标平面内的一点,且BC=2,点M为线段AC的中点,连接OM,则OM的最大值为()A.B.C.D.2【分析】作点A关于点O的对称点A'根据中位线的性质得到OM=A′C,求出A'C的最大值即可.【解答】解:如图,作点A关于点O的对称点A'(﹣3,0),则点O是AA'的中点,又∵点M是AC的中点,∴OM是△AA'C的中位线,∴OM=A′C,∴当A'C最大时,OM最大,∵点C为坐标平面内的一点,且BC=2,∴点C在以B为圆心,2为半径的⊙B上运动,∴当A'C经过圆心B时,A′C最大,即点C在图中C'位置.A'C'=AB+BC'=3+2.∴OM的最大值=+1.故选:A.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是解题的关键.三.垂径定理(共4小题)10.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC 的长为6.【分析】连接OA,利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA.∵OC⊥AB,∴AC=CB=AB=8,∵OA=10,∠ACO=90°,∴OC===6,故答案为:6.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.11.(2022秋•惠山区期中)如图,已知AB是⊙O的直径,弦CD⊥AB于H,若AB=10,CD=8,则图中阴影部分的面积为20.【分析】利用垂径定理,得出CH=DH=4,由OC=OD得出Rt△COH≌Rt△DOH,进而得出图中阴影部,即可得出答案.分的面积为S△ABD【解答】解:∵AB是⊙O的直径,弦CD⊥AB于H,CD=8,∴CH=DH=4,∵OC=OD,∴Rt△COH≌Rt△DOH(HL),=S△DOH,∴S△COH=AB•DH=×10×4=20.故图中阴影部分的面积为:S△ABD故答案为:20.是解题关键.【点评】此题主要考查了垂径定理,得出图中阴影部分的面积为:S△ABD12.(2022秋•高邮市期中)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是()A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16【分析】连接OM、ON、OA、OP,由垂径定理得OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,由勾股定理得OM=5,ON=12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=7,当AB、PQ位于O的两侧时,线段EF的长度最长=OM+ON=17,便可得出结论.【解答】解:连接OM、ON、OA、OP,如图所示:∵⊙O的直径为26,∴OA=OP=13,∵点M、N分别是弦AB、PQ的中点,AB=24,PQ=10,∴OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,∴OM==5,ON==12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=12﹣5=7,当AB、PQ位于O的两侧时,线段MN的长度最长=ON+OM=12+5=17,∴线段MN的长度的取值范围是7≤MN≤17,故选:A.【点评】本题考查了垂径定理、勾股定理以及线段的最值问题,熟练掌握垂径定理和勾股定理是解题的关键.13.(2022秋•大丰区月考)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.2【分析】连接OC,设⊙O的半径为R,则OE=8﹣R,根据垂径定理得出CE=DE=4,根据勾股定理得出OC2=CE2+OE2,代入后求出R即可.【解答】解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.【点评】本题考查了垂径定理和勾股定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.四.垂径定理的应用(共4小题)14.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为4m.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.15.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=4则有:CM=CD=2m,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是m.故答案为:.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.16.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米【分析】连接OC,OC交AB于D,由垂径定理得AD=BD=AB=2(米),再由勾股定理得OD=(米),然后求出CD的长即可.【解答】解:连接OC,OC交AB于D,由题意得:OA=OC=3米,OC⊥AB,∴AD=BD=AB=2(米),∠ADO=90°,∴OD===(米),∴CD=OC﹣OD=(3﹣)米,即点C到弦AB所在直线的距离是(3﹣)米,故选:C.【点评】本题考查了垂径定理的应用和勾股定理的应用,熟练掌握垂径定理和勾股定理是解题的关键.17.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【分析】(1)连接OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连接OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连接OA,由题意得:AD=AB=30(米),OD=(r﹣18)米,在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34(米);(2)连接OA′,∵OE=OP﹣PE=30米,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16(米).∴A′B′=32(米).∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.五.圆心角、弧、弦的关系(共5小题)18.(2022秋•溧水区期中)如图,C是的中点,弦AB=8,CD⊥AB,且CD=2,则所在圆的半径为()A.4B.5C.6D.10【分析】由垂径定理,勾股定理,可以求解.【解答】解:设所在圆的圆心为点O,⊙O的半径为r,连接OD,OA,∵CD⊥AB,点C是中点,∴O,D,C三点共线,AD=BD=4,∵OA2=OD2+AD2,∴r2=(r﹣2)2+42,∴r=5,故选:B.【点评】本题考查勾股定理,垂径定理,关键是定出圆心,构造直角三角形,应用勾股定理列出关于半径的方程.19.(2022秋•淮阴区月考)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.【分析】根据圆心角、弧、弦之间的关系得出即可.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查了圆心角、弧、弦之间的关系,能根据定理求出=是解此题的关键.20.(2022秋•吴江区校级月考)如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【分析】过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,由于DE=FG=MN,所以弦的弦心距也相等,所以OB、OC是角平分线,可求出∠POQ,进而可求出∠BOC.【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC==115°.故选:C.【点评】本题主要考查垂径定理,解题关键是构造出辅助线——弦心距.21.(2022秋•玄武区期末)如图,在⊙O中,AB=AC.(1)若∠BOC=100°,则的度数为130°;(2)若AB=13,BC=10,求⊙O的半径.【分析】(1)根据圆周角、弧、弦间的关系可以得到AB=AC,结合等腰三角形的性质解答;(2)连接AO,延长AO交BC于D,则AD⊥BC,构造直角三角形,通过勾股定理求得该圆的半径即可.【解答】解:(1)∵在⊙O中,∠BOC=100°,∴∠BAC=50°,∵=,∴AB=AC,∴∠ABC=∠ACB=65°,∴=130°,故答案为:130;(2)连接AO,延长AO交BC于D,则AD⊥BC,BD=CD=BC=5,∴在直角△ABD中,由勾股定理,得AD===12;在直角△OBD中,由勾股定理,得OB2=(12﹣OB)2+52,解得OB=,即⊙O的半径是.【点评】考查了圆周角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.22.(2022秋•吴江区校级月考)已知⊙O的半径为2,弦,弦,则∠BOC的度数为150°或30°.【分析】分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,根据垂径定理可求出,,再根据勾股定理可求出,OQ=1,从而得出AP=OP,,即得出∠PAO=45°,∠QAO=30°,进而可求出∠BAC=75°,最后由圆周角定理即可求出∠BOC的大小;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,同理可求出∠BAC=15°,再由圆周角定理即可求出∠BOC的大小.【解答】解:分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,如图,∴.∵OA=2,∴,∴AP=OP,∴∠PAO=45°.∵,OA=2,∴,∴,∴∠QAO=30°,∴∠BAC=∠PAO+∠QAO=75°∴∠BOC=2∠BAC=150°;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,如图,由①同理可得:∠MAO=45°,∠NAO=30°,∴∠BAC=∠MAO﹣∠NAO=15°,∴∠BOC=2∠BAC=30°.综上可知∠BOC的度数为150°或30°.故答案为:150°或30°.【点评】本题考查垂径定理,圆周角定理,勾股定理,等腰直角三角形的判定和性质,含30°角的直角三角形的性质.正确的作出图形和辅助线并利用分类讨论的思想是解题关键.一.选择题(共10小题)1.(2022秋•邗江区期中)已知⊙O的半径为2,则⊙O中最长的弦长()A.2B.C.4D.【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×2=4.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•无锡期末)已知⊙O的半径为5cm,当线段OA=5cm时,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵⊙O的半径为5cm,OA=5cm,∴点A在⊙O上.故选:B.【点评】本题考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.3.(2023•沛县模拟)如图.AB是⊙O的直径,∠D=40°,则∠BOC=()A.80°B.100°C.120°D.140°【分析】根据圆周角定理即可求出∠BOC.【解答】解:∵∠D=40°,∴∠BOC=2∠D=80°.故选:A.【点评】本题考查圆周角定理,邻补角定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2022秋•姑苏区校级期中)已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.7【分析】设出OE=x,利用勾股定理表示出AC,BD,用对角线互相垂直的四边形的面积的计算方法建立面积和OE的函数关系式,即可得出结论.【解答】解:如图:连接OA、OD,作OE⊥AC于E,OF⊥BD于F,∵AC⊥BD,∴四边形OEPF为矩形,∵OA=OD=2,OP=,设OE为x(x>0),根据勾股定理得,OF=EP==,在Rt△AOE中,AE==∴AC=2AE=2,同理得,BD=2DF=2=2,又∵任意对角线互相垂直的四边形的面积等于对角线乘积的,∴S四边形ABCD=AC×BD=×2×2=2=2当x2=即:x=时,四边形ABCD的面积最大,等于2=5.故选:B.【点评】此题是一道综合性较强的题,融合了方程思想、数形结合思想.勾股定理,对角线互相垂直的四边形的面积的计算方法,表示出AC,BD是解本题的关键.5.(2023•盐都区一模)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1B.2C.3D.4【分析】由于OC⊥AB于点C,所以由垂径定理可得,在Rt△ABC中,由勾股定理即可得到答案.【解答】解:∵OC⊥AB,AB=8,∴,在Rt△ABC中,OA=5,AC=4,由勾股定理可得:.故选:C.【点评】本题考查了垂径定理,熟练运用垂径定理并结合勾股定理是解答本题的关键.6.(2022秋•亭湖区校级期末)如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是()A.cm B.cm C.2cm D.3cm【分析】连接OA、OC,先由垂径定理可得AC长,再由勾股定理得OC长,从而求出CD长.【解答】解:如图,连接OA、OC,则OC⊥AB,∴AC=AB=4(cm),在Rt△OAC中,OC===3(cm),∴CD=5﹣3=2(cm).故选:C.【点评】本题考查了垂径定理的应用和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.7.(2022秋•海陵区校级期末)如图,AB为⊙O的直径,点D是的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F.若,AE=2,则⊙O的直径长为()A.B.8C.10D.【分析】连接OF,首先证明,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,,∵点D是弧AC的中点,∴,∴,∴,∴,设OA=OF=x,在Rt△OEF中,则有,解得x=4,∴AB=2x=8.故选:B.【点评】本题考查勾股定理,垂径定理,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2022秋•启东市校级月考)下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.直径是弦,半圆不是弧【分析】对于A,直径是通过圆心且两个端点都在圆上的线段,即可进行判断;对于B,能重合的弧叫等弧,即可进行判断;对于C和D,分别根据等圆,直径,半圆的知识,也可进行判断.【解答】解:A.直径是通过圆心且两个端点都在圆上的线段,故正确;B.能重合的弧叫等弧,长度相等,故正确;C.周长相等的圆其半径也相等,为等圆,故正确.D.直径是弦,半圆是弧,故错误.故选:D.【点评】本题考查圆的认识,解题的关键是掌握弦,弧等知识,灵活运用所学知识解决问题.9.(2022秋•邳州市期末)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.3B.4C.5D.6【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==3,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:B.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.10.(2022秋•邗江区校级期末)已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O 的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定【分析】根据题意:OP=4<r,进行判断即可.【解答】解:设圆的半径为r,由题意得:OP=4<r=5,∴点P与圆O的关系是:点P在圆内.故选:A.【点评】本题考查点与圆的位置关系.熟练掌握利用点到圆心的距离与半径的大小关系,来判断点与圆的位置关系是解题的关键.二.填空题(共8小题)11.(2022秋•兴化市期末)若⊙O的半径为5,OA=4,则点A与⊙O的位置关系是:点A在⊙O内.(填“内、上、外”)【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【解答】解:∵⊙O的半径为5,OA=4,∴d<r,∴点A与⊙O的位置关系是:点A在⊙O内,故答案为:内.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.12.(2022秋•兴化市校级期末)一个圆的半径是15cm,点P在圆上,那么P点到该圆圆心的距离为15 cm.【分析】圆上点到圆心的距离等于圆的半径,由此即可求解.【解答】解:根据题意,点P在圆上,圆的半径是15cm,∴P点到该圆圆心的距离为15cm,故答案为:15.【点评】本题主要考查的点与圆的位置关系,当点在圆外,点到圆心的距离大于半径;当点在圆上,点到圆心的距离等于半径;当点在圆内,点到圆心的距离小于半径,解题的关键是看点到圆心的距离与圆半径的关系.13.(2023•邳州市一模)如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB 为8cm,则槽的深度CD为2cm.【分析】根据垂径定理得到,再利用勾股定理即可求出答案.【解答】解:如图,由题意可知,OA=5cm,OC⊥AB,则cm,在Rt△ADO中,由勾股定理得,OD==3(cm),∴CD=OC﹣OD=5﹣3=2(cm).故答案为2.【点评】本题考查垂径定理,勾股定理,掌握垂径定理、勾股定理是正确解答的前提.14.(2023•鼓楼区模拟)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的半径为20.【分析】通过作弦心距,构造直角三角形,利用垂径定理和勾股定理进行计算即可.【解答】解:如图,连接OA,过点O作OD⊥AB,垂足为D,∵AB是弦,OD⊥AB,AC=11,BC=21,∴AD=BD=AB=16,∴CD=AD﹣AC=5,∴OD===12,∴OA===20.故答案为:20.【点评】本题考查垂径定理的应用,掌握垂径定理和勾股定理是解决问题的前提,构造直角三角形是正确解答的关键.15.(2022秋•连云港期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OE,CD的延长线交⊙O于点E.若∠C=25°,则∠CEO度数为50°.【分析】根据CD=OD求出∠DOC=∠C=25°,根据三角形的外角性质求出∠EDO=∠C+∠DOC=50°,根据等腰三角形的性质求出∠E=∠EDO=50°.【解答】解:连接OD.∵CD=OE,OE=OD,∴CD=OD,∵∠C=25°,∴∠DOC=∠C=25°,∴∠EDO=∠C+∠DOC=50°,∵OD=OE,∴∠E=∠EDO=50°.故答案为:50.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,圆心角、弧、弦之间的关系等知识点,能求出∠ODE的度数是解此题的关键.16.(2022秋•连云港期末)如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O于点D,则CD长的最大值为2.【分析】根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【解答】解:∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2,故答案为:2.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.17.(2022秋•秦淮区期末)如图,在以O为圆心半径不同的两个圆中,大圆和小圆的半径分别为6和4,大圆的弦AB交小圆于点C,D.若AC=3,则CD的长为.【分析】由垂径定理得到CH=DH,由勾股定理列出关于CH的方程,求出CH长,即可求出CD的长.【解答】解:作OH⊥AB于H,连接OC,OA,设CH=x,∴CH=DH,AH=x+3,∵OH2=OC2﹣CH2=OA2﹣AH2,∴42﹣x2=62﹣(x+3)2,∴x=,∴CD=2CH=.故答案为:.【点评】本题考查垂径定理,勾股定理,关键是掌握垂径定理,勾股定理.18.(2023•南京二模)如图,CD是⊙O的直径,弦AB⊥CD,垂足为E.若AB=4,CE=6,则⊙O的半径r为.【分析】如图,作辅助线;设⊙O的半径为r,运用勾股定理列出r2=22+(6﹣r)2,求出r即可解决问题.【解答】解:如图,连接OA.设⊙O的半径为r,则OE=6﹣r.∵弦AB⊥CD,∴AE=BE=2;由勾股定理得:r2=22+(6﹣r)2,解得:r=,故答案为:.【点评】主要考查了垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断、推理或解答.三.解答题(共8小题)。

圆的旋转对称性

圆的旋转对称性

你能发现那些等量关系?说一说你的理由.
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.
求证:∠AOB=∠BOC=∠AOC.
求证:∠AOB=∠BOC=∠AOC. ∴ ∠AOE=1875°
(4)如果OE=OF,那么___________,__________,
求证:∠AOB=∠BOC=∠AOC.
F
∴∠BOD=∠COD=∠DOE=35°
(1)如果AB=CD,那么___________,_____________, 如图,在⊙O中,分别作相等的圆心角∠AOB和∠A′OB′, 将其中
∴ ∠AOE=180°-3×35°
的一个角旋转一个角度,使得OA和O′A′重合.
求证:∠AOB=∠BOC=∠AOC.
(2)如果
,那么___________,_____________,

圆心角度数计算:把周角分成360份,每一份就是1度圆心角
• 在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等,所对的弦的弦心距相等.
A B’ D’
A
D
A’ D
B
O
B

O
B’ D’ A’
O’

由条件: ①∠AOB=∠A′O′B′
⌒⌒
②AB=A′B′ ③AB=A′B′ ④OD=O′D′
拓展与深化
• 在同圆或等圆中,如果轮换下面四组条件:
• ①两个圆心角,②两条弧,③两条弦,④两条弦心距,
你能得出什么结论?与同伴交流你的想法和理由.
D
A’
D
B’ D’ A’
B
O
或B
O

O’
如由条件: ③AB=A′B′

圆的对称性练习

圆的对称性练习

5.1-5.2圆的对称性练习一填空题1.如图1,在⊙Ο中,若AB ⊥MN 于点C ,AB 为直径,试填写出一个你认为正确的结 论: .2.如图2,已知∠BOC=100°,则∠BAC 的度数为 .3.如图3,⊙Ο的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 的取值范围 是 .图4AB图3图2CA图1A4.如图4,P 是⊙Ο内一定点,请你在内作出过P 点的最长弦和最短弦,标上字母,并指出最长弦是 ,最短弦是.5.世界上因为有了圆的图案,万物才显得富有生机,如图5是来自现实生活中的图形,图中都有圆:图5C铜钱B 汽车方向盘A一石击起千层浪上述三个图形中是轴对称图形的有 ,是中心对称图形的 有 (用代号填写). 二、选择题6.如图6,在三个等圆上各有一条劣弧,,AB CD EF ,如果AB CD EF +=,那么AB+CD 与EF 的大小关系是( ) A .AB+CD=EF B . AB+CD<EF C . AB+CD>EF D .大小关系不确定图6FEDCBA7.已知点P 是半径为5的⊙Ο内一定点,且PO=4,则过点P 的所有弦中,弦长可能取到的整数值为( )A . 5,3,4B . 10,9,8,7,6,5,4,3C . 10,9,8,7,6D . 12,11,10,9,8,7,6 8.如图7,⊙Ο的两条弦AE 、BC 相交于点D ,连结AC 、BE 、AO 、OB ,若∠ACB=60°,则下列结论中正确的是( )A . ∠AOB=60°B . ∠AOB=30°C . ∠AEB=60°D . ∠AEB=30° 9.如图8,在半径为2厘米的⊙Ο内有长为AB ,此弦所对的圆心角∠AOB 为( )A . 60°B . 90°C . 120°D .150°图8图7E三、解答题10.已知:如图10,AB 是⊙Ο内的一条弦,CD 为的直径,且CD ⊥AB ,垂足为点M ,过点C 作直线交AB 所在直线于点E ,交于点F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转与圆的对称练习一.选择题(共10小题)1.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A .顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°2.如图,△ABC中,∠ACB=90°,∠A=25°,若以点C为旋转中心,将△ABC旋转θ到△DEC的位置,使点B恰好落在边DE上,则θ等于()A .55°B.50°C.65°D.70°3.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O 按逆时针方向旋转到△CDF的位置,则旋转角是()A .45°B.60°C.90°D.120°4.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A .30,2 B.60,2 C.60,D.60,A .30°B.45°C.60°D.40°6.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A .2B.3 C.D.37.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A .B.C.D.8.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A .B.C.D.9.已知点P是⊙O所在平面内的一点,P与圆上所有点的距离中,最长距离是9cm,最短距离是4cm,则⊙O的直径是()A .2.5cm B.6.5cm C.2.5cm或6.5cmD.5cm或13cm10.如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是()A .56°B.62°C.28°D.32°二.填空题(共6小题)11.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为_________.12.四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H.若AB=4,AE=时,则线段BH的长是_________.13.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB 的度数是_________.14.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为_________.15.已知某三角形的边长分别是3cm、4cm、5cm,则它的外接圆半径是_________cm.16.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= _________.三.解答题(共3小题)17.已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为_________;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,已知等腰△ABC,AB=AC=8,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.参考答案与试题解析一.选择题(共10小题)1.(2014•雅安)如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A .顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°考点:旋转的性质.专题:几何图形问题.分析:因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.解答:解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.点评:本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.2.(2014•江都市二模)如图,△ABC中,∠ACB=90°,∠A=25°,若以点C为旋转中心,将△ABC旋转θ到△DEC的位置,使点B恰好落在边DE上,则θ等于()A .55°B.50°C.65°D.70°考点:旋转的性质.分析:先根据互余计算出∠ABC=65°,再根据旋转的性质得CB=CE,∠CEB=∠ACD=θ,∠E=∠ABC=65°,则根据等腰三角形的性质得∠E=∠CBE=65°,然后在△BCE中根据三角形内角和定理可计算出∠BCE的度数.解答:解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,∵△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE 上,∴CB=CE,∠CEB=∠ACD=θ,∠E=∠ABC=65°,∴∠BCE=180°﹣2×65°=50°,即θ=50°.故选:B.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.3.(2013•晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A .45°B.60°C.90°D.120°考点:旋转的性质;正方形的性质.专题:压轴题.分析:首先作出旋转中心,根据多边形的性质即可求解.解答:解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选C.点评:本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.4.(2011•扬州)如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A .30,2 B.60,2 C.60,D.60,专题:压轴题.分析:先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.解答:解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选C.点评:本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.5.如图,正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果△APQ的周长为2,则∠PCQ的度数为()A .30°B.45°C.60°D.40°考点:旋转的性质;全等三角形的判定与性质;正方形的性质.分析:简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.解答:解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.故选B.点评:本题考查了旋转的性质、全等三角形的判定与性质及正方形的性质,解题的关键是熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.6.(2014•武汉四月调考)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A .2B.3 C.D.3考点:垂径定理;三角形中位线定理.分析:当OP⊥AB时,弦BC最长,根据三角形相似可以确定答案.解答:解:当OP⊥AB时,弦BC最长,又∵AC是直径,∴∠CBD=90°,所以△APO∽△ABC,∴,又∵OP=,∴BC=2.故答案选A.点评:本题考查了直径所对的圆周角是900这一性质的应用,以及如何取线段最值问题的做法,用好三角形相似是解答本题的关键.7.(2013•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A .B.C.D.考点:圆的认识.专题:压轴题.分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.8.(2011•泰安)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A B C D考点:垂径定理;勾股定理.专题:探究型.分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.解答:解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选A.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(2011•长宁区一模)已知点P是⊙O所在平面内的一点,P与圆上所有点的距离中,最长距离是9cm,最短距离是4cm,则⊙O的直径是()A .2.5cm B.6.5cm C.2.5cm或6.5cmD.5cm或13cm考点:点与圆的位置关系.专题:常规题型.分析:答题时要考虑该点在圆外和圆内两种情况,然后作答.解答:解:本题没有明确告知点的位置,应分点在圆内与圆外两种情况,当点P在⊙O外时,此时PA=4cm,PB=9cm,AB=5cm,因此直径为5cm;当点P在⊙O内时,此时PA=4cm,PB=9cm,直线PB过圆心O,直径AB=PA=4+9=13cm,因此直径为13cm.故选D.点评:本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.10.(2010•攀枝花)如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是()A .56°B.62°C.28°D.32°考点:三角形的外接圆与外心;三角形内角和定理;圆周角定理.分析:由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.解答:解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=28°,∴∠OAB=∠OAB=28°,∴∠AOB=124°,∴∠C=62°.故选B.点评:本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解题和圆有关的题目是往往要添加圆的半径.二.填空题(共6小题)11.(2013•聊城)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为3.考点:旋转的性质;等边三角形的判定与性质.专题:几何图形问题.分析:首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.解答:解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.点评:本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2013•宝安区一模)四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H.若AB=4,AE=时,则线段BH的长是.考点:旋转的性质;正方形的性质.分析:连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE,所以BH=BE+HE.解答:解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴DG=BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=.故答案为:.点评:本题考查了旋转及正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算.13.(2014•永州一模)如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是60°.考点:圆的认识;等腰三角形的性质.分析:利用等边对等角即可证得∠C=∠DOC=20°,然后根据三角形的外角等于不相邻的两个内角的和即可求解.解答:解:∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案为:60°.点评:本题主要考查了三角形的外角的性质和等腰三角形的性质,正确理解圆的半径都相等是解题的关键.14.(2014•海拉尔区模拟)如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为3.考点:垂径定理;坐标与图形性质;勾股定理;切线的性质.专题:计算题;几何图形问题;压轴题.分析:可先设半径的大小,由此得出A点的方程.连接AM、AN根据等腰三角形的性质即可得出AN的长度,再根据两点之间的距离公式即可解出N点的坐标,从而求得MN的长度.解答:解:分别过点M、N作x轴的垂线,过点A作AB⊥MN,连接AN设⊙A的半径为r.则AN=OA=r,AB=2,∵AB⊥MN,∴BM=BN,∴BN=4﹣r;则在Rt△ABN中,根据勾股定理,得AB2+BN2=AN2,即:22+(4﹣r)2=r2,解得r=2.5,则N到y轴的距离为1,又∵点N在第三象限,∴N的坐标为(﹣1,﹣2);∴MN=3;故答案为:3.点评:本题综合考查了垂径定理、坐标与图形的性质、勾股定理及切线的性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.15.(2012•北京二模)已知某三角形的边长分别是3cm、4cm、5cm,则它的外接圆半径是 2.5cm.考点:三角形的外接圆与外心;勾股定理的逆定理.分析:先根据勾股定理的逆定理得出三角形是直角三角形,再根据直角三角形的外接圆的半径等于斜边的一半求出即可.解答:解:∵AC2+BC2=32+42=25,AB2=52=25,∴AC2+BC2=AB2,∴∠C=90°,即△ABC是直角三角形,∴△ABC的外接圆的半径是AB=2.5,故答案为:2.5.点评:本题考查了三角形的外接圆和勾股定理的逆定理,关键是确定三角形是直角三角形,注意:直角三角形的外接圆的半径等于斜边的一半.16.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= 1+.考点:三角形的外接圆与外心;坐标与图形性质.分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解答:解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.三.解答题(共3小题)17.(2012•本溪)已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为45°;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.专题:几何综合题;压轴题.分析:(1)①证明四边形ABNC是正方形,根据正方形的对角线平分一组对角线即可求解;②根据等腰直角三角形的性质可得∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得=,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,从而得解;(2)根据等腰三角形的两底角相等求出∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得=,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,然后根据三角形的内角和定理列式整理即可得解.解答:解:(1)①∵∠BAC=90°,θ=45°,∴AP⊥BC,BP=CP(等腰三角形三线合一),∴AP=BP(直角三角形斜边上的中线等于斜边的一半),又∵∠MBN=90°,BM=BN,∴AP=PN(等腰三角形三线合一),∴AP=PN=BP=PC,且AN⊥BC,∴四边形ABNC是正方形,∴∠ANC=45°;②连接CN,当θ≠45°时,①中的结论不发生变化.理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,∴∠ABC=∠ACB=∠BNP=45°,又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC=45°;(2)∠ANC=90°﹣∠BAC.理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,∴∠ABC=∠ACB=∠BNP=(180°﹣∠BAC),又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC,在△ABC中,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC.点评:本题考查了旋转的性质,等腰直角三角形的性质,以及等腰三角形三线合一的性质,(1)②与(2)中,先根据两角对应相等,两三角形相似求出两边比值相等,再根据两边对应成比例,夹角相等得到另两个相似三角形是解题的关键.18.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,已知等腰△ABC,AB=AC=8,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.考点:三角形的外接圆与外心;等腰三角形的性质.分析:作出AB,AC的垂直平分线,两垂直平分线的交点就是圆心,以交点为圆心,交点到三角形的顶点为半径画圆可得△ABC的外接圆;再根据垂径定理得出∠BAO=60°,得出△ABO为等边三角形,从而求得外接圆的半径.解答:解:画图如下:(3分)∵AB=AC=8,∠BAC=120°,AO⊥BC,∴∠BAO=60°,∴△ABO为等边三角形,∴△ABC的外接圆的半径为8.点评:本题考查了三角形外接圆的确定及垂径定理的应用,等边三角形的判定和性质;用到的知识点为:三角形外接圆的圆心是任意两边垂直平分线的交点;有一个角为60°的等腰三角形是等边三角形.。

相关文档
最新文档