立方根 数学优秀教学设计案例实录能手公开课示范课
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
(五)作业小结
1.布置作业:布置具有层次性的作业,让学生在实践中巩固知识,提高解决问题的能力。
2.作业要求:强调作业的完成要求,如认真审题、仔细计算、书写规范等。
3.作业反馈:教师对学生的作业进行及时反馈,给予肯定和鼓励,同时指出存在的问题,帮助学生进一步提高。
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
一、案例背景
本节课为人教版七年级数学下册6.2《立方根》第一课时,主要内容是让学生理解立方根的概念,掌握求立方根的方法,并能够运用立方根解决实际问题。在学习本节课之前,学生已经掌握了有理数的乘方知识,为本节课的学习打下了基础。
在制定教学案例时,我以学生的认知发展水平和生活经验为出发点,设计了丰富多样的教学活动。首先,我通过生活情境引入立方根的概念,让学生感受到数学与生活的紧密联系。接着,我引导学生通过观察、思考、讨论,探索求立方根的方法,培养学生的推理能力和合作精神。在练习环节,我设计了一系列具有层次性的题目,让学生在实践中巩固知识,提高解决问题的能力。
五、案例亮点
1.生活情境导入:通过展示立方体模型和创设问题情境,激发学生的学习兴趣,使学生感受到数学与生活的紧密联系。
2.问题导向:引导学生自主探究立方根的定义和求法,培养学生的推理能力和探究精神,让学生在思考中发现问题、解决问题。
3.小组合作:组织学生进行小组讨论和分享,培养学生的合作能力和团队精神,让学生在交流中互相学习、共同进步。
(一)导入新课
1.实物引入:展示立方体模型,如魔方、立方体积木等,让学生观察并思考这些立方体的特点。
2.问题激发:提问学生“你知道立方根吗?你能举个例子吗?”引导学生思考立方根的概念。
人教版七年级数学下册6.2《立方根》优秀教学案例
(四)总结归纳
1.总结立方根的概念和求法:我会对立方根的概念和求法进行总结,让学生加深对立方根的理解。
2.强调平方根与立方根、平方根与算术平方根的区别:我会通过示例让学生理解并掌握平方根与立方根、平方根与算术平方根的区别。
三、教学策略
(一)情景创设
1.利用生活实例引入:在课堂的开始,我会通过展示一些生活中的实际问题,如立方体的体积计算、冰雪融化等问题,引导学生思考这些问题的解决方法,从而引出立方根的概念。
2.创设探究情境:我会设计一些富有挑战性的问题,如“一个数的立方根是它的平方根的2倍,求这个数”,让学生在解决实际问题的过程中,感受立方根的意义,提高学生的动手操作能力。
2.问题导向:设计了一系列启发性的问题,引导学生主动思考和能力。
3.小组合作:将学生分成小组进行讨论,增加了学生之间的交流和合作,培养了学生的团队合作精神,提高了学生的表达能力和沟通技巧。
4.总结归纳:通过总结立方根的概念和求法,使学生对立方根的理解更加深入,同时强调了平方根与立方根、平方根与算术平方根的区别,帮助学生更好地掌握相关知识。
(四)反思与评价
1.学生自我评价:在课堂结束后,我会让学生进行自我评价,反思他们在课堂上的表现和学习效果,找出自己的不足,为下一节课做好准备。
2.学生互相评价:我会鼓励学生之间进行互相评价,帮助他们发现别人的优点和不足,从而提高自己的学习能力。
3.教师评价:我会对每个学生的学习情况进行评价,给予他们鼓励和指导,帮助他们提高学习效果。通过以上教学策略的运用,我相信能够有效地提高学生的学习效果,达到本节课的教学目标。
立方根的市公开课获奖教案省名师优质课赛课一等奖教案
立方根的教案导言:立方根是数学中一个重要的概念。
掌握立方根的求法可以帮助学生更好地理解数学中的立方、立方根以及解决与立方根相关的问题。
本教案旨在通过一系列的教学活动和练习帮助学生掌握立方根的求法,并运用所学知识解决实际问题。
一、课前准备:1. 确认学生已掌握平方根的概念和求法。
2. 在黑板上列出几个完全立方数,如8, 27, 64等,并让学生思考这些数的特点。
二、教学活动:1. 引入立方根的概念:- 通过让学生观察完全立方数的特点,引导学生了解立方根的概念。
- 结合实际例子(如一个立方形的边长),帮助学生理解立方根表示的是什么意思。
2. 求立方根的方法:- 介绍牛顿迭代法求立方根的方法。
- 分步解释迭代计算的过程,并通过示例进行演示。
- 鼓励学生使用计算器或电子设备进行迭代计算,并与手工计算结果进行对比。
3. 解决简单立方根问题:- 提供一些较为简单的完全立方数,让学生尝试使用所学方法计算立方根。
- 引导学生思考和讨论解决问题的方法和策略。
4. 拓展应用:- 引导学生思考立方根的实际应用场景,如体积计算、测量等。
- 提供一些拓展问题,让学生运用所学知识解决。
三、巩固练习:1. 教师提供一系列立方根的练习题,包括简单和较难的题目。
2. 学生独立完成练习,并检查答案。
四、总结与评价:1. 回顾本节课所学的内容,让学生总结立方根的概念、求法以及应用。
2. 提供一些问题,让学生思考和讨论立方根的其他特性和性质。
3. 对学生的学习表现进行评价,并提供反馈。
五、拓展阅读:1. 鼓励学生进一步了解数学中的立方根相关知识,可以推荐一些相关的数学书籍或网站资源。
2. 引导学生进行拓展阅读,了解立方根在其他学科领域的应用,如物理学、经济学等。
六、家庭作业:布置一些立方根的练习题,要求学生在家完成,并检查答案。
结束语:通过本节课的学习,学生们对立方根的概念、求法和应用有了更深入的认识。
希望学生们能够运用所学知识解决实际问题,并继续拓展自己对数学的兴趣和学习。
立方根 公开课获奖教案 公开课获奖教案
2.3 立方根1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)一、情境导入 填空并回答问题:(1)( )3=0.001;(2)( )3=0;(3)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质 【类型一】 立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.【类型二】 立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2求其算术平方根即可.解:∵x-2的平方根是±2,∴x -2=4.∴x =6.∵2x+y +7的立方根是3,∴2x +y +7=27,把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.【类型三】 立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r.解析:将公式变形为r 3=3V 4π,从而求r.解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100.解:(1)-3343=-7;(2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
《立方根》示范公开课教学设计【北师大版八年级数学上册】
第二章 实数2. 3 立方根 教学设计立方根是在学生学习无理数以及平方根、算术平方根的基础上进一步的学习,本节课主要研究立方根的概念和求法,强调平方根与立方根的区别与联系,为后期学习二次根式以及解直角三角形奠定坚实的基础. 1. 能说出立方根的概念,会表示一个数的平方根;知道开立方与立方是互逆的运算,会利a 的平方根. 2. 通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.3. 发展求同存异思维,培养学生合作交流的良好习惯.【教学重点】立方根的概念及求法. 【教学难点】立方根与平方根的区别. 一、 创设情境,引入新知某化工厂使用半径为 1 米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8 倍,那么它的半径应是原来储气罐半径的多少倍? 二、合作交流,探究新知问题:要做一个体积为 27 cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于边长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.1.试一试你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)一般地,如果一个数x的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)让学生试着给出立方根和开立方的定义.在这里让学生原有的知识和经验出发,引导学生通过类比、思考、探索、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确的利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.2.探究Ⅰ:根据立方根的意义填空(1)因为23=8,所以8的立方根是();(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();(4)因为()3=-8,所以-8的立方根是();(5)因为()3=827-,所以827-的立方根是();学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.3.大家谈谈:(学生分组讨论)观察练习题中正数、0和负数的立方根各有什么特点?并完成多媒体展示的表格以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效的改变学生旧有学习方式.4.自主探究:如何表示一个数的立方根?一个数a的立方根可表示为:3a,读作:三次根号a其中a是被开方数,3是根指数.通过让学生自主探究立方根的表示方法和读法,进一步训练学生利用类比的方法学习立方根,这样将新旧知识联系起来既有利于复习巩固平方根,又有利于理解和掌握立方根.5.议一议:你能说说数的平方根与数的立方根有什么不同吗?设计这个问题,可以了解学生对立方根及平方根知识的掌握程度,可以在教的过程中,对于学生不理解的,没掌握的知识点再加以强调.学生在归纳的过程中可能结果不是很完善,教师可以引导学生从各自的定义、性质、表示方法上加以区别.在本次活动中,教师要关注:学生能否根据立方根的概念填空;学生能否准确地归纳出立方根的性质;学生能否正确地用符号表示一个数的立方根;学生能否全面地说出平方根与立方根的区别. 三、运用新知例1 求下列各数的立方根例2 求下列各式的值四、巩固新知1. 判断下列说法是否正确.(1) 25的立方根是5; ( ) (2) 任何数的立方根都只有一个; ( )(3) 如果一个数的立方根是这个数本身,那么这个数一定是零; ( ) (4)一个数的立方根不是正数就是负数; ( ) (5) 0 的平方根和立方根都是 0 . ( ) 2. 求下列各式的值3. 求下列各式的值4. 将体积分别为 600 cm 3和 129 cm 3的长方体铁块,熔成一个正方体铁块,那么这个正方体的棱长是多少? 五、归纳小结((()()31234.-略.。
《立方根》word教案 (公开课获奖)2022北师版 (6)
教学过程一、复习旧知,引入新课师:同学们好!我们上节课学习了什么知识? 生:思考,齐答:平方根.师:很好,那你能答复平方根的定义是什么吗? 生答. 师板书.意图:便于类比得出立方根.师:正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么? 生答.师:如果一个数x 的平方等于64,那么x 是64的 ,如果一个数x 的立方等于64, 你能类比得到x 与64的关系吗?师:本节课请大家根据平方根的内容自己来类比推出结论,如果如果一个数x 的立方等于a ,那么x 叫a 的什么呢?待同学答复后,师板书课题及立方根的定义. 二、立方根一般地,如果一个数x 的立方等于a ,即3x =a ,那么这个数x 就叫做a 的立方根〔也叫三次方根〕如:2是8的立方根,-2是-8的立方根,0是0的立方根. 三、做一做师投影展示:2的立方等于多少?是否还有其他的数,它的立方也是8?教学 目标 1.了;2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.了解立方根的性质. 并要求学生能用类比的方法学习立方根的有关知识,领会类比思想. 重点 立方根的概念及计算.难点立方根的求法,立方根与平方根的联系及区别.教法、学法指导 学生在学习了平方根概念的根底上学习立方根的概念,比拟容易接受,因此教学过程中注重引导学生运用类比的方法,从平方根概念引出立方根的概念后.进而去研究立方根的性质,并类比理解唯一性,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.课前 准备教、学具:多媒体投影,学案,练习本;知识储藏:学生课前进行平方根的知识的复习及预习立方根的有关内容.-3的立方等于多少?是否有其他的数,它的立方也是-27?生:2的立方等于8,()32-=-8,所以没有其他的数的立方等于8.-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.师:你还能举几个立方根的例子吗?生〔思考后答复〕:……四、议一议师:通过刚刚的几个例子,你能答复以下问题吗?〔师投影展示,同时安排学生小组内讨论〕(1)正数有几个立方根?(2)0有几个立方根?(3)负数呢?生1:正数有一个立方根;0有一个立方根;负数也有一个立方根.生2:正数有一个立方根是正数;0的立方根是0;负数的立方根是负数.师:说的真好,那大家把这句话记在学案上;同时师板书在黑板上.师:通过刚刚的答复可以看出,每个数a都只有一个立方根,记为“ 3a〞,读作“三次根号a〞.例如3x=7时,x是7的立方根,即x=37;而32=8,2是8的立方根,即38=2.其中3叫作根指数,不能省略,平方根的根指数为2可以省略.师:求一个数a的立方根的运算叫做开立方 , 其中a叫做被开方数.开立方与立方互为逆运算.平方根与立方根的区别与联系是什么?生1:假设一个数x的平方等于a,即x2=a,那么x叫a的平方根;假设一个数x的立方等于a,即x3=a,那么x叫a的立方根.生2:一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个是正数,一个负数有一个负的立方根,零的立方根有一个是零.生3:一个正数a的平方根表示为±a,立方根表示为3a,平方根时根号前有±,立方根前省略+号.五、典型例题1师:大家说的很好,那你能用学到的知识解决以下问题吗?投影展例如题.例1 求以下各数的立方根:(1)-27;(2);(3)0.216;(4)-5.点拨:求一个数的立方根,比方-27,就是求哪一个数的立方等于-27.解:〔1〕因为()33-=-27,所以-27的立方根是-3,即327-=-3;〔2〕-因为352⎪⎭⎫⎝⎛=1258,所以1258的立方根是52,即31258=52;〔3〕因为6.03=0.216,所以0.216的立方根是0.6,即3216.0=0.6;〔4〕-5的立方根是35-.六、想一想师:3a 表示什么?那么)a (33等于什么?33a呢?〔师板书〕 七、典型例题2求以下各式的值:〔1〕38-; 〔2〕3064.0 ;〔3〕-31258;〔4〕)9(33.师点拨…:38-表示什么含义?其结果为多少? 解:〔1〕38-=33)2-(=-2; 〔2〕3064.0=33)4.0(-=0.4;〔3〕-31258=-33)52(=-52; 〔4〕)9(33=9.八、随堂练习师投影展示,生练习.1.求以下各式的值:3125.0,364-,335,)(3163. 2. 一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?3.变式:一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?九、学习收获本节课你的收获是什么?还有什么没有解决的问题大家共同解决? 生1:我们学习了立方根的定义及性质; 生2:学习了类比的方法;…… 十、达标检测1. 求以下各数的立方根〔1〕729 〔2〕-42717 〔3〕-216125 〔4〕〔-5〕32. 求以下各式中的x .(1)125x 3=8 (2)(-2+x )3=-216十一、作业:A 类:课本46页1,2题B 类:求以下各式中的x .(1)32-x =-2 (2)27(x +1)3+64=0.C 类:.643+a +|b 3-27|=0,求(a -b )b 的立方根.十二、板书设计§1.平方根概念、表示及性质 2.立方根概念、表示及性质 3. )(33a =a4. 33a=a例题1: 例题2: 练习十三、教学反思1.收获:通过本节课的教学,学生能够理解立方根的概念及性质,并能求一些数的立方根; 2.缺乏:由于学生程度不一,局部学生跟不上节奏,认为老师讲解较快,小组合作时局部学生不活动,还有的学生发言不大胆;3.建议等方面:培养学生的小组交流合作能力。
《立方根》优质教案
《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。
本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。
二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。
2. 能够运用立方根解决实际问题。
3. 培养学生的逻辑思维能力和创新精神。
三、教学难点与重点1. 立方根的概念和性质。
2. 立方根的运算方法。
3. 立方根在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。
2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。
教师给出立方根的定义,并解释立方根的性质。
3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。
”学生运用立方根的知识,解决问题并得出答案。
六、板书设计1. 立方根的定义。
2. 立方根的性质。
3. 立方根的运算方法。
4. 立方根在实际问题中的应用。
七、作业设计1. 题目:已知一个数的立方是27,求这个数。
答案:3。
2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。
答案:4米。
八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。
2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。
重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。
《立方根》示范公开课教学设计【北师大版八年级数学上册】
《立方根》示范公开课教学设计【北师大版八年级数学上册】立方根是什么?介绍一个疑问引出一个数学概念。
让学生自己思考和尝试,激发兴趣。
现在,我将为大家设计一堂关于立方根的示范公开课。
本次公开课适用于北师大版八年级数学上册。
一、导入部分(Introduction):1. 引入问题(引起学生思考的问题):- 你们都知道平方根,那么立方根又是什么呢?有什么特点与应用?- 请思考并尝试回答这个问题。
2. 提示思路和启发思考:- 鼓励学生自由思考,并互相讨论。
- 提醒学生使用已学知识和技巧来解答问题。
二、探究部分(Exploration):1. 实验环节(实践操作):- 给每个学生准备一个实验板,上面有一组自然数。
- 要求学生通过尝试和计算,找到这组数的立方根。
- 引导学生记录实验过程和结果。
2. 分组合作讨论:- 将学生分成小组,让他们分享他们的实验结果和思路。
- 鼓励学生互相交流,并从他人的解答中学习和借鉴。
三、概念解释与归纳(Concept Explanation and Summary):1. 引导学生总结实验结果:- 在小组讨论的基础上,引导学生思考立方根的定义和特点。
- 引入立方根的符号表示方式。
2. 教师给出概念解释和相关应用:- 教师向学生解释立方根的定义、数学符号,及其在实际生活中的应用。
- 如空间体积、几何形状等方面。
四、数学公式的引入(Introduction of Mathematical Formula):1. 引入立方根的数学公式:- 教师向学生解释立方根的数学表示方式和计算方法。
- 通过示意图和实例演算来帮助学生理解和记忆公式。
2. 练习与讨论:- 给学生足够的时间来练习使用立方根的数学公式。
- 鼓励学生互相讨论,并帮助他们解决遇到的问题。
五、应用拓展(Application Extension):1. 实际问题的引入:- 提供一些实际问题,让学生运用立方根来解决。
- 鼓励学生思考和提问,激发他们对立方根的应用兴趣。
部编人教版数学七年级下册《立方根》省优质课一等奖教案
部编⼈教版数学七年级下册《⽴⽅根》省优质课⼀等奖教案《⽴⽅根》教案⼀、教学⽬标1.知识⽬标:掌握⽴⽅根、开⽴⽅的概念,⽴⽅根的表⽰⽅法,⽴⽅根的特征。
2.能⼒⽬标:会运⽤⽴⽅根概念求⼀个完全⽴⽅数的⽴⽅根.能⽤⽴⽅根解决⼀些实际问题。
3.情感、态度与价值观⽬标:探索⽴⽅根的变化规律,提⾼学⽣学习数学的兴趣。
⼆、教学重点与难点教学重点:⽴⽅根的概念.,求某些数的⽴⽅根教学难点:了解⽴⽅根的性质,区分⽴⽅根与平⽅根的不同。
三、学情分析(1)教学对象是新丰县第三中学七(8)班学⽣,这个班采取⼩组合作学习的⽅式,从整体看,学⽣基础参差不齐,但思维活跃,课堂参与意识较强,有良好的学习习惯,学⽣间相互评价,相互提问的互动活动氛围初步形成。
(2)学习⼩组内互背1-20的平⽅,互背1-10的⽴⽅,学会⼈与⼈合作,并能与他⼈交流思维,建⽴⾃信⼼,提⾼学习热情。
四、教学过程12=34.0 ; 351;2.正⽅体的边长为a ,它的体积是 . 3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .活动⼆:阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念⼀般地,如果,那么 .这就是说:如果,那么. 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算.1.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;2.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 3.数的平⽅根与数的⽴⽅根有什么不同?活动三:阅读课本P50内容,掌握⼀个数的⽴⽅根的表⽰⽅法4.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵ =-327 , =-327 ,∴327- 327-;5.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -6.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义.活动四:1.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. () 2.填表:43.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)312564-. 4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5、计算下表中各式的值,并填⼊相应表中:(2)你能归纳出被开⽅数与它的⽴⽅根之间⼩数点的变化关系吗?x4 6 9 3x1253435121 000(3)000001.03001.0 31 31000 31000000 ………5五、板书设计【知识回顾】板书 113= =328 2733= 6443= 12553= 21663= 34373= 51283= 72993= 1000103= 1.计算下列各式的值:2 ; =33 ; =34.0 ; 351??;2.正⽅体的边长为a ,它的体积是 .3.要制作⼀个容积为273m 的正⽅体形状的包装箱,这种包装箱的边长应该是多少?设这种集装箱的边长为x m ,依题意,得:,⽅程的意义就是:要求⼀个数,使它的⽴⽅等于27. ∵ 2733=∴ 3=x即这种包装箱的边长为3m .【⾃主学习】阅读课本P49内容,理解、掌握⽴⽅根概念和开⽴⽅概念6⼀般地,如果,那么 . 这就是说:如果,那么 . 求的运算,叫开⽴⽅. ⽴⽅与开⽴⽅运算是运算. 【⾃主探究】6.完成下列填空:∵ 823=,∴ 8的⽴⽅根是;∵()125.03=,∴ 125.0的⽴⽅根是;∵()03=,∴ 0的⽴⽅根是;∵()83-=,∴ 8-的⽴⽅根是;∵()2783-=,∴ 278-的⽴⽅根是;7.观察上⾯各数及其⽴⽅根,归纳数的⽴⽅根的特征:正数的⽴⽅根是数;负数的⽴⽅根是数;0的⽴⽅根是 . 8.数的平⽅根与数的⽴⽅根有什么不同?阅读课本P 50内容,掌握⼀个数的⽴⽅根的表⽰⽅法9.完成下列填空:∵ =-38 , =-38 ,∴ 38- 38-;∵=-327 , =-327 ,∴ 327- 327-;10.观察上⾯的填空,归纳3a -与3a -的关系: 3a - 3a -11.阅读课本P50例,掌握⼀个数的⽴⽅根式⼦表⽰的意义. 【基本训练】2.判断下列说法是否正确:(1)5是125的⽴⽅根;()(2)4±是64的⽴⽅根;()(3)5.2-是625.15-的⽴⽅根;()(4)3)4(-的⽴⽅根是4-. ()2.填表:【能⼒提升】 3.求下列各式的值:(1)31-;(2)3008.0-;(3)3271;(4)3125 64-.4.求下列各式中x 的值:(1)8333=-x ;(2)8)1(3=-x5.(1) 计算下表中各式的值,并填⼊相应表中:x4 6 9 3x1253435121 0000000013001.08。
八年级数学下册《立方根》优秀教学案例
3.小组合作的有效运用:案例中充分利用小组合作学习,让学生在合作中共同探究、讨论,培养学生的团队协作能力和沟通能力。同时,明确的小组任务和教师的适时引导,确保了合作学习的有效性,提高了课堂教学的实效性。
5.培养学生具备勇于探索、敢于创新的精神,鼓励学生在面对困难时,保持积极向上的心态,增强克服困难的信心。
三、教学策略
(一)情景创设
1.创设生活情境:结合学生的生活经验,以实际问题为背景,如立方体的体积计算、科学实验中的数据等,引导学生感受立方根在实际生活中的应用,激发学生的探究欲望。
2.利用多媒体手段:运用多媒体课件、网络资源等展示立方根的概念、性质和应用,使抽象的数学知识形象化、生动化,提高学生的学习兴趣。
2.立方根的性质:通过实例讲解立方根的性质,如一个数的立方根是唯一的,且正数的立方根为正数,负数的立方根为负数,0的立方根为0等。
3.立方根的计算方法:教授利用计算器、数学软件等工具计算立方根的方法,同时讲解手算法,如通过分解质因数、估算等方法求解立方根。
4.立方根的应用:举例说明立方根在实际问题中的应用,如立体图形的体积计算、科学实验数据等。
二、教学目标
(一)知识与技能
1.理解立方根的定义,掌握立方根的表示方法和性质,能够准确计算出给定数的立方根。
2.掌握立方根与平方根、算术平方根的区别与联系,提高对数的不同表示形式的识别和应用能力。
3.学会运用立方根解决实际问题,如体积计算、立体图形的构造等,增强数学在实际生活中的应用意识。
4.能够运用信息技术手段,如计算器、数学软件等,辅助解决立方根相关问题,提高解决问题的效率。
优质课《立方根》精品教案 (省一等奖)
本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。
是一个非常实用的资源。
资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。
欢送您下载使用!立方根教学目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。
3.了解立方根的性质,区分立方根与平方根的不同。
4. 体会类比,化归思想教学重点:立方根的概念.,求某些数的立方根。
教学难点:了解立方根的性质,区分立方根与平方根的不同。
教学过程: 2、 学习准备1、上节课我们学习了平方根的定义,假设x 2=a ,那么x 叫a 的平方根。
假设x 3=a ,那么x 叫a 的什么呢?完成下面填空。
33= ( ) ( )3= 27 (-3)3= ( ) ( )3= -27(21)3= ( ) ( )3= 81(21-)3 =( ) ( )3= 81-03=( ) ( )3= 02、左边算式底数、指数 求幂 ,右边算式幂、指数 求底数一般地,如果一个数的立方等于a,那么这个数叫做a 的立方根,也叫做a 的三次方根。
即如果X 3=a,那么 叫做 的立方根。
请按照第7页的举例你再举两个例子说明: 叫做开立方,立方与 互为逆运算 4、观察上面两组算式,归纳一个数的立方根的性质是:正数 有一个立方根, 零 有一个立方根,; 负数 立方根。
交流:〔1〕6427-的立方根是什么? 〔2〕0.001的立方根是什么? 〔3〕0的立方根是什么? 〔4〕-729的立方根是什么? 5、立方根的表示方法一个正数a 有一个立方根,. 正数a 的立方根,记作“3a 〞 负数a 的立方根,记作“3a -〞吗? 如果X 3=a ,那么X=3a ,其中符号“3〞读作三次根号,a 叫做被开方数这里的a 表示什么样的数? a 是任意数 二、合作探究1、阅读课本第7页例题4,按例题格式求其立方根。
(浙教版)七年级数学上册第3章第3节《立方根》优秀教学案例
1.生活情境的创设:本节课通过生活中的立方根实例导入新课,使学生能够感受到数学与生活的紧密联系,提高了学生的学习兴趣和积极性。
2.问题导向的教学策略:教师在教学过程中提出了多个问题,引导学生进行思考和探究,激发了学生的数学思维,培养了学生的问题解决能力。
3.小组合作的学习方式:教师将学生分成小组,进行合作讨论,使学生能够在团队中发挥各自的优势,互相学习和交流,提高了学生的团队合作精神和沟通能证,提高运用现代技术手段解决数学问题的能力。
(三)情感态度与价值观
1.学生体验数学学习的乐趣,培养对数学的兴趣和好奇心。
2.学生在学习立方根的过程中,培养克服困难的意志,增强自信心。
3.学生认识到立方根在实际生活中的重要性,培养运用数学知识解决实际问题的意识。
在实际教学中,本节课的内容与学生的生活实际紧密相连,教师可以充分利用学生的经验,通过生活实例引入立方根的概念,激发学生的学习兴趣。同时,本节课的教学内容也是对学生已有知识的一次拓展和深化,教师需要引导学生从具体的事物中抽象出立方根的概念,帮助学生建立良好的知识体系。
二、教学目标
(一)知识与技能
1.学生能够理解立方根的概念,掌握求一个数的立方根的方法,能够运用立方根解决一些实际问题。
4.学生学会与他人合作、交流,培养团队协作精神和良好的学习习惯。
5.学生树立正确的数学价值观,认识数学对于个人和社会发展的意义。
本节课的教学目标旨在全面提高学生的知识与技能、过程与方法、情感态度与价值观,使学生在学习立方根的过程中,既掌握了数学知识,又培养了数学思维,更体验到了数学学习的乐趣,从而提高学生的整体数学素养。
本节课的案例亮点体现了以学生为主体的教学理念,注重培养学生的数学思维能力、团队合作精神、自我评价和自我改进能力,使学生在实际应用中提高数学素养,为今后的数学学习打下坚实的基础。
《立方根》示范课教学设计【数学八年级上册北师大】
《立方根》教学设计一、教学目标1.了解立方根的概念,会用根号表示一个数的立方根.2.经历立方根的探究过程,在探究中学会求立方根的基本方法和策略,通过对立方根性质的探究,培养学生的逆向思维能力和分类讨论的意识.3.了解开立方与立方互为逆运算,能用立方运算求某些数的立方根.4.通过对实际问题的解决,体会数学的实用价值,提高学习兴趣.二、教学重难点重点:了解立方根的概念,会用根号表示一个数的立方根.难点:能用开立方运算求某些数的立方根.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【合作探究】某化工厂使用半径为1 m 的一种球形储气罐储藏气体. 现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?解:设新的球形气罐的半径为r m. 如果储气罐的体积是原来的8倍,则:3344=8133V πr π=⨯⨯⨯,r 3=8, 解得:r =2,因此,它的半径是原储气罐半径的2倍. 如果储气罐的体积是原来的4倍,则:3344=4133V πr π=⨯⨯⨯,r 3=4, r =?追问:这样的数该如何表示? 【探究】问题:试一试,你能给出立方根的定义吗? 教师活动:教师先给出平方根的定义,让学生试一试,用类比的方法给出立方根的定义.立方根的定义:一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根).举例:如2是8的立方根,23-是827-的立方根,0是0的立方根.【做一做】2的立方等于多少?是否有其他的数,它的立方也是8?教师总结:立方根是它本身的数有1, -1, 0;平方根是它本身的数只有0.【探究】问题:怎么用符号来表示一个数的立方根呢?每个数a都只有一个立方根,记作3a,读作“三次根号a”.例如x3=7时,x是7的立方根,即x= 37;而23=8,2是8的立方根,即38=2.注意:教师在这里一定要强调根指数3一定不能省略.【归纳】开立方:类似开平方运算,求一个数a的立方根的运算叫作“开立方”,其中a叫被开方数.“开立方”与“立方”互为逆运算!。
北师大版八年级上册2.3立方根优秀教学案例
3.引导学生运用立方根解决实际问题,培养学生的数学应用能力和创新思维。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,让学生感受到数学的实用性和魅力。
2.培养学生的团队合作意识,让学生在探究活动中互相学习、互相帮助。
(四)总结归纳
1.引导学生对所学内容进行总结和归纳,让学生明确立方根的概念、性质和应用,建立完整的知识体系。
2.通过总结归纳,帮助学生梳理学习思路,提高学生的概括和表达能力。
3.引导学生发现学习中存在的问题和不足,激发学生的自我改进和自我提高的意识。
(五)作业小结
1.布置相关的作业,让学生在课后巩固所学知识,提高学生的应用能力。
3.创设具有挑战性和探究性的问题情境,如立方根的谜题、立方根的魔术等,激发学生的探究欲望。
(二)讲授新知
1.通过讲解和示例,引导学生理解立方根的概念,明确立方根的性质和求法。
2.利用数学实验、探究活动等方法,让学生亲身体验和发现立方根的性质,加深学生对立方根的理解。
3.引导学生通过观察、实验、归纳等方法,探索立方根的性质和规律,培养学生的探究能力。
2.问题导向:设计了一系列由浅入深的问题,引导学生主动思考和探究立方根的概念和性质,使学生在解决问题的过程中自然地掌握立方根的知识,提高了学生的思维能力和问题解决能力。
3.小组合作:组织学生进行小组讨论和合作探究,让学生在互动中交流思想、分享成果,培养了学生的团队合作能力和协作精神,提高了学生的学习效果。
二、教学掌握立方根的性质,能够正确求一个数的立方根。
2.能够区分立方根与平方根、四次方根等其它根的概念,明确它们之间的联系与区别。
《立方根》word教案 (公开课获奖)2022苏教版 (2)
立方根教学目标1、了解立方根的概念 ,会用根号表示一个数的立方根 ,2、了解开立方与立方互为逆运算 ,能用立方运算求一些数的立方根3、能用立方根解决一些简单的实际问题 .教学重点了解开立方与立方互为逆运算 ,会求某些数的立方根.教学难点会求某些数的立方根 ,能用立方根解决一些简单的生活问题 .教学过程〔教师〕二次备课一、板书课题、出示目标师:同学们 ,今天我们来学习〔板书课题〕 ,本节课的学习目标是〔投影〕:1、了解立方根的概念 ,会用根号表示一个数的立方根 ,2、了解开立方与立方互为逆运算 ,能用立方运算求一些数的立方根3、能用立方根解决一些简单的实际问题 .二、自学指导师:要到达本节课的学习目标不是靠老师讲 ,而是靠大家自学 .为了方便使大家顺利到达本节课的学习目标 ,请同学们认真看屏幕〔投影〕:自学指导认真书P99 -100〔注意例题的解题格式〕1、了解立方根的概念 ,会用根号表示一个数的立方根 ,2、了解开立方与立方互为逆运算 ,能用立方运算求一些数的立方根3、能用立方根解决简单的实际问题 .八分钟后同桌互查 ,然后老师抽查 .学生看书 ,教师巡视 ,催促学生认真看书 .检测、板演:出示检测题:例1求以下各数的立方根(1) -64 〔2〕- 27 〔3〕81 〔4〕0例2、求以下各式中的xx3 +729=0〔x-3〕3 =64例3、做一个正方体纸盒 ,使它的容积为64cm ,正方体纸盒的棱长是多少 ?如果要使正方体纸盒容积为25cm ,它的棱长是多少 ?分别让4名学生上堂板演 ,其他学生在练习本上做 .教师巡视 ,收集学生检测中出现的错误 .四、后教〔一〕更正师:请同学们认真看堂上板演板演的内容 ,如发现错误或有不同解法的同学请举手 .〔教师组织学生更正〕1、更正:①学生互相检查 ,记会背立方根的概念 ,会用根号表示一个数的立方根 ,出现什么错误 ?订证有误的说法 .②板演的例1、2是否正确 ,出现什么问题 ?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么 ,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a 的小正方体拼成一个长方体 ,并用不同的方法表示你所拼出来的长方体的体积 ,从不同的表示方法中 ,你能发现些什么 ?〔1〕体积的表示方法;2、讨论:同桌或小组解疑 ,讨论如何一个数的立方根解决实际问题 .通过第1、2题的观察、比较、判断 ,进一步澄清平方根、立方根概念 ,提高学生区分的能力;第3题是开立方的简单应用 ,表达立方根的概念在解方程中的应用 ,显示方程形式的丰富多彩及解题思路的广泛性 .五、当堂训练师:同学们 ,通过上面的检测 ,说明同学们会自学 ,自学的很好 .还有 分钟时间 ,请大家当堂完成课堂作业 ,通过综合训练把知识转化为能力 ,还要比哪些人最|肯动脑筋 ,表达能力好 ,思维能力强 ,节奏快 .1、口头练习 .师:先请大家答复口答100页练习第|一题 ,比谁发言声音洪亮答案正确 .2、笔头练习 .求以下各数的立方根 .8 27 , ,9 ,-3 ,-64 ,-125216,0 3、课堂作业必做题:伴你学:P73随堂练习选做题:伴你学P73迁移应用学生作业时 ,教师勤于巡视 ,尤其关注后进生有没有困难 ,但老师不作辅导 ,不准对答案 .注意提醒学生握笔姿势、坐势 ,表扬做的快的 .批改已完成的作业 ,布置预习下一节内容 .收作业本子 .反思:〔2〕面对你的侧面积的表示方法. 探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a ·2a ·a =________________=6a 3 ,②3a ·2a ·b =________________=6a 2b .侧面积的表示方法:3a ·2a =________________=6a 2.〔2〕从不同的表示中你发现了什么 ?〔3〕通过下面两个计算我们来进一步的探讨:〔2a 2b 〕〔3ab 2〕=[2 ×3]•〔a 2•a 〕〔b •b 2〕=6a 3b 3 系数相乘 相同字母 相同字母〔4ab 2〕〔5b 〕=[4×5]•〔b 2• b 〕•a =20ab 3系数相乘 相同字母 只在一个单项式中出现的字母你能告诉大家你算出的结果吗 ?你是怎样来思考的呢 ?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母 ,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准 ,板书过程.〔通过计算引导学生发现单项式与单项式相乘时 ,一找系数 ,二找相同字母的幂 ,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9;〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开 ,然后转化为单项式乘以单项式的形式 ,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
人教初中数学七下 《立方根》教案 (公开课获奖)1 (2)
《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.827-+重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC .D CA BD CABDC A B∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.D CAB2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50°E DC A B P答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
人教版七年级下册《立方根》教学案例
人教版七年级下册《立方根》教学案例《人教版七年级下册《立方根》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!§6.2 立方根教学目标:了解立方根的概念,会用符号表示一个数的立方根重点:了解立方根的概念,用立方运算求某些数的立方根;,会用计算器求某些数的立方根难点:明确平方根与立方根的区别,能熟练地求某些数的立方根㈠创设情景,导入新课出示一个正方体纸盒,提出问题,如果这个正方体的体积为216 ,那么它每条棱长是多少?㈡合作交流,解读探究观察由以上问题,有,即要求一个数,使它的立方等于216,通过分析,有,那么6就是这个正方体的棱长.归纳如果一个数的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根.探究根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?因为,所以8的立方根是( 2 )因为,所以0.125的立方根是( )因为,所以8的立方根是( 0 )因为,所以8的立方根是( )因为,所以8的立方根是( )【总结归纳】一个正数有一个正的立方根0有一个立方根,是它本身一个负数有一个负的立方根任何数都有唯一的立方根【类比思考】平方根的表示我们已经很清楚了,那么立方根又该如何表示呢?【探究说明】一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。
例如:表示27的立方根,;表示的立方根,【探究】因为所以 =因为,所以 =总结利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
操作用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同。
步骤:输入→ 被开方数→ = → 根据显示写出立方根例:求-5的立方根(保留三个有效数字)→ 被开方数→ = → 1.709975947所以㈢应用迁移,巩固提高例1 求下列各数的立方根⑴ -8 ⑵ ⑶ ⑷ ⑸ ⑹例2 计算⑴ ⑵ ⑶ ⑷ ⑸例3 张叔叔有棱长为的两个正方体纸箱中装满了大米,他将这两箱大米都倒入了另一个新的正方体木箱中,结果正好装满,那么这个新的正方体木箱的棱长大约是多少?(结果精确到)分析从一个实际问题中抽象出数学关系,即一个正方体的体积等于另一个正方体体积的2倍,列式并计算。
8上13.3《立方根》课堂教学实录
教学实录立方根(第1课时)【教学目标】一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.【教学重难点】教学重点:立方根的概念.教学难点: 1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:Ⅰ.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?〖评析〗在学生对《平方根》知识的学习后检查自己课前延伸的练习情况,让学生自查自纠,把学习的主动权交给学生;另外,通过对立方根的应用题解决了,让学生有一种学习数学很有用的感觉,激发他们的学习兴趣.Ⅱ.新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?. (一)提出问题,引发讨论在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;(23)3=_____;-(23)3•=_____ ; 03=______.(1)经计算发现正数,0,负数的立方值与平方值有何不同之处?23=8;(-2)3=-8; 0.53=0.125; (-0.5)3=-0.125;(23)3=827; -(23)3=-827;03=0.我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值了,什么是立方值呢?类似平方值定义可知,若x 3=a 则x 为a 的立方根,读作三次根号a.负数没有平方根,负数有无立方根呢?从(-2)3=-8,(-0.5)3=-0.125,(23)3=-827,可知负数有立方根,•并且其立方根仍为负数.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,•故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,-8的立方根为-2,0.125的立方根为0.5,-0.125的立方根为-0.5,记为=0.5,827的立方根为23,-827的立方根为-23,=23230的立方根为0,=0〖评析〗在此处铺设了一个台阶,再设置了一个学生容易解决的问题,将学生的注意力从开立方运算向立方运算的思路引导,让学生对立方运算与开立方运算这间的互逆关系有初步的认识,为进一步探究新知作好准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根§10.4
教学目标:A .知识目标:⑴使学生了解立方根的概念和性质,并会用根号表示一个数的立方根。
1 ⑵依据开立方与立方运算的互逆关系,求某些数的立方根。
.能力目标:培养学生的理解,辨别能力以及善于观察发现,探索,归纳问题的能力。
2.德育目标:通过公式333的推导,使学生领悟转化思想,并培养学生由具体-=aa 到抽象,由特殊到一般的辨证观点。
4.情感目标:体现学生为主体,使学生树立自信心,密切师生情感。
B.教学重点:使学生理解并掌握立方根的意义和性质,会求一些特殊数立方根。
C.教学难点:运用立方运算,求一些特殊数的立方根。
D.教学关键:使学生掌握立方与开立方的互逆关系。
E.教学手段:幻灯片、小黑板等。
F.教学方法:引导、发现、观察、思考、探索、归纳等方法。
G.教学过程:
一。
复习提问:(设计意图:通过复习,为本节内容作辅垫)
1什么叫做平方根?它有哪些性质?
2什么叫做开平方?开平方与什么运算互为逆运算?
3求出下列各数的平方根(口答)
25(3)0.09 (4) 0 (1)169 (2)81二.导入新课(设计意图:由此例引出本节课题)导言:我有一个实际问题,还要请同学们帮助解决:要做一个正方体的木箱,使它的容积是0.125立方米,请问你怎样求出这个正方体的棱长?
(学生分析)
1
实际生活中还有许多类似的问题:即已知一个数的立方,求这个数是非曲直多少?今天,我们就具体来研究这个问题,为此,学习一个新的数学概念——立
方根,板。
4立方根书课题:§10
三.新课讲解:1立方根的概念与符号表示:(与平方根概念对比得出)aX叫做=a,那么3Xa板书:如果一个数的立方等于,这个数叫做a的立方根,即33a 是被开方数,”,读作“三次根号a”其中的立方根。
符号表示为“a 3不能省略。
)是根指数,(强调:这里的根指数的立方根即0.1250.125 0.5是=33=0.5
0.5举例:125.0对比开平方运算说明:求一个数的立方根的运算叫开立方。
同
开平方与平方互为逆运算一样,开立方与立方运算也互为逆运算。
立方根的性
质:2设疑:同学们,想一想,一个正数有两个平方根,那么一个正数有几个立方根?任何本身,0负数没有平方根,那么任何负数有没有立方根?0的平方根只有一个是的立方根有几个?是多少?那么0 为了回答这个问题,我们来看下面的例子:(出示小黑板)⑴例1。
求下列各数的立方根:8.216 ⑤0-④③0-8①8 ②27师:因为开立方与立方互为逆运算,所以我们可利用立方运算求出某数的立方根。
(学生口述,教师板书),引导学生分析并归纳立方根的性质,⑵观察例10 板书:正数有一个正的立方根;负数有一个负的立方根;0的立方根仍旧是⑶对照平方根的性质,弄清立方根与平方根的区别与联系(指名学生回答)
⑷研究互为相反数的立方根之间的关系:3333888??8 1引导学生观察例。
由=-2,=2,得出=-
归纳:2
33。
即求负数的立方根,可先求出这个负数的绝对值的立a>0-,那么=如果aa?方根。
然后取它的相反数。
⑸例2。
求下列各式的值:(出示小黑板)271033③
①②④--?227?27336427(学生口述,教师板书。
)
四.巩固练习:㈠反馈练习:(设计意图:巩固知识点,培养学生分析问题和解决问题的能力)求下列各数的立方根:1327(3)-0.008 (4) 3 (2)-(1)
18125 2计算:1712533(4)(2)
(3)- (1)??41000064?.03327216㈡变式训练:(出示幻灯片)1判断下列各
语名对不对?为什么?2 ⑵8的立方根是± 4 ⑴-0.064的立方根是0。
1111⑷的平方根是⑶的立方根是431627 2填空:39,
根指数是的立方根,被开方数是⑴表示
方个立方根,负数没有方根,而有个平方根,有一个正数有⑵
根的平方根与立方根相等⑶
5的立方根是⑷立方得-0.027的数是,158133=X X ⑸若,则=64X=,若2X=-,则43aa有意义时, a ⑹当a 时,有意义,当
3选择:
3
),则这个数是(-3⑴若一个数的立方根是D 9 C 27 A –-27 B -9
的值是()⑵)3(?3 D 无意义-3 C – B A 3 ±3
)⑶一个数的立方根是这个数本身,那么这个数是(
-1,0 D 1, –-1 A 1 B – C 0
五.课堂小结:1以提问形式,学生小结(设计意图:培养学生的语言表达能
力及归纳能力本节课主要学习了哪些内容?什么叫做立方根?它有哪些性质?
立方根平方根有什
么区别?2教师补充:所以我们利用立方运算,开立方与立方也互为逆运算,同开平方与平方互为逆运算一样,
可求某些特殊数的立方根,希望同学们掌握这种方法。
六.作业布置:题—
—1 P148A、2、3
2 思考题:33a>已知当a0-时,=a?33a是否成立?=0a请问:当≤时,等式-a? 4
板书设计:。
104 立方根§2)四、例题示范(P例1、P例一、
概念:1461451、立方根2、开立方五、学生板演立方根的性质:二、
1、正数有一个正的立方根负数有一个负的立方根0
的立方根仍是0 0
>三、如果a 那么33=-aa? 5。