船舶柴油机故障在线诊断仿真技术研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶柴油机故障在线诊断仿真技术研究

蔡振雄,黄加亮,翁泽民(集美大学轮机系,福建厦门361021)

[摘要]提出了船用柴油机的主要部件、易损件的运行性能采用微机自动

巡回检测,并与正确值比较的方法,来达到故障在线自动诊断的目的.在此基础上,把仿真以及神经网络技术直接应用于柴油机故障在线诊断系统,

建立船用柴油机症状与故障样本集,作为神经网络故障诊断的专家知识库,以实现船用柴油机故障在线智能诊断,从而提高故障诊断的及时性和准确率,减少误诊.

[关键词]船舶柴油机;在线监测;智能诊断;仿真技术;神经网络技术

[中图分类号] U664.121; TK418 [文献标识码] A0

引言

早期船舶轮机员对船用柴油机的故障诊断,一般通过一些常规的普通仪表、仪器、化验并结合看、摸、听、闻等传统的简易手段对含有故障的柴油

机及系统进行离线经验诊断.这种方法不仅对轮机员的素质有很高的要求,而且故障诊断的速度慢、质量差.随着科学技术水平的提高,微机的普及,

为离线和在线故障诊断提供物质基础,使离线与在线诊断的实现成为可能.

1船用柴油机故障的在线诊断

在线诊断是指对于大型、重要的设备为了保证其安全和可靠运行,需要对所监测的信号进行自动、连续、定时的采集与分析,对出现的故障及时做出诊断.建立在线故障监测和诊断系统,能有效提高故障诊断的准确率,缩短故障诊断时间,促进维修方式从预防性维修到预测性视情维修的转变.故障在线诊断又分为人工在线故障诊断和自动在线故

障诊断.人工在线诊断是70年代中期前后发展开发应用的技术,利用监测系统对柴油机运行时内外部工况参数进行自动监测,并将监测信号输入计算机进行计算分析,同时结合轮机日记记录、轮机员的观察测试,对柴油机技术状态进行早期预测,做一些部件的趋势分析,为定期的维护保养提供信息.人工在线诊断对要求快速故障定位,故障模式识别的船用柴油机来说,太慢且准确性较差无论对故障的在线人工诊断还是在线自动诊断,目的均是为了有效地识别故障,所以最关键的问题是要建立故障识别的判据(专家系统数据库),即如何判断柴油机含有故障.经验表明柴油机工作性能参数如压力、温度的大小高低、噪音的大小、转速、流量漏泄、振动等,都可以作为故障判断的依据.为了达到自动诊断的目的,必须引入微处理机系统,对柴油机的关键件、重要件、易损件及其它部位设定故障诊断点,并将这些正确的性能参数信号值建立完整的数据库(专家系统数据库);利用微机对诊断点的诊断信号进行自动巡回检测,测试结果由计算机自动与数据库中的正

确信号值进行比较.如果检测信号在正确范围内,则表明该柴油机正常无故障;如果超过范围,则说明有故障.由计算机推断故障点的位置,并通过显示设备和报警设备,告知外界,以便轮机管理人员及时处理.该方法由硬件原理组成如图1所示.故障诊断技术中另一个重要部分是系统测试软件.该系统软件由自检程序、信号转换程序、巡回检测程度、比较程序、显示报警程序等组成,可以对船用柴油机进行实时在线监视其工作状态,完成自动在线故障诊断任务。

2 仿真技术在在线诊断中应用

2.1 柴油机运行故障计算机仿真

现代船用柴油机正朝着大型化、高增压和高经济性发展,使得故障征兆与故障原因的关系更复杂,专家系统通过领域专家的实践积累知识库耗时较长.随着数值计算技术的迅猛发展,模拟柴油机各种运行工况下的工作过程已成为可能,能够实现对发动机进行燃烧分析及性能分

析模拟.不仅可用来计算无故障下各种运行工况的过程参数,也可对柴油机某些增压系统、气缸活塞组件与燃烧系统、燃油系统等故障进行仿真.然后根据特征参数,参照相应规范,运用各种知识和经验,对机器状态进行识别,对早期故障进行诊断,对故障的部位、原因和程度作出判断,对机器技术状态的发展趋势进行预测,为确定维修决策提供技术依据.文献[2 , 3 ]开发的船用二冲程涡轮增压柴油机运行性能预测程序,不仅可以模拟一个气缸有故障,而且可以模拟某几个气缸有故障下的工作状态和性能.在给定工况和设置故障状态下对涡轮增压柴油机的工作过程和运行性能进行仿真,获得发动机在此故障和工况下各处运行参数,建立相应的故障样本集,并实现船用柴油机故障诊断.

2.2 柴油机运行故障诊断策略[4]

用于故障诊断的方法称为故障诊断策略,故障诊断策略包括被测系统是否存在故障、识别故障的征兆和故障的性质.故障诊断实际上就是

根据测量所获得的某些故障特征,以及系统故障源与故障特征之间的映射关系,找出系统的故障源的过程.人工神经网络作为一种自适应的模式识别技术,能够通过自身的学习机制自动形成所要求的决策区域.把仿真计算所获得的状态参数,经过特征选择,找出对于故障反映最敏感的特征信号作为神经网络的输入向量,建立故障模式训练样本集,对网络进行训练;当网络训练完毕,对于每一个新输入的状态信息,网络将迅速给出分类结果.基于神经网络的故障诊断仿真步骤是:首先对柴油机工作过程进行仿真计算,获得给定工况在设定故障下和无故障下的过程参数,经预处理提取征兆集数据,归一化为网络输入模式;第二步用已知的样本集训练网络,再实时输入征兆向量进行测试,获得该工况网络输出模式;然后对网络输出进行后处理获得诊断结果,即故障发生的位置及其严重程度,以提供作进一步处理(如趋势分析或提出处理措施)的依据。

2.3 网络输入变量归一化处理

对数据的预处理就是要使得经变换后的数据对于神经网络更容易训练和学习,因为原始数据幅值大小不一,相差太大.如果不进行处理,大的测量值的波动就垄断了神经网络的学习过程,不能反映小的测量值的变化.而且网络是通过调整各权值的大小以保证能学习到变量相对的重要性,若输入变量之间幅值相差很大,使得网络完成学习时,权值之间的大小相差亦很大.事实上,许多学习算法对权值范围都有限制,不能适应如此之宽广的数据变化范围.为此,需通过把输入数据归一化到能使网络所有权值都在一个不太大的范围之内,以此来减轻网络训练时的难度.在对船用柴油机工作过程进行仿真计算之后,获得给定工况和设置故障下的过程参数的测量值.同时计算该工况无故障下各处的参数值作为基准值.实测值与基准值的偏差经过处理,获得诊断用的征兆集数据,并经归一化为网络的输入模式.

2.4 柴油机故障诊断实例

相关文档
最新文档