华师大二附中高三数学综合练习试卷(共十套)
上海市华师大二附中高三年级数学综合练习[3](华师大版)
上海市华师大二附中 高三年级数学综合练习[3]一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{|||2,M x x x =≤∈R },{|N x x =∈N ﹡},那么M N = . 2.在ABC ∆中,“3A π=”是“sin A =”的 条件.3.若函数xy a =在[1,0]-上的的最大值与最小值的和为3,则a = .4.设函数2211()()log 221x x xf x x x--=++++的反函数为1()f x -,则函数1()y f x -=的图象与x 轴的交点坐标是 .5. 设数列{}n a 是等比数列,n S 是{}n a 的前n 项和,且32n n S t =-⋅,那么t = .6.若sin()24x ππ+=(2,2)x ∈-,则x = .7.若函数1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式()2x f x x ⋅+≤的解集是 .8.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .9.若无穷等比数列{}n a 的所有项的和是2,则数列{}n a 的一个通项公式是n a = . 10.已知函数()y f x =是偶函数,当0x >时,4()f x x x=+;当[3,1]x ∈--时,记()f x 的最大值为m ,最小值为n ,则m n -= .11.已知函数()sin f x x =,()sin()2g x x π=-,直线x m =与()f x 、()g x 的图象分别交于M 、N 点,则||MN 的最大值是 . 12.已知函数131()log (31)2xf x abx =++为偶函数,()22x x a b g x +=+为奇函数,其中a 、b 为常数,则2233100100()()()()a b a b a b ab ++++++++= .二、选择题 (本大题满分16分) 本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号,选对得4分,不选、错选或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
上海市华东师范大学第二附属中学2023-2024学年高三上学期质量调研数学试卷
华东师范大学第二附属中学 2023学年第一学期高三年级质量调研数学试卷考生注意:1.本场考试时间120分钟.试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名.将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.已知全集()[),12,U =-∞+∞,集合()[)1,13,A =-+∞,则A =________.2.已知复数z 满足i 1i z ⋅=-(i 为虚数单位),则Im z =________.3.设常数0a >且1a ≠,若函数()log 1a y x =+在区间[]0,1上的最大值为1,最小值为0,则实数a =________.4.已知圆锥的底面半径为3,沿该圆锥的母线把侧面展开后可得到圆心角为23π的扇形,则该圆锥的高为________.5.若()42340123412x a a x a x a x a x -=++++,则1234a a a a +++=________.6.方程1x y +=所表示的图形围成的区域的面积是________.7.在等比数列{}n a 中,3a ,11a 分别是函数32432y x x x =+++的两个驻点,则7a =________.8.若“12x a x a >⎧⎨>⎩”是“122122x x ax x a +>⎧⎪⎨>⎪⎩”的必要不充分条件,则实数a 的取值范围是________. 9.若直线e 4eln 40x y -+=是指数函数xy a =(0a >且1a ≠)图像的一条切线,则底数a =________.10.在某道选词填空题中,共有4个空格、5个备选单词,其中每个空格只有备选单词中的一个正确答案(备选单词中有一个是多余的),则4个空格全部选错的概率是________. 11.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为________.12.已知正整数m ,n 满足24m n <≤,若关于x 的方程()()1122sin 2sin mx nx +=--有实数解,则符合条件的(),m n 共有________对.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.两个变量x 与y 之间的回归方程( ) A.表示x 与y 之间的函数关系 B.表示x 与y 之间的不确定关系 C.反映x 与y 之间的真实关系D.是反映x 与y 之间真实关系的一种最佳拟合14.已知事件A ,B 满足()01P A <<,()01P B <<,则不能说明事件A ,B 相互独立的是( )A.()()P A B P A B = B.()()P A B P A = C.()()P B A P B =D.()()P B A P B A =15.在ABC △中,已知sin A a =,3cos 5B =,若cosC 有唯一值,则实数a 的取值范围为( ) A.{}30,15⎛⎤ ⎥⎝⎦B.40,5⎛⎤ ⎥⎝⎦C.4,15⎡⎤⎢⎥⎣⎦D.{}40,15⎛⎤ ⎥⎝⎦16.已知圆锥曲线Γ:(),1f x y =关于坐标原点O 对称,定点P 的坐标为()00,x y .给出两个命题:①若()000,1f x y <<,则曲线Γ上必存在两点A ,B ,使得P 为线段AB 的中点;②若()00,0f x y =,则对曲线Γ上任一点A ,Γ上必定存在另外一点B ,使得PA PB =.其中( )A.①是假命题,②是真命题B.①是真命题,②是假命题C.①②都是假命题D.①②都是真命题三、解答题(本大题共有5题满分78分)解下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,正三梭柱111ABC A B C -中,2AB =,14AA =.点M 是11AC 的中点.(1)求四面体11MBB C 的体积;(2)求直线MA 与平面11BCC B 所成角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知数列{}n a 的前n 项和为n S .(1)若数列{}n a 为等差数列,()2392n S tn t n t =+-+-(t 为常数),求{}n a 的通项公式; (2)若数列{}n a 为等比数列,11a =,418a =,求满足100n n S a >时n 的最小值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[]95,105的最小值.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小满分8分)已知F 为抛物线Γ:24y x =的焦点,O 为坐标原点.过点(),4P p 且斜率为1的直线l 与抛物线Γ交于A ,B 两点,与x 轴交于点M . (1)若点P 在抛物线Γ上,求PF ;(2)若AOB △的面积为p 的值;(3)是否存在以M 为圆心、2为半径的圆,使得过曲线Γ上任意一点Q 作圆M 的两条切线,与曲线Γ交于另外两点C ,D 时,总有直线CD 也与圆M 相切?若存在,求出此时p 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小满分6分第3小题满分8分)设函数()y f x =的定义域为开区间I ,若存在0x I ∈,使得()y f x =在0x x =处的切线l 与()y f x =的图像只有唯一的公共点,则称切线l 是()y f x =的一条“L 切线”.(1)判断函数ln y x =是否存在“L 切线”,若存在,请写出一条“L 切线”的方程,若不存在,请说明理由.(2)设()()()3210,f x x ax x c =++∈,若对任意正实数c ,函数()y f x =都存在“L 切线”,求实数a 的取值范围.(3)已知实数0b >,函数()()2ee 6xx g x b x x =-+∈R ,求证:函数()y g x =存在无穷多条“L 切线”,且至少一条“L 切线”的切点的横坐标不超过ln2b .。
华师大二附高三数学试卷
考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 2),则下列说法正确的是()A. a > 0,b = -2aB. a > 0,b = 2aC. a < 0,b = -2aD. a < 0,b = 2a2. 已知复数z满足|z - 1| = |z + 1|,则复数z的取值范围是()A. 实部为0B. 实部大于0C. 实部小于0D. 实部为正或负3. 下列各式中,正确的是()A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sec^2x + 1 = tan^2x4. 已知函数f(x) = 2x - 1在区间[1, 3]上单调递增,则函数g(x) = f(x^2)在区间[1, 2]上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 在△ABC中,若a = 3,b = 4,c = 5,则sinA + sinB + sinC的值等于()A. 2B. 3C. 4D. 56. 下列各函数中,在其定义域内可导的是()A. y = |x|B. y = x^2C. y = 1/xD. y = √x7. 已知函数f(x) = x^3 - 3x,则f(x)的极值点是()A. x = 0B. x = 1C. x = -1D. x = 28. 在△ABC中,若a = 3,b = 4,c = 5,则sinA·sinB·sinC的值等于()A. 1/2B. 1/3C. 1/4D. 1/59. 已知函数f(x) = log2x在区间[1, 2]上的图像是()A. 上升的直线B. 下降的直线C. 抛物线D. 指数函数10. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 9,则a1 + a4 + a5的值为()A. 9B. 12C. 15D. 18二、填空题(本大题共5小题,每小题10分,共50分)11. 已知函数f(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 2),则f(0)的值为______。
上海市华东师大二附中2025届高三(最后冲刺)数学试卷含解析
上海市华东师大二附中2025届高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B 的真子集的个数是( )A .8B .7C .4D .32.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2B .﹣1C .2D .43.设正项等差数列{}n a 的前n 项和为n S ,且满足6322S S -=,则2823a a 的最小值为A .8B .16C .24D .364.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3165.若函数()()2(2 2.71828 (x)f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( ) A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫⎪⎝⎭6.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .87.平行四边形ABCD 中,已知4AB =,3AD =,点E 、F 分别满足2AE ED =,DF FC =,且6AF BE ⋅=-,则向量AD 在AB 上的投影为( ) A .2B .2-C .32D .32-8.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .6010.已知集合{}2|3100M x x x =--<,{}29N x y x ==-,且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤ B .{3x x <-或}5x >C .{}32x x -≤≤-D .{}35x x -≤≤11.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( ) A .0或2 B .2C .0D .1或212.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点.其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④二、填空题:本题共4小题,每小题5分,共20分。
2024-2025学年上海华二附中高三上学期数学月考试卷及答案(2024.09)
1华二附中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数12iz i+=,则z 的实部为________. 2.若函数()133x xf x a =⋅+为偶函数,则实a =________. 3.若事件A 、B 发生的概率分别为1()2P A =,2()3P B =,且相互独立,则()P A B =________.4.已知集合(){}2|log 1A y y x ==−,{}3|27B x x =≤,则A B =________.5.设{}n a 是等比数列,且13a =,2318a a +=,则n a =________.6.现有一球形气球,在吹气球时,气球的体积V 与直径d 的关系式为36d V π=,当2d =时,气球体积的瞬时变化率为________. 7.已知随机变量X 的分布为123111236⎛⎫⎪ ⎪ ⎪⎝⎭,且3Y aX =+,若[]2E Y =−,则实数a =________. 8.记函数()()()cos 0,0f x x =ω+ϕω><ϕ<π的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为________.9.若6(0)b ⎛> ⎝的展开式中含x 项的系数为60,则2a b +的最小值为________.10.顶点为S 的圆锥的母线长为60cm ,底面半径为25cm ,A ,B 是底面圆周上的两点,O 为底面中心,且35AOB π∠=,则在圆锥侧面上由点A 到点B 的最短路线长为____cm .(精确到0.1cm )11.已知△ABC 中,22AB BC ==,AB 边上的高与AC 边上的中线相等,则tan B =2________.12.给定公差为d 的无穷等差数列{}n a ,若存在无穷数列{}n b 满足: ①对任意正整数n ,都有1n n b a −≤②在21b b −,32b b −,…,20252024b b −中至少有1012个为正数,则d 的取值范围是________. 二、单选题(本大题共4小题,共18.0分.在每小题列出的选项中,选出符合题目的一项) 13.“1a b +>”是“33a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件14.如果两种证券在一段时间内收益数据的相关系数为正数,那么表明( ) A .两种证券的收益之间存在完全同向的联动关系,即同时涨或同时跌 B .两种证券的收益之间存在完全反向的联动关系,即涨或跌是相反的 C .两种证券的收益有同向变动的倾向 D .两种证券的收益有反向变动的倾向15.设0k >,若向量a 、b 、c 满足::1::3a b c k =,且2()b a c b −=−,则满足条件的k 的取值可以是( )A .1B .2C .3D .416.设1A ,1B ,1C ,1D 分别是四棱锥P ABCD −侧棱PA ,PB ,PC ,PD 上的点.给出以下两个命题,①若ABCD 是平行四边形,但不是菱形,则1111A B C D 可能是菱形;②若ABCD 不是平行四边形,则1111A B C D 可能是平行四边形.( ) A .①真②真 B .①真②假 C .①假②真 D .①假②假三、解答题(本大题共5小题,共78.0分.)17.(本小题14.0分)如图,在圆柱中,底面直径AB等于母线AD,点E在底面的圆周⊥,F是垂足.(1)求证:AF DB⊥;(2)若圆柱与三棱锥D ABE−的体积的比等于3π,求直线DE与平面ABD所成角的大小.3418.(本小题14.0分)李先生是一名上班旋,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中们数M ,并完成下列22⨯列联表:(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由. 附:()()()()()22n ad bc a b c d a c b d −χ=++++,()2 3.8410.05P χ≥≈.519.(本小题14.0分)如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放,已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE ∠=θ,总造价为W 元。
上海市华师大二附中高三数学综合练习试题6苏教版
上海市华师大二附中高三综合练习高三年级数学[6]一、填空题 (本大题满分48分)1、已知集合A={x|y=lg(x –3)},B={x|y=x -5},则A ∩B= 。
2、定义在R 上的函数f(x)是奇函数,则f(0)的值为 。
3、设函数f(x)=lgx ,则它的反函数f –1(x)= 。
4、函数y=sinxcosx 的最小正周期T= 。
5、若复数z1=3–i ,z2=7+2i ,(i 为虚数单位),则|z2–z1|= 。
6、ΔABC 中,若∠B=30o ,AB=23,AC=3,则BC= 。
7、无穷等比数列{an}满足:a1=2,并且∞→n lim(a1+a2+…+an)=38,则公比q= 。
8、关于x 的方程2x=a a -+21只有正实数的解,则a 的取值范围是 。
9、如果直线y = x+a 与圆x2+y2=1有公共点,则实数a 的取值范围是 。
10、袋中有相同的小球15只,其中9只涂白色,其余6个涂红色,从袋内任取2只球,则取出的2球恰好是一白一红的概率是 。
11、函数)(n f=n a n +2(n∈N*)为增函数,则a 的范围为 。
12.设函数()x f 的定义域是D ,a,b D ∈任意的,有()()a+b a b ,1+ab f f f ⎛⎫+= ⎪⎝⎭()x f 的反函数为()x H ,已知()()a ,b H H ,则()a b H +=_____ ______。
(用()()a ,b H H 表示);二、选择题 (本大题满分16分)13.已知数列{an}的通项公式是an=2n –49 (n ∈N),那么数列{an}的前n 项和Sn 达到最小值时的n 的值是 ( )(A) 23 (B) 24 (C) 25 (D) 2614.在△ABC 中,若C cB b A a cos cos cos ==,则ABC ∆是( )(A) 直角三角形 (B) 等边三角形 (C) 钝角三角形 (D) 等腰直角三角形15.设x=sin α,且α∈]656[ππ-,,则arccosx 的取值范围是 ( )(A) [0, π] (B) [3π,32π] (C) [0,32π] (D) [32π,π]16.设非零实常数a 、b 、c 满足a 、b 同号,b 、c 异号,则关于x 的方程a .4x+b.2x+c=0( ) (A)无实根 (B)有两个共轭的虚根 (C)有两个异号的实根 (D)仅有一个实根三.解答题(本大题满分86分) 17.(本题满分12分) 某中学,由于不断深化教育改革,办学质量逐年提高。
上海华东师范大学第二附属中学2025届高三数学第一学期期末联考试题含解析
上海华东师范大学第二附属中学2025届高三数学第一学期期末联考试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)2.在等差数列{}n a 中,25a =-,5679a a a ++=,若3n nb a =(n *∈N ),则数列{}n b 的最大值是( ) A .3- B .13- C .1D .33.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 4.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( )A .16,e e ⎛⎫ ⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭ D .746,e e ⎡⎫⎪⎢⎣⎭5.在ABC ∆中,D 为AC 的中点,E 为AB 上靠近点B 的三等分点,且BD ,CE 相交于点P ,则AP =( ) A .2132AB AC + B .1124AB AC + C .1123AB AC + D .2133AB AC + 6.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S7.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -8.已知向量a ,b 满足4a =,b 在a 上投影为2-,则3a b -的最小值为( )A .12B .10CD .29.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--10.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥11.已知[]2240a b a b +=⋅∈-,,,则a 的取值范围是( )A .[0,1]B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]12.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( ) A .12B .14C .15D .110二、填空题:本题共4小题,每小题5分,共20分。
上海市华师大二附中高三年级数学综合练习[9]
上海市华师大二附中 高三年级数学综合练习[9]一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1、方程018379=-⋅-xx 的解是 。
2、已知集合{})2lg(-==x y x A ,{}x y y B 2==,则=B A 。
3、若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则=5a 。
4、从5名候选同学中选出3名,分别保送北大小语种(每个语种各一名同学):俄罗斯语、阿拉伯语与希伯莱语,其中甲、乙二人不愿学希伯莱语,则不同的选法共有 种。
5、复数ii -++111(i 是虚数单位)是方程022=+-c x x 的一个根,则实数=c 。
6、在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = 。
7、如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角为 。
8、(理)若322sin )cos(cos )sin(=---αβααβα,β在第三象限, 则=+)4tan(πβ 。
(文)已知α∈(2π,π),sin α=53,则tan =+)4(πα 。
9、(理)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n = 。
(文)若y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤+≤≤≤≤231010y x y x 下,则目标函数y x u +=2的最大值为__________。
10、已知函数xx f 2)(=的反函数为)(1x f-,若4)()(11=+--b fa f,则ba 11+的最小值为 。
11、若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是 。
12、为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题。
上海市华师大二附中高三年级数学综合练习[7]
11.已知函数 f (x) a x 2 ax b (a,b 为实常数),若 f(x)的值域为[0,+∞),则常数 a,b
应满足的条件__________。
1.若函数 f (x) 的反函数是 y f (x) ,则 f __________。
x 2 3
2
2.方程 lg x 2lg x 3=0 的解集是__________。
- 4 _____________
10.将正奇数按如下规律填在 5 列的数表中:则 2007 排在该表的第 行,第 列
9.(理)若 x y ,则 sinx·siny 的最小值为__________。
3
7
(文)sin( )cos -cos( - )sin = , 在第三象限,则 cos = 。
1 1
.设{x} 表示离 x 最近的整数,即若 m x m ,则{x} = m .下列关于函数 f (x) x {x} 的四
8 2 2
4.已知 z1 、 z2 是实系数一元二次方程的两虚根, a R,且 2 ,则 a 的取值范围
z2
为 ______ (用区间表示)。
6 3 __________
7.某班有 50 名学生,其中 15 人选修 A 课程,另外 15 人选修 B 课程,其它人不选任何课
程,从中任选两名学生,则他们选修不同课程的学生概率为__________。
个命题中正确的是 。
1
①函数 y f (x) 的定义域是 R,值域是 0, ;
2 1 3 5 7
③函数 y f (x) 是周期函数,最小正周期是 1; 31 29 27 25
华师二附中高三数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,属于有理数的是()A. √2B. πC. -1/3D. 0.1010010001…2. 若函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 3C. 5D. 73. 下列命题中,正确的是()A. 函数y = x^2在R上单调递增B. 方程x^2 - 4x + 3 = 0的解为x = 1或x = 3C. 函数y = log2x在(0, +∞)上单调递增D. 等差数列{an}中,若a1 = 1,公差d = 2,则第10项an = 204. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()A. 0B. 1C. -1D. 不确定5. 下列不等式中,恒成立的是()A. x^2 + y^2 ≥ 2xyB. x^2 - y^2 ≥ 0C. x^2 + y^2 ≥ 0D. x^2 - y^2 ≤ 06. 若函数f(x) = x^3 - 3x在(-∞, +∞)上单调递增,则实数a的取值范围是()A. a ≥ 0B. a ≤ 0C. a > 0D. a < 07. 已知等差数列{an}的前n项和为Sn,若a1 = 1,公差d = 2,则Sn的值为()A. n^2B. n^2 + nC. n(n + 1)D. n(n + 1)/28. 下列各式中,属于圆的方程的是()A. x^2 + y^2 = 1B. x^2 + y^2 + 2x - 3 = 0C. x^2 + y^2 - 2x - 3 = 0D. x^2 + y^2 + 2x + 3 = 09. 若直线l的方程为y = kx + b,且k ≠ 0,则直线l与x轴的交点坐标为()A. (0, b)B. (b, 0)C. (-b/k, 0)D. (0, -b)10. 已知函数f(x) = log2(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在二、填空题(本大题共10小题,每小题5分,共50分)11. 若等比数列{an}的公比为q,首项a1 = 2,则第10项an = ________。
2023-2024学年上海市华东师范大学第二附属中学高三上学期期中考试数学试卷含详解
华二附中高三期中数学试卷2023.11一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.不等式221x x -≥-的解集为___________.2.已知3,0,cos 225ππαα⎛⎫⎛⎫∈--=-⎪ ⎪⎝⎭⎝⎭,则sin2α=________.3.设252i1i i z +=++,则z =________.4.钝角ABC中,3,60a b A ===,则ABC 的面积是__________.5.圆2222210x y ax ay a a +++++-=的半径的最大值为______.6.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =_______.7.已知a b 、满足21a b += ,且()1,1a =- ,则b 在a 上数量投影的最小值为________.8.正四面体ABCD 的棱长为2,则所有与A ,B ,C ,D 距离相等的平面截这个四面体所得截面的面积之和为______.9.设n ∈N *,a n 为(x +4)n -(x +1)n 的展开式的各项系数之和,1222...555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([x ]表示不超过实数x 的最大整数),则()()222n n t b t -+-+(t ∈R )的最小值为____.10.已知抛物线2(0)y ax a =>,在y 轴正半轴上存在一点P ,使过P 的任意直线交抛物线于M N 、,都有2211||||MP NP +为定值,则点P 的坐标为________.11.某学校有如图所示的一块荒地,其中60m AB =,40m AD =,45m BC =,π2DAB ∠=,2π3ABC ∠=,经规划以AB 为直径做一个半圆,在半圆外进行绿化,半圆内作为活动中心,在以AB 为直径的半圆弧上取,E F 两点,现规划在OEF 区域安装健身器材,在OBE △区域设置乒乓球场,若BOE EOF ∠=∠,且使四边形AOEF 的面积最大,则cos EOF ∠=______.12.M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则222a b M+∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为________.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知集合{3,2,0,1,2,3,7},{,}A B xx A x A =--=∈-∉∣,则B =()A.{0,1,7}B.{1,7}C.{0,2,3}D.{0,1,2,3,7}14.对四组数据进行统计,获得如下散点图,将四组数据相应的相关系数进行比较,正确的是()A.2431r r r r <<< B.4231r r r r <<< C.4213r r r r <<< D.2413r r r r <<<15.已知函数()sin 2f x x π=,任取t ∈R ,记函数()f x 在[,1]t t +上的最大值为t M ,最小值为t m ,设()t t h t M m =-,则函数()h t 的值域为()A.212⎡⎤-⎢⎥⎣⎦B.221,122⎡-+⎢⎣⎦C.2122⎡-⎢⎣ D.22,122+⎣⎦16.已知曲线:1(0,)nnx yC n n a b+=>∈R .当4,2,1n a b ===时,①曲线C 所围成的封闭图形的面积小于8;②曲线C 上的点到原点O 的距离的最大值为1417.则()A.①成立②成立B.①成立②不成立C .①不成立②成立D.①不成立②不成立三、解答题(本大题共有5题满分78分)解下列各题必须在答题纸的相应位置写出必要的步骤.17.甲乙两人进行乒乓球比赛,现约定:谁先赢3局谁就赢得比赛,且比赛结束.若每局比赛甲获胜的概率为13,乙获胜的概率为23.(1)求甲赢得比赛的概率;(2)记比赛结束时的总局数为X ,写出X 的分布列,并求出X 的期望值.18.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,1PA AB BC PC ====,(1)求证:BC ⊥平面PAB ;(2)求二面角A PC B --的大小.19.已知函数()()cos2,sin f x x g x x ==.(1)判断函数()ππ42H x f x g x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的奇偶性,并说明理由;(2)设函数()()πsin 0,02h x x ωϕωϕ⎛⎫=+><<⎪⎝⎭,若函数π2h x ⎛⎫+ ⎪⎝⎭和()πh x -都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{}n a ,求{}n a 的通项公式.20.过坐标原点O 作圆22:(2)3C x y ++=的两条切线,设切点为,P Q ,直线PQ 恰为抛物2:2,(0)E y px p =>的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点,,,A B M N 满足:2,2TA TM TB TN ==,设AB 中点为D .(i )求直线TD 的斜率;(ii )设TAB △面积为S ,求S 的最大值.21.已知函数()()ln 1f x x =+,2()1(g x x bx b =++为常数),()()().h x f x g x =-(1)若函数()f x 在原点的切线与函数()g x 的图象也相切,求b ;(2)当2b =-时,[]12,0,1x x ∃∈,使12()()h x h x M -≥成立,求M 的最大值;(3)若函数()h x 的图象与x 轴有两个不同的交点12(,0),(,0)A x B x ,且120x x <<,证明:1202x x h +⎛⎫'⎪⎝⎭<华二附中高三期中数学试卷2023.11一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.不等式221x x -≥-的解集为___________.【答案】[)0,1【分析】根据移项,通分,将分式不等式化为()10x x -≤且1x ≠,即可求解.【详解】有已知得2201x x --≥-,()212011x x x x ---≥--,01x x -≥-,01x x ≤-,即()10x x -≤且1x ≠,则不等式的解集为[)0,1,故答案为:[)0,1.2.已知3,0,cos 225ππαα⎛⎫⎛⎫∈--=- ⎪ ⎪⎝⎭⎝⎭,则sin2α=________.【答案】2425-##0.96-【分析】先求得3sin 5α=-,4cos 5α=,再利用二倍角正弦公式即可求得sin 2α的值.【详解】因为π,02α⎛⎫∈-⎪⎝⎭,且5os 3si 2n παα⎛⎫-= ⎪=-⎝⎭,则4cos 5α=,则3424sin 22sin cos 25525ααα⎛⎫==⨯-⨯=-⎪⎝⎭故答案为:2425-.3.设252i1i iz +=++,则z =________.【答案】12i +##2i 1+【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故答案为:12i +.4.钝角ABC中,3,60a b A === ,则ABC 的面积是__________.【答案】334【分析】利用余弦定理与面积公式即可得【详解】由余弦定理得2222cos a b c bc A =+-,代入数据2793c c =+-,解得1c =或2c =,因为ABC 是钝角三角形,22222cos 022a c b c B ac ac+--==<,所以1c =,所以ABC 的面积是1sin 24bc A =.故答案为:45.圆2222210x y ax ay a a +++++-=的半径的最大值为______.【答案】3【分析】化为圆的标准方程求出半径,根据a 的范围利用抛物线的单调性可得答案.【详解】由2222210x y ax ay a a +++++-=可得()2223124a x y a a a ⎛⎫+++-⎝=-+ ⎪⎭,当23104a a --+>表示圆,即解得a 的取值范围是22,3⎛⎫- ⎪⎝⎭,=,2324433y a ⎛⎫=-++ ⎪⎝⎭是开口向下对称轴为23a =-的抛物线,在22,3⎛⎫-- ⎪⎝⎭单调递增,在22,33⎛⎫-⎪⎝⎭单调递减,所以23a =-时最大值为233.故答案为:233.6.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =_______.【答案】85-【分析】由题意知公比1q ≠,设首项为1a ,由6221S S =求出2q ,再代入4S 求出11a q-,由此求得8S .【详解】等比数列{}n a 中,45S =,6221S S =,显然公比1q ≠,设首项为1a ,则41(1)51a q q-=--①,6211(1)21(1)11a q a q q q --=--②,化简②得42200q q +-=,解得24q =或25q =-(不合题意,舍去),代入①得1113=-a q ,所以844118(1)1(1)(1)(15)(116)85113a q a S q q q q -==-+=⨯-⨯+=---.故答案为:85-7.已知a b 、满足21a b += ,且()1,1a =- ,则b 在a 上数量投影的最小值为________.【答案】12+-【分析】据题意设(,)b x y =,代入条件可推得点(,)x y 在以11(,)22-为圆心,半径为12的圆上运动,再根据数量投影概念得出数量投影与x y -有关,利用直线和圆的位置关系求得x y -的范围,进而求出数量投影最小值.【详解】设(,)b x y = ,则2(21,21)a b x y +=+-,由|2|1a b += ,可得22(21)(21)1x y ++-=,即22111()()224x y ++-=,所以点(,)x y 在以11(,)22-为圆心,半径为12的圆上,又b 在a上数量投影为a b a b b a a b⋅⋅⋅==,令x y t -=,则由直线0x y t --=与圆22111()()224x y ++-=有公共点,12≤,即12t +≤,解得222112112222t +---≤≤-+⇒-≤,故b 在a上数量投影的最小值为12+-.故答案为:122+-.8.正四面体ABCD 的棱长为2,则所有与A ,B ,C ,D 距离相等的平面截这个四面体所得截面的面积之和为______.3【分析】根据题意知,到正四面体ABCD 四个顶点距离相等的截面分为两类:一类是由同一顶点出发的三条棱的中点构成的三角形截面,这样的截面有4个;另一类是与一组相对的棱平行,且经过其它棱的中点的四边形截面,这样的截面有3个;求出所有满足条件的截面面积之和即可.【详解】设E 、F 、G 分别为AB 、AC 、AD 的中点,连结EF 、FG 、GE ,则EFG 是三棱锥A BCD -的中截面,可得平面//EFG 平面BCD ,点A 到平面EFG 的距离等于平面EFG 与平面BCD 之间的距离,A ∴、B 、C 、D 到平面EFG 的距离相等,即平面EFG 是到四面体ABCD 四个顶点距离相等的一个平面;正四面体ABCD 中,象EFG 这样的三角形截面共有4个.正四面体ABCD 的棱长为2,可得1EF FG GE ===,EFG ∴ 是边长为1的正三角形,可得13sin6024EFG S EF FG =⋅⋅=;取CD 、BC 的中点H 、I ,连结GH 、HI 、IE ,EI 、GH 分别是ABC 、ADC 的中位线,∴1//2EI AC ,1//2GH AC 得//EI GH ∴四边形EGHI 为平行四边形;又AC BD = 且AC BD ⊥,1//2EI AC ,1//2HI BD EI HI ∴=且EI HI ⊥,∴四边形EGHI 为正方形,其边长为112AB =,由此可得正方形EGHI 的面积1EGHI S =;BC 的中点I 在平面EGHI 内,B ∴、C 两点到平面EGHI 的距离相等;同理可得D 、C 两点到平面EGHI 的距离相等,且A 、B 两点到平面EGHI 的距离相等;A ∴、B 、C 、D 到平面EGHI 的距离相等,∴平面EGHI 是到四面体ABCD 四个顶点距离相等的一个平面,且正四面体ABCD 中,象四边形EGHI 这样的正方形截面共有3个,因此,所有满足条件的正四面体的截面面积之和等于34343134EFG EGHI S S +=⨯+⨯= .3.【点睛】本题主要考查了正四面体的性质、点到平面距离的定义、三角形面积与四边形形面积的求法等知识,属于难题.9.设n ∈N *,a n 为(x +4)n -(x +1)n 的展开式的各项系数之和,1222...555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([x ]表示不超过实数x 的最大整数),则()()222n n t b t -+-+(t ∈R )的最小值为____.【答案】12【分析】根据展开式求出系数和得52nnn a =-,求出22n n n b -=,将()()222n n t b t -+-+转化为点2,2n n n ⎛⎫- ⎪⎝⎭到(),2t t -的距离的平方,结合几何意义即可得解.【详解】a n 为(x +4)n -(x +1)n 的展开式的各项系数之和,即52n n n a =-,522155n n n n-⎛⎫=- ⎪⎝⎭,考虑()20,,2255nf n n n N n n *⎛⎫=>∈+< ⎪⎝⎭,()()()()12112151525n nn f n n f n nn +⎛⎫+ ⎪++⎝⎭==<⎛⎫⎪⎝⎭,所以()20,5nf n n n N *⎛⎫=>∈ ⎪⎝⎭递减,所以()220,55nf n n ⎛⎫⎛⎤=∈ ⎪ ⎥⎝⎭⎝⎦,所以2155n n n na n n n ⎡⎤⎡⎤⎛⎫=-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎢⎥⎣⎦,212...12n n n b n -=+++-=,()()()22222222n n n n t b t n t t ⎛⎫--+-+=-+-+ ⎪⎝⎭,可以看成点2,2n n n ⎛⎫- ⎪⎝⎭到(),2t t -的距离的平方,即求点2,2n nn⎛⎫-⎪⎝⎭到直线2y x=-的距离最小值的平方,由图可得即求点()1,0或()2,1到直线20x y+-=的距离的平方,即212=故答案为:12【点睛】此题考查求二项式系数,数列增减性与求和,通过几何意义转化求解代数式的最值,涉及转化与化归思想和数形结合思想.10.已知抛物线2(0)y ax a=>,在y轴正半轴上存在一点P,使过P的任意直线交抛物线于M N、,都有2211||||MP NP+为定值,则点P的坐标为________.【答案】10,2a⎛⎫⎪⎝⎭【分析】设直线MN的解析式为y kx m=+,联立方程组,利用一元二次方程根与系数的关系和两点间的距离公式,化简整理,即可得到点P的坐标.【详解】设(0,)P m.设直线MN的解析式为y kx m=+,联立2(0)y ax a=>得到:22ax kx m ax m kx=+-=,,整理,得20ax kx m--=,则1212,k mx x x xa a+==-设221122(,),(,),M x ax N x ax则()()222222222222111222()1,()1PM x m ax k x PN x m ax k x=+-=+=+-=+∴22122222212111||||1,x xMP NP k x x++=⨯+()2121222212211,x x x xk x x+-=⨯+222211k m a a k m a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⨯+⎛⎫- ⎪⎝⎭222121k am k m +=⨯+即存在12m a=时,222114||||a MP NP +=,即存在10,2P a ⎛⎫ ⎪⎝⎭,使得2211||||MP NP +为定值24a故答案为:10,2a ⎛⎫⎪⎝⎭.11.某学校有如图所示的一块荒地,其中60m AB =,40m AD =,45m BC =,π2DAB ∠=,2π3ABC ∠=,经规划以AB 为直径做一个半圆,在半圆外进行绿化,半圆内作为活动中心,在以AB 为直径的半圆弧上取,E F 两点,现规划在OEF 区域安装健身器材,在OBE △区域设置乒乓球场,若BOE EOF ∠=∠,且使四边形AOEF 的面积最大,则cos EOF ∠=______.【答案】3318-【分析】设O BOE E F θ∠∠==,先求得四边形OEFA面积的表达式,然后利用导数求得当1cos 8θ-=时,四边形AOEF 的面积最大.【详解】设O BOE E F θ∠∠==,根据题意易知π0,2θ⎛⎫∈ ⎪⎝⎭,∵OF OA =,OAF △为等腰三角形,且OFA OAF ∠=∠,又∵BOF OFA OAF ∠=∠+∠,∴EOF OFA OAF θ∠=∠=∠=,∴//OE FA ,∴四边形OEFA 为梯形,则四边形OEFA 面积:()()13030sin π2sin 450sin sin 22S θθθθ⎡⎤=⨯⨯⨯-+=+⎣⎦,π0,2θ⎛⎫∈ ⎪⎝⎭,则()()2450cos 2cos 24504cos cos 2S θθθθ=+=+-',π0,2θ⎛⎫∈ ⎪⎝⎭,令0S '=,则24cos cos 20θθ+-=,解得331cos 8θ=(舍)或331cos 8θ-=,设为φ为1cos 8θ-=所对应的角,∵cos y θ=在π0,2θ⎛⎫∈ ⎪⎝⎭上单调递减,∴()0,θϕ∈时,331cos ,18θ⎛⎫-∈ ⎪⎪⎝⎭,()24504cos cos 20S θθ'=+->,S 单调递增,∴π,2θϕ⎛⎫∈ ⎪⎝⎭时,331cos 0,8θ⎛⎫∈ ⎪ ⎪⎝⎭,()24504cos cos 20S θθ'=+-<,S 单调递减.∴当331cos 8θ-=时,面积最大,即331cos 8EOF -∠=.故答案为:3318.【点睛】方法点睛:求解面积最大值或最小值有关问题,可先将面积的表达式求出,然后根据表达式选取合适的方法来求最值.可以考虑的方向有函数的单调性、二次函数的性质、基本不等式、三角函数值域、导数等知识.12.M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则M ∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为________.【答案】202221-【分析】根据题意,先判断M 中相邻两数不可能大于等于2,可得2,3,⋯,2021M ∈,从而求出M ,再根据子集的个数与集合元素个数之间的关系即可得答案.【详解】由题意可知:若x ,()y M x y ∈<,则1x +,2x +,⋯,1y -均属于M ,而事实上,若2y x -≥,中12x yx y ++≤<<,所以11x y +≤≤-,故[x ,]y 中有正整数,从而M 中相邻两数不可能大于等于2,故2,3,⋯,2021M ∈,若2024p ≥,p M ∈,则有2023M ∈,与2023M ∉矛盾,当2022a b ==2022=,当1a b ==时,则1=,所以[1∈,2022],所以{1M =,2,⋯,2022},所以非空子集有202221-个.故答案为:202221-.【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知集合{3,2,0,1,2,3,7},{,}A B xx A x A =--=∈-∉∣,则B =()A.{0,1,7}B.{1,7}C.{0,2,3}D.{0,1,2,3,7}【答案】B【分析】根据集合的描述法及元素与集合的关系求解.【详解】因为{3,2,0,1,2,3,7}A =--,{,}B xx A x A =∈-∉∣,所以{1,7}B =.故选:B.14.对四组数据进行统计,获得如下散点图,将四组数据相应的相关系数进行比较,正确的是()A.2431r r r r <<<B.4231r r r r <<<C.4213r r r r <<<D.2413r r r r <<<【答案】A【分析】根据题目给出的散点图,先判断是正相关还是负相关,然后根据点的集中程度分析相关系数的大小.【详解】由给出的四组数据的散点图可以看出,图1和图3是正相关,相关系数大于0,图2和图4是负相关,相关系数小于0,图1和图2的点相对更加集中,所以相关性要强,所以1r 接近于1,2r 接近于1-,由此可得24310r r r r <<<<.故选:A.15.已知函数()sin 2f x x π=,任取t ∈R ,记函数()f x 在[,1]t t +上的最大值为t M ,最小值为t m ,设()t t h t M m =-,则函数()h t 的值域为()A.212⎡⎤-⎢⎥⎣⎦ B.221,122⎡-+⎢⎣⎦C.12⎡-⎢⎣⎦D.,122+⎣⎦【答案】C【分析】考虑一个周期内()h t 的情况,根据t 的取值,求得()h t 的解析式,结合三角函数的值域,求该函数值域即可.【详解】因为()444t t h t M m +++=-,其中44,t t M m ++分别是指()f x 在区间[]4,5t t ++上的最大值和最小值,因为()f x 的周期242T ππ==,故()f x 在区间[]4,5t t ++的图象与在区间[],1t t +上的图象完全相同,故44,t t t t M M m m ++==,故()()4h t h t +=,即()h t 是周期为4的函数,故(),R h t t ∈的值域与()[],2,2h t t ∈-时的值域相同;又()f x 在[]2,1--单调递减,[]1,1-单调递增,在[]1,2单调递减,故当32,2t ⎡⎫∈--⎪⎢⎣⎭时,()f x 在区间[],1t t +上的最大值为()sin 2f t t π=,最小值为1-,此时()sin 12h t t π=+;当3,12t ⎡⎫∈--⎪⎢⎣⎭时,()f x 在区间[],1t t +上的最大值为()1sin cos 222f t t t πππ⎛⎫+=+= ⎪⎝⎭,最小值为1-,此时()cos12h t t π=+;当[)1,0t ∈-时,()f x 在区间[],1t t +上的最大值为()1cos2f t t π+=,最小值为()sin 2f t t π=,此时()cossin 22h t t t ππ=-24t ππ⎛⎫=- ⎪⎝⎭;当10,2t ⎡⎫∈⎪⎢⎣⎭时,()f x 在区间[],1t t +上的最大值为1,最小值为()sin 2f t t π=,此时()1sin 2h t t π=-;当1,12t ⎡⎫∈⎪⎢⎣⎭时,()f x 在区间[],1t t +上的最大值为1,最小值为()1cos 2f t t π+=,此时()1cos 2h t t π=-;当[]1,2t ∈时,()f x 在区间[],1t t +上的最大值为()sin2f t t π=,最小值为()1cos 2f t t π+=,此时()sincos 22h t t t ππ=-24t ππ⎛⎫=- ⎪⎝⎭;故()h t 在[]22-,的函数图象如下所示:数形结合可知,()h t 的值域为212⎡-⎢⎣.故选:C.【点睛】关键点点睛:本题考查函数值域的求解,涉及三角函数值域的求解;处理问题的关键是能够根据题意,找到()h t 的周期,同时要对t 进行分类讨论求()h t 的解析式,属综合困难题.16.已知曲线:1(0,)n nx yC n n a b+=>∈R .当4,2,1n a b ===时,①曲线C 所围成的封闭图形的面积小于8;②曲线C 上的点到原点O 的距离的最大值为1417.则()A.①成立②成立B.①成立②不成立C.①不成立②成立D.①不成立②不成立【答案】A【分析】根据曲线在一个长为4,宽为2的矩形内部判断①正确,利用三角换元计算得到②正确,【详解】因为曲线:1(0,)n nx yC n n a b+=>∈R .所以,当4,2,1n a b ===时,曲线44:116xC y +=,对①:因为44121162x y x ≤⇒-≤-≤=,当且仅当0y =时取等号,44611111x y y -⇒-=≤≤≤,当且仅当0x =时取等号,故曲线在一个长为4,宽为2的矩形内部,故曲线C 所围成的封闭图形的面积小于248⨯=,正确;对②:设曲线上一点为(,)M x y ,则44116x y +=,设224cos sin x y θθ⎧=⎨=⎩,M 到原点的距离的平方为224cos sin )x y θθθϕ+=+=+,[0,2πθ∈,tan 4ϕ=,当sin()1θϕ+=时,距离平方有最大值为,故距离的最大值为1417,正确.故选:A .三、解答题(本大题共有5题满分78分)解下列各题必须在答题纸的相应位置写出必要的步骤.17.甲乙两人进行乒乓球比赛,现约定:谁先赢3局谁就赢得比赛,且比赛结束.若每局比赛甲获胜的概率为13,乙获胜的概率为23.(1)求甲赢得比赛的概率;(2)记比赛结束时的总局数为X ,写出X 的分布列,并求出X 的期望值.【答案】(1)1781(2)分布列见详解,()10727E X =.【分析】(1)根据题意,求出甲胜共进行3局,4局,5局的概率,再利用互斥事件的概率公式求解;(2)X 的可能值为3,4,5,分别求出每种情况的概率,按照步骤求分布列即可.【小问1详解】比赛采用5局3胜,甲赢得比赛有以下3种情况:①甲连赢3局:3111327P ⎛⎫== ⎪⎝⎭;②前3局2胜1负,第4局甲赢:22231212C 33327P 骣骣骣琪琪琪==琪琪琪桫桫桫;③前4局甲2胜2负,第5局甲赢:222341218C 33381P 骣骣骣琪琪琪==琪琪琪桫桫桫,所以甲赢得比赛的概率为1231781P P P ++=.【小问2详解】X 可以取3,4,5所以()331213333P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()22241285C 3327P X 骣骣琪琪===琪琪桫桫,()18104132727P X ==--=,由此可得X 的分布列为:X345P131027827所以()11081073453272727E X =⨯+⨯+⨯=.18.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,1PA AB BC PC ====,(1)求证:BC ⊥平面PAB ;(2)求二面角A PC B --的大小.【答案】(1)证明见解析(2)π3【分析】(1)先由线面垂直的性质证得PA BC ⊥,再利用勾股定理证得BC PB ⊥,从而利用线面垂直的判定定理即可得证;(2)结合(1)中结论,建立空间直角坐标系,分别求得平面PAC 与平面PBC 的法向量,再利用空间向量夹角余弦的坐标表示即可得解.【小问1详解】因为PA ⊥平面,ABC BC ⊂平面ABC ,所以PA BC ⊥,同理PA AB ⊥,所以PAB 为直角三角形,又因为PB ==1,BC PC ==所以222PB BC PC +=,则PBC 为直角三角形,故BC PB ⊥,又因为BCPA ⊥,PA PB P = ,所以BC ⊥平面PAB .【小问2详解】由(1)BC ⊥平面PAB ,又AB ⊂平面PAB ,则BC AB ⊥,以A 为原点,AB 为x 轴,过A 且与BC 平行的直线为y 轴,AP 为z轴,建立空间直角坐标系,如图,则(0,0,0),(0,0,1),(1,1,0),(1,0,0)A P C B ,所以(0,0,1),(1,1,0),(0,1,0),(1,1,1)AP AC BC PC ====-,设平面PAC 的法向量为()111,,m x y z = ,则0m AP m AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1110,0,z x y =⎧⎨+=⎩令11x =,则11y =-,所以(1,1,0)m =-,设平面PBC 的法向量为()222,,x n y z = ,则0n BC n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222200y x y z =⎧⎨+-=⎩,令21x =,则21z =,所以(1,0,1)n =,所以1cos ,2m n m n m n⋅===,又因为二面角A PC B --为锐二面角,所以二面角A PC B --的大小为π3.19.已知函数()()cos2,sin f x x g x x ==.(1)判断函数()ππ42H x f x g x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的奇偶性,并说明理由;(2)设函数()()πsin 0,02h x x ωϕωϕ⎛⎫=+><<⎪⎝⎭,若函数π2h x ⎛⎫+ ⎪⎝⎭和()πh x -都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{}n a ,求{}n a 的通项公式.【答案】19.非奇非偶函数,理由见解析20.*2N 3n a n n =∈,【分析】(1)函数()sin 2cos H x x x =-+,为非奇非偶函数.运用奇偶性的定义即可得到;(2)由奇函数和诱导公式可得ππ2k ωϕ+=,()ππ,Z l k l ϕω-=∈,解得2()3k l ω=-,即可得到所求通项公式【小问1详解】函数()ππππcos 2sin 4222H x f x g x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin 2cos x x =-+,为非奇非偶函数.理由:定义域为R ,()sin 2()cos()sin 2cos ()H x x x x x H x -=--+-=+≠,且()()H x H x -≠-,即有()H x 为非奇非偶函数;【小问2详解】函数π2h x ⎛⎫+⎪⎝⎭和()πh x -都是奇函数,即有πsin 2x ωωϕ⎛⎫++ ⎪⎝⎭和()sin πx ωϕω+-均为奇函数,则ππ2k ωϕ+=,()ππ,Z l k l ϕω-=∈,解得2()3k l ω=-,由于0ω>,k ,Z l ∈,则*2N 3n n ω=∈,.故数列{}n a 的通项公式为*2N 3n a n n =∈,20.过坐标原点O 作圆22:(2)3C x y ++=的两条切线,设切点为,P Q ,直线PQ 恰为抛物2:2,(0)E y px p =>的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点,,,A B M N 满足:2,2TA TM TB TN ==,设AB 中点为D .(i )求直线TD 的斜率;(ii )设TAB △面积为S ,求S 的最大值.【答案】(1)22y x =(2)(i )0;(ii )48【分析】(1)设直线PQ 与x 轴交于0,02p P ⎛⎫-⎪⎝⎭,由几何性质易得:20CP CP CO =⋅,即可解决;(2)设()()()001122,,,,,T x y A x y B x y ,(i )中,由于TA 中点M 在抛物线E 上,得20101222y y x x ++⎛⎫=⋅ ⎪⎝⎭,将()()1122,,,A x y B x y ,代入联立得D 点纵坐标为1202y y y +=,即可解决;(ⅱ)由(i )得点200034,2y x D y ⎛⎫- ⎪⎝⎭,1213222S TD y y =⋅-=,又点T 在圆C 上,得2200041y x x =---,可得:322S =即可解决.【小问1详解】设直线PQ 与x 轴交于0,02p P ⎛⎫-⎪⎝⎭.由几何性质易得:0CPP 与OCP △相似,所以CP CO CP CP=,20CP CP CO =⋅,即:3222p ⎛⎫-⎝+⎪⎭=⋅,解得:1p =.所以抛物线E 的标准方程为:22y x =.【小问2详解】设()()()001122,,,,,T x y A x y B x y (i )由题意,TA 中点M 在抛物线E 上,即20101222y y x x ++⎛⎫=⋅ ⎪⎝⎭,又2112y x =,将2112y x =代入,得:2210100240y y y x y -+-=,同理:2220200240y y y x y -+-=,有1202120024y y y y y x y +=⎧⎨=-⎩,此时D 点纵坐标为1202y y y +=,所以直线TD 的斜率为0.(ⅱ)因为()222212120012122342442y y y y y x x x y y +--++===,所以点200034,2y x D y ⎛⎫- ⎪⎝⎭,此时1212S TD y y =⋅-,2200000343222y x TD x y x -=-=-,12y y -=所以322S =又因为点T 在圆C 上,有()220023x y ++=,即2200041y x x =---,代入上式可得:323222S ==由022x -≤-≤+,所以03x =-时,S取到最大价32482=.所以S 的最大值为48.21.已知函数()()ln 1f x x =+,2()1(g x x bx b =++为常数),()()().h x f x g x =-(1)若函数()f x 在原点的切线与函数()g x 的图象也相切,求b ;(2)当2b =-时,[]12,0,1x x ∃∈,使12()()h x h x M -≥成立,求M 的最大值;(3)若函数()h x 的图象与x 轴有两个不同的交点12(,0),(,0)A x B x ,且120x x <<,证明:1202x x h +⎛⎫'⎪⎝⎭<【答案】(1)3b =或1-;(2)ln 21+;(3)证明过程见解析.【分析】(1)计算()f x 在原点的切线方程,然后与()g x 联立,利用Δ0=,计算即可.(2)求得()h x ',判断函数()h x 单调性,根据条件等价于()()max min h x h x M -≥,简单计算即可.(3)利用()()1200h x h x ⎧=⎪⎨=⎪⎩,求得()()211221ln 1ln 1x x x x b x x +-+++=-,然后计算122x x h +⎛⎫' ⎪⎝⎭,并利用等价条件可得()21221121ln 021x x x x x x -+-<+++,构建新函数并采取换元2111x t x +=+,求导计算即可.【小问1详解】由()11f x x '=+,所以()()01,00f f ='=,所以函数()f x 在原点的切线方程为:y x =,将该切线方程代入()g x 可得:()2110x b x +-+=,依据题意可得()21403b b ∆=--=⇒=或1-,所以3b =或1-;【小问2详解】当2b =-时,()2()ln 121h x x x x =+-+-,()21322211x h x x x x -=-+='++,当[]0,1x ∈时,()0h x '>,所以()h x 在[]0,1单调递增,则()()()()max min 1ln 2,01h x h h x h ====-,由题可知:[]12,0,1x x ∃∈使得()()12h x h x M -≥成立等价于()()max min h x h x M -≥,所以ln 21M ≤+,所以M 的最大值为ln 21+;【小问3详解】由题可知:()()()()2111122222ln 110ln 110h x x x bx h x x x bx ⎧=+---=⎪⎨=+---=⎪⎩,所以两式相减可得:()()211221ln 1ln 1x x x x b x x +-+++=-,由1()21h x x b x '=--+,所以()121212222x x h x x b x x +⎛⎫'=-++ ⎪++⎝⎭,所以()()21121221ln 1ln 1222x x x x h x x x x +-++⎛⎫'=- ⎪++-⎝⎭,由120x x <<,要证1202+⎛⎫'< ⎪⎝⎭x x h ,即证()21221121ln 021x x x x x x -+-<+++,即()()()()2122112111ln 0111x x x x x x +-+⎡⎤+⎣⎦-<++++,令()21111x t t x +=>+,所以即证明:22ln 01t t t --<+,令()()22ln 11t m t t t t -=->+,所以()()()2211t m t t t '--=+,当1t >时,()0m t '<,所以()m t 在()1,+∞单调递减,所以()()10m t m <=,所以1202+⎛⎫'< ⎪⎝⎭x x h .【点睛】关键点睛:第(1)问关键在于求得切线方程;第(2)问在于使用等价转化()()max min h x h x M -≥;第(3)问在于化简得到()()211221ln 1ln 1x x x x b x x +-+++=-,然后进行换元计算.。
上海市华东师范大学二附中2025届高三第二次模拟考试数学试卷含解析
上海市华东师范大学二附中2025届高三第二次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =( )A .()1,3-B .[]1,3-C .[]1,4-D .()1,4-2.已知函数2()sin 3sincos444f x x x x πππ=-,则(1)(2)...(2020)f f f +++的值等于( )A .2018B .1009C .1010D .20203.设集合A ={y |y =2x ﹣1,x ∈R },B ={x |﹣2≤x ≤3,x ∈Z },则A ∩B =( ) A .(﹣1,3]B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}4.已知函数()()sin f x A x =+ωϕ(π0,0,2A >><ωϕ)的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )A .π12B .π6 C .π3D .5π125.若[]1,6a ∈,则函数2x ay x+=在区间[)2,+∞内单调递增的概率是( )A .45 B .35 C .25 D .156.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A .72种B .36种C .24种D .18种7.把函数()sin 2(0)6f x A x A π⎛⎫=-≠ ⎪⎝⎭的图象向右平移4π个单位长度,得到函数()g x 的图象,若函数()()0g x m m ->是偶函数,则实数m 的最小值是( )A .512πB .56π C .6π D .12π8.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =± B .2y x =±C .y x =±D .2y x =±9.设a=log 73,13b log 7=,c=30.7,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b c a <<D .b a c <<10.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞11.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-12.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
2024届上海市华东师范大学第二附属中学高三下学期第一次联考数学试题试卷
2024届上海市华东师范大学第二附属中学高三下学期第一次联考数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( ) A .3 B .10C .23D .52.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .3.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=4.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若()22cos cos b A a B c +=,3b =,3cos 1A =,则a =( ) A 5B .3C 10D .45.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( )A .(,0)(0,1)-∞B .(,0)(1,)-∞⋃+∞C .(,0)-∞D .(0,1)(1,)⋃+∞6.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .147.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( ) A .若//m α,//n α,则//m n B .若//m α,n ⊂α,则//m n C .若m n ⊥,m α⊥,则//n αD .若m α⊥,//n α,则m n ⊥8.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( ) A .69人B .84人C .108人D .115人9.在ABC ∆中,D 在边AC 上满足13AD DC =,E 为BD 的中点,则CE =( ). A .7388BA BC - B .3788BA BC - C .3788BA BC + D .7388BA BC +10.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .511.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙12.已知双曲线2221x y a -=的一条渐近线方程是33y x =,则双曲线的离心率为( )A .33B .63C .32D .233二、填空题:本题共4小题,每小题5分,共20分。
上海市华东师范大学第二附属中学2024-2025学年高三上学期10月月考数学试题(含解析)
2025届华二附中高三10月月考数学试卷一、填空题1.若集合,则__________.2.已知复数,则__________.3.展开式中的系数为60,则实数__________.4.己知是单调递增的等比数列,,则公比q 的值是__________.5.已知,则_________.6.已知函数,若在定义域内为增函数,则实数p 的最小值为__________.7.己知双曲线,左,右焦点分别为,关于C 的一条渐近线的对称点为P .若,则的面积为__________.8.己知,则的最小值为__________.9.已知函数是上的奇函数,则__________.10.对平面直角坐标系中两个点和,记,称,为点与点之间的“距离”,其中表示p ,q 中较大者.设是平面中一定点,.我们把平面上到点的“距离”为r 的所有点构成的集合叫做以点为圆心,以r 为半径的“圆”.以原点O 为圆心,以为半径的“圆”的面积为__________.11.长江流域水库群的修建和联合调度,极大地降低了洪涝灾害风险,发挥了重要的防洪减灾效益.每年洪水来临之际,为保证防洪需要、降低防洪风险,水利部门需要在原有蓄水量的基础上联合调度,统一蓄水,用蓄满指数(蓄满指数)来衡量每座水库的水位情况.假设某次联合调度要求如下:{23},{(4)(2)0}A xx B x x x =<<=+->∣∣A B = 1i z =+|2i |z -=5a x x ⎛⎫+ ⎪⎝⎭3x a ={}n a 453824,128a a a a +==π3sin 35α⎛⎫+= ⎪⎝⎭πsin 26α⎛⎫+= ⎪⎝⎭()2ln p f x px x x=--()f x 2222:1(0,0)x y C a b a b-=>>12F F 2F 12PF =12PF F △0,0,23x y x y >>+=23x y xy+tan tan()()12tan()x f x x θθθ-+=-+ππ,20242024⎡⎤-⎢⎥⎣⎦tan θ=()111,P x y ()222,P x y 1212121212max ,11x x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12PP 1P 2P t -max{,}p q ()000,P x y 0r >0P t -0P t -12t -100=⨯水库实际蓄水里水库总蓄水里(i )调度后每座水库的蓄满指数仍属于区间;(ii )调度后每座水库的蓄满指数都不能降低;(iii )调度前后,各水库之间的蓄满指数排名不变记x 为调度前某水库的蓄满指数,y 为调度后该水库的蓄满指数,给出下面四个y 关于x 的函数解析式:①;②;③;④.则满足此次联合调度要求的函数解析式的序号是__________.12.将棱长为1的正方体的上底面绕着其中心旋转得到一个十面体(如图),则该十面体的体积为__________.二、单选题13.“”是“对任意的正整数x ,均有的( )A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件14.己知随机变量服从正态分布,且,则等于( )A .0.8B .0.6C .0.4D .0.315.已知函数不是常数函数,且满足对于任意的,,则( )A .B .一定为周期函数C .不可能为奇函数D .存在16.如图,将线段AB ,CD 用一条连续不间断的曲线连接在一起,需满足要求:曲线经过点B ,C ,并且在点B ,C 处的切线分别为直线AB ,CD ,那么下列说法正确的是( )命题甲:存在曲线满足要求命题乙:若曲线和满足要求,则对任意实数,当时,曲线满足要求[0,100]21620y x x =-+y =5010x y =π100sin 200y x =1111ABCD A B C D -1111A B C D 45︒ABCD EFGH -1a =2a x x+≥ξ()22,N σ(0)0.2P ξ≤=(24)P ξ<≤()f x ,R a b ∈()()2()()f a b f a b f a f b ++-=(0)0f =()f x ()f x ()00R,2x f x ∈=-()y f x =()y f x =sin cos (,,)2ax bx y c a b c +=+∈R 1()y f x =2()y f x =,λμ1λμ+=12()()y f x f x λμ=+A .甲命题正确,乙命题正确B .甲命题错误,乙命题正确C .甲命题正确,乙命题错误D .甲命题错误,乙命题错误三、解答题17.如图,在正三棱柱中,分别是的中点,的边长为2.(1)求证:平面;(2)若三棱柱的高为1,求二面角的正弦值.18.放行准点率是衡量机场运行效率和服务质量的重要指标之一.己知2023年该机场飞往A 地,B 地及其他地区(不包含A ,B 两地)航班放行准点率的估计值分别为和、2023年该机场飞往A 地,B 地及其他地区的航班比例分别为0.2,0.2和0.6试解决一下问题:(1)现在从2023年在该机场起飞的航班中随机抽取一个,求该航班准点放行的概率;(2)若2023年某航班在该机场准点放行,判断该航班飞往A 地、B 地、其他地区等三种情况中的哪种情况的可能性最大,说明你的理由.19.在中,,内有一点M ,且.(1)若,求的面积;(2)若,求BM 的长.20.己知圆,直线过点且与圆交于点B ,C ,BC 中点为D ,过中点E 且平行于的直线交于点P ,记P 的轨迹为(1)当到直线时,求直线方程;(2)求的方程;(3)坐标原点O 关于的对称点分别为,点关于直线的对称点分别为,过的直线与交于点M ,N ,直线相交于点Q ,求的面积.111ABC A B C -1,,D D F 1111,,BC B C A B 4,BC BE ABC = △EF ∥11ADD A 1B EF C --84%80%,75%84%,ABC △π10,3BC ABC =∠=ABC △2,π3BM CM AMB ⊥∠=BM =ABC △14AC =221:(1)16A x y ++=1l 2(1,0)A 1A 2A C 1A D 1AC Γ1A 1l 1l Γ12,A A 12,B B 12,A A y x =12,C C 1A 2l Γ12,B M B N 12QC C △21.对于函数,定义域R ,为若存在实数,使,其中,则称为“倒数函数”,为“的倒数点”.己知.(1)如果对成立.求证:为周期函数;(2为“关于倒数点”,且只有两个不同的解,求函数m 的值;(3)设,若函数恰有3个“可移1倒数点”,求a 的取值范围.()f x 0x ()()001f x f x λ+=0λ≠()f x 0x ()f x λ()e ,()(0)x g x h x x a a ==+>()(1)1f x f x +=x R ∈()h x 2-2()()m h x g x =(),0()1,0()g x x x x h x ω>⎧⎪=⎨<⎪⎩()x ω2025届华二附中高三10月月考数学试卷参考答案一、填空题1.【答案】2.3.【答案】12【解析】展开式的通项为,令,则,所以展开式中的系数为,解得.4.【答案】2【解析】由等比数列性质知,联立,解得或,因为是单调递增的等比数列,所以,即.5.【答案】6.【答案】1【解析】函数.要使在定义域内为增函数,只需在上恒成立即可,即在上恒成立,即在上恒成立.,当且仅当,即时等号成立,,即实数p 的最小值为1.7.【答案】4{23}xx <<∣5a x x ⎛⎫+ ⎪⎝⎭552155C C kk k k k k k a T x a x x --+⎛⎫== ⎪⎝⎭523k -=1k =5ax x ⎛⎫+ ⎪⎝⎭3x 15C 60a =12a =3645a a a a =454524128a a a a +=⎧⎨=⎩45816a a =⎧⎨=⎩45168a a =⎧⎨=⎩{}n a 45816a a =⎧⎨=⎩542a q a ==725- 22222()2ln ,(0,),()p p px x p f x px x x f x p x x x x-+'=--∈+∞=+-=()f x (0,)+∞()0f x '≥(0,)+∞220px x p -+≥(0,)+∞221x p x ≥+(0,)+∞222111x x x x =≤=++ 1x x =1x =1p ∴≥【解析】设与渐近线交于M ,则,所以,由O ,M 分别与的中点,知且,即,由,所以.8.【答案】【解析】9.【答案】【解析】2PF b y x a=222,tan ,sin b b F M OM MOF MOF a c⊥∠=∠=222sin ,F M OF MOF b OM a =⋅∠===12F F 2PF 1OM PF ∥1112OM PF ==1a =e =2c b ==1221442142PF F OMF S S ==⨯⨯⨯=△△1+223(2)211x y x x y y x y xy xy y x+++==++≥+2-tan tan()()12tan()x f x x θθθ-+=-+tan tan tan 1tan tan tan tan 121tan tan x x x x θθθθθ+--=+-⨯-tan (1tan tan )(tan tan )1tan tan 2(tan tan )x x x x θθθθθ--+=--+()2tan 1tan 12tan (tan 2)tan xxθθθ-+=--+上的奇函数,又上的奇函数.10.【答案】4【解析】设是以原点O为圆心,以为半径的圆上任一点,则.若,则;若,则有.由此可知,以原点O 为圆心,以为半径的“圆”的图形如下所示:则“圆”的面积为.11.【答案】②④【解析】①,该函数在时函数值为180,超过了范围,不合题意;②为严格增函数,且,则,符合题意;③,当时,不合题意④,当时,,故该函数在上严格递增,又ππ(),20242024f x ⎡⎤-⎢⎥⎣⎦()2tan 1tan y x θ=-+⋅tan 20,tan 2θθ∴+=∴=-(,)P x y 12t -||||1max ,1||1||2x y x y ⎧⎫=⎨⎬++⎩⎭||||11||1||2y x y x ≤=++||1||1x y =⎧⎨≤⎩||||11||1||2x y x y ≤=++||1||1y x =⎧⎨≤⎩12t -t -224⨯=()2221116120(60)180202020y x x x x x =-+=--=--+60x =y =[0,100],[0,100]x y ∈∈10≤x ≤5010xy =50x =50101050x=<π100sin 200y x =[0,100]x ∈ππ0,2002x ⎡⎤∈⎢⎥⎣⎦[0,100]π100sin[0,100]200y x =∈设即即,易知在上为严格减函数令,则存在,有当;当;故在严格递增,在严格递减.故上即上,故④符合题意12.【解析】如图作出原正方体,与HE ,EF 的交点分别为M ,N ,HE 与的交点为P ,上底面非重叠部分是8个全等的等腰直角三角形,设每个等腰直角三角形的边长为a ,则,所以,π()100sin ,[0,100]200g x x xx =-∈ππ()100cos 1,[0,100]200200g x x x '=⋅⋅-∈ππ()cos 12200g x x '=⋅-ππ()cos 12200g x x =⋅-[0,100]()0g x '=0[0,100]x ∈()0g x '=[]00,,()0x x g x '∈>[]0,100,()0x x g x '∈<()g x []00,x []0,100x (0)0,(100)0g g ==[0,100]()0g x ≥[0,100]π100sin 200x x ≥1111ABCD A B C D -11A B 11A D 21a =a =所以,设该十面体的体积为V ,二、单选题13.【答案】A【解析】对任意的正整数x ,均有,所以,当时,取最大值1,所以.因为时,一定成立;时,不一定成立.所以“”是“对任意的正整数x ,均有”的充分不必要条件.14.【答案】B【解析】因为服从正态分布,且,所以,所以15.【答案】C【解析】由题意,函数满足对于任意的,令,解得或.若,令,则,故,与题设不为常数函数矛盾,所以A 错误;所以,此时令,得,即,所以必然为偶函数,所以C 正确;||1MN ==-1111144ABCD A B D A MP E ABNMC V V V V --=-+11111144||332A MP ABNM S A A S MN =-⨯⨯⨯+⨯⨯⨯△四边形211114141323=-⨯⨯⨯⨯+⨯⨯⨯=2a x x +≥222,2x a x a x x +≥∴≥-+1x =22x x -+1a ≥1a =1a ≥1a ≥1a =1a =2a x x +≥ξ()22,N σ(0)0.2P ξ≤=(4)0.2P ξ>=11(24)[12(0)](120.2)0.322P P ξξ<≤=-≤=⨯-⨯=()f x ,R,()()2()()a b f a b f a b f a f b ∈++-=0a b ==(0)0f =(0)1f =(0)0f =,0a x b ==()()0f x f x +=R,()0x f x ∀∈=(0)1f =0,a b x ==()()2()f x f x f x +-=()()f x f x -=()f x再令,则,所以D 错误;例如,函数符合题意,此时函数在上严格递增,且不为周期函数,所以B 错误.故选:C .16.【答案】B【解析】由图知点,所以直线AB 的方程为,直线CD 的方程为,所以,对于命题甲:曲线的导函数为,当时,,当时,,代入得,即,又由,得,方程组中a ,b 不可解,故命题甲不正确;对于命题乙:当时,有,即,故当时,曲线满足要求,故命题乙正确,综上,故选B三、解答题17.【答案】(1)见解析;(2)2x a b ==2()2112x f x f ⎛⎫=-≥- ⎪⎝⎭e e ()2x xf x -+=()f x (0,)+∞(0,4),(1,3),(2,1),(4,0)A B C D 4y x =-+122y x =-+11,2AB CD k k =-=-sin cos (,,)2ax bx y c a b c +=+∈R 1(cos sin )2y a ax b bx '=-1x =1y =-2x =12y =-1(cos sin )2y a ax b bx '=-1( c o s s i n )1211( c o s 2 s i n 2)22a ab b a a b b ⎧-=-⎪⎪⎨⎪-=-⎪⎩cos sin 2cos 2sin 21a a b b a a b b -=-⎧⎨-=-⎩sin cos 32sin 2cos 212a b c a b c +⎧+=⎪⎪⎨+⎪+=⎪⎩(sin cos )(sin 2cos 2)4a b a b +-+=1λμ+=121122(1)(1)()11111(2)(2)()2222x x y f f y f f λμλμλμλμλμλμ=='''⎧=+=--=-+=-⎪⎨'''=+=--=-+=-⎪⎩12112x x y y =='⎧=-⎪⎨'=-⎪⎩1λμ+=12()()y f x f x λμ=+25【解析】(1)证明:取的中点G ,连接FG ,DG ,根据题意可得,且,由三棱柱得性质知,所以,则四边形DGEF 是平行四边形,所以,因为面,面,所以面.(2)因为是等边三角形,且边长为2,所以,因为三棱柱的高为1,以D 为坐标原点,的方向分别为x 轴,y 轴,z 轴建立空间直角坐标系:所以,所以,设平面BEF的法向量11A D 11FG B D ∥1111,22FG B D DE BD ==11BD B D ∥FG BD ∥EF DG ∥EF ⊄11ADD A DG ⊂11ADD A EF ∥11ADD A ABC △AD BC ⊥1,,DB AD DD111,0,0,,,(1,0,0),(1,0,1)22E F B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭113,0,0,0,,,0,122BE EF EC ⎛⎫⎛⎫⎛⎫=-==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111,,m x y z =则,令,所以,设平面的一个法向量为,所以,令,则,所以,设二面角为,所以,所以,所以二面角的正弦值为.18.【解析】(1)设"该航班飞往A 地", "该航班飞往B 地", "该航班飞往其他地区","该航班准点放行",则,由全概率公式得,,所以该航班准点放行的概率为0.778(2)(2),11111110020x m BE x z y m EF y z ⎧=⋅=-=⎧⎪⎪⎪⇒⎨⎨=⎪⎪⋅=+=⎩⎪⎩ 1y =113,02z x ==32m ⎛⎫= ⎪⎝⎭1C EF ()222,,n x y z =122222222330220n EC x z z x n EF y z z y ⎧⎧⋅=-+==⎪⎪⎪⎪⇒⎨⎨⎪⎪⋅=+==⎪⎪⎩⎩22y =22x z ==n = 1B EF C --([0,π])θθ∈|||cos |||||m n m n θ⋅= 2sin 5θ==1B EF C --251A =2A =3A =C =()()()1230.2,0.2,0.6P A P A P A ===()()()1230.84,0.8,0.75P C A P C A P C A ===∣∣∣()()()()()()112232()P C P A P C A P A P C A P A P C A =++∣∣∣0.840.20.80.20.750.60.778=⨯+⨯+⨯=()()()()11110.20.84()()0.778P A P C A P A C P A C P C P C ⨯===∣∣因为,所以可判断该航班飞往其他地区的可能性最大.19.【答案】(1;(2【解析】(1)在直角中,,可得,因为,则在中,,则,所以,解得,则(2)在中,,即,即,解得或(舍去),设,则,()()()()22220.20.8()()0.778P A P C A P A C P A C P C P C ⨯===∣∣()()()()33330.60.75()()0.778P A P C A P A C P A C P C P C ⨯===∣∣0.60.750.20.840.20.8⨯>⨯>⨯BMC △BM =ππ,63MBC BCM ∠=∠=10BC =BM =ABM △π2π,63ABM AMB ∠=∠=π6BAM ∠=2ππsin sin 36AB BM ==15AB =11sin 151022ABC S AB BC ABC =⋅∠=⨯⨯=△ABC △222π2cos 3AC AB BC AB BC =+-⋅211961002102AB AB =+-⋅⨯210960AB AB --=16AB =6AB =-CBM θ∠=π2ππ,π333ABM BAM θθθ⎛⎫∠=-∠=---= ⎪⎝⎭在中,可得,可得,即,则,则20.【答案】(1);(2);(3)见解析【解析】(1)(2)由题意得,.因为D 为BC 中点,所以,即,又,所以,又E 为的中点,所以,所以,所以点P 的轨迹是以为焦点的椭圆(左、右顶点除外).设,其中.则故.(3)思路一:由题意得,,且直线的斜率不为0,ABM △10cos 2πsin sin sin 3AB BM θθθ==10cos sin θθ=16sin θθ=tan θ=cos θ==cos BM BC θ=⋅=1)y x =-22:1(2)43x y x Γ+=≠±1)y x =-12(1,0),(1,0)A A -1A D BC ⊥12A D A C ⊥1PE A D ∥2PE A C ⊥2A C 2||PA PC =121112||4PA PA PA PC AC A A +=+==>Γ12,A A 2222:1()x y x a a bΓ+=≠±2220,a b a b c >>-=24,2,1,a a c b =====22:1(2)43x y x Γ+=≠±1212(2,0),(2,0),(0,1),(0,1)B B C C --2l可设直线,且.由,得,所以,所以.直线的方程为:,直线的方程为:,由,得,,解得.故点Q 在直线,所以Q 到的距离,因此的面积是定值,为.思路二:由题意得,,且直线的斜率不为0,可设直线,且.由,得,所以,()()21122:1,,,,l x my M x y N x y =-122,2x x ≠±≠±221431x y x my ⎧+=⎪⎨⎪=-⎩()2234690m y my +--=12122269,3434m y y y y m m -+==++()121223my y y y =-+1B M 11(2)2y y x x =++2B N 22(2)2y y x x =--1122(2)2(2)2y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩()()21122222y x x x y x ++=--()()()()12212211221212112112331112223933333222y y y y y y my my y y y my my y y y y y y y -++--++=====---+---4x =-4x =-12C C 4d =12QC C △121124422C C d ⋅=⨯⨯=1212(2,0),(2,0),(0,1),(0,1)B B C C --2l ()()21122:1,,,,l x my M x y N x y =-122,2x x ≠±≠±221431x y x my ⎧+=⎪⎨⎪=-⎩()2234690m y my +--=12122269,3434m y y y y m m -+==++所以.直线的方程为:,直线的方程为:,由,得,故点Q 在直线,所以Q 到的距离,因此的面积是定值,为.思路三:由题意得,,且直线的斜率不为0.()121223my y y y =-+1B M 11(2)2y y x x =++2B N 22(2)2y y x x =--1122(2)2(2)2y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩()()()()2112211222222y x y x x y x y x ⎡⎤++-=⎢⎥+--⎣⎦()()()()21121221211221132322133y my y my my y y y y my y my y y ⎡⎤++-⎛⎫+-==⎢⎥ ⎪+--+⎝⎭⎣⎦()()121221212323243my y y y y y y y ++-+⎡⎤==-⎢⎥+⎣⎦4x =-12C C 4d =12QC C △121124422C C d ⋅=⨯⨯=1212(2,0),(2,0),(0,1),(0,1)B B C C --2l(i )当直线垂直于x 轴时,,由得或.不妨设,则直线的方程为:,直线的方程为:,由,得,所以,故Q 到的距离,此时的面积是.(ii )当直线不垂直于x 轴时,设直线,且.由,得,所以.直线的方程为:,直线的方程为:,由,得.下证:.即证,即证,2l 2:1l x =-221431x y x ⎧+=⎪⎨⎪=-⎩132x y =-⎧⎪⎨=-⎪⎩132x y =-⎧⎪⎨=⎪⎩331,,1,22M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭1B M 3(2)2y x =+2B N 1(2)2y x =-3(2)21(2)2y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩43x y =-⎧⎨=-⎩(4,3)Q --12C C 4d =12QC C △121124422C C d ⋅=⨯⨯=2l ()()21122:(1),,,,l y k x M x y N x y =+122,2x x ≠±≠±22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩()()22224384120k x k x k +++-=221212228412,4343k k x x x x k k --+==++1MB 11(2)2y y x x =++2MB 22(2)2y y x x =--1122(2)2(2)2y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩()()()()2112211222222y x y x x y x y x ⎡⎤++-=⎢⎥+--⎣⎦()()()()()()()()2112121221121212124262121234k x x k x x x x x x k x x k x x x x ⎡⎤++++--+==⎢⎥++-+-++⎣⎦121212426434x x x x x x -+=-++()121212426434x x x x x x -+=-++()121241016x x x x =-+-即证,即证,上式显然成立,故点Q 在直线,所以Q 到的距离,此时的面积是定值,为.由(i )(ii )可知,的面积为定值.思路四:由题意得,,且直线的斜率不为0,可设直线,且.由,得,所以.直线的方程为:,直线的方程为:,因为,所以,故直线的方程为:22224128410164343k k k k ⎛⎫⎛⎫--=-- ⎪ ⎪++⎝⎭⎝⎭()()()22244121081643k k k -=---+4x =-12C C 4d =12QC C △121124422C C d ⋅=⨯⨯=12QC C △1212(2,0),(2,0),(0,1),(0,1)B B C C --2l ()()21122:1,,,,x my M x y N x l y =-122,2x x ≠±≠±221431x y x my ⎧+=⎪⎨⎪=-⎩()2234690m y my +--=12122269,3434m y y y y m m -+==++1B M 11(2)2y y x x =++2B N 22(2)2y y x x =--2222143x y +=22222324y x x y ⎛⎫+=- ⎪-⎝⎭2B N 2223(2)4x y x y ⎛⎫+=-- ⎪⎝⎭由,得,解得.故点Q 在直线,所以Q 到的距离,因此的面积是定值,为.21.【答案】(1)递增区间为,递减区间为;(2);(3).【解析】(1)对成立,得,所以2为函数的周期.(2为"关于倒数点",得,即,即,得,设的定义域为R,求导得,当时,严格递增;时,严格递减;时,严格递增,所以的单调递增区间为,递减区间为,成立,(舍)(3)依题意,,1122(2)223(2)4y y x x x y x y ⎧=+⎪+⎪⎨⎛⎫+⎪=-- ⎪⎪⎝⎭⎩()()1212422322y y x x x x -=-+++()()()()12122222121212444933113139634y y y y mx my m y y m y y m m m ⎡⎤⎡⎤-⎢⎥=-=-=-=⎢⎥+++++-+++⎢⎥⎣⎦⎣⎦4x =-4x =-12C C 4d =12QC C △121124422C C d ⋅=⨯⨯=(,3),(1,)-∞--+∞(3,1)--34e -(2,e)()(1)1f x f x +=x R ∈1()(2)(1)f x f x f x ==++()f x ()h x 2-2)1h h =22)1,2)10a a a a ++=+-+-=(1)(1)0a a +--=1a =2()e (1)x x x ϕ=+2()e (1)2e (1)e (1)(3)x x x x x x x x ϕ'=+++=++(,3)x ∈-∞-()0,()x x ϕϕ'>(3,1)x ∈--()0,()x x ϕϕ'<(1,)x ∈-+∞()0,()x x ϕϕ'>()x ϕ(,3),(1,)-∞--+∞3(3,1).(3)4m e ϕ---=-=(1)0m ϕ=-=e ,0()1,0x x x x x a ω⎧>⎪=⎨<⎪+⎩由恰有3个“可移1倒数点”,得方程恰有3个不等实数根,①当时,,方程可化为,解得,这与不符,因此在内没有实数根;②当时,,方程可化为,该方程又可化为.设,则,因为当时,,所以在内严格递增,又因为,所以当时,,因此,当时,方程在内恰有一个实数根;当时,方程在内没有实数根.③当时,没有意义,所以不是的实数根.④当时,,方程可化为,化为,于是此方程在内恰有两个实数根,则有,解得因此当时,方程在内恰有两个实数根,当在内至多有一个实数根,综上,a 的取值范围为.()x ϕ()(1)1x x ωω+=0x >10x +>()(1)1x x ωω+=21e 1x +=12x =-0x >(0,)+∞()(1)0x x ωω+=10x -<<10x +>()(1)1x x ωω+=11x e x a+=+1ex a x +=-1()e x k x x +=-1()e 1x k x +'=-(1,0)x ∈-()0k x '>()k x (1,0)-(1)2,(0)e k k -==(1,0)x ∈-()(2,e)k x ∈(2,e)a ∈()(1)1x x ωω+=(1,0)-(0,2][e,)a ∈+∞ ()(1)1x x ωω+=(1,0)-1x =-10,(1)x x ω+=+1x =-()(1)1x x ωω+=1x <-10x +<()(1)1x x ωω+=1111x a x a ⋅=+++22(21)10x a x a a ++++-=(,1)-∞-()222(21)41021121(21)10a a a a a a a ⎧+-+->⎪+⎪-<-⎨⎪-+++->⎪⎩a >a >()(1)1x x ωω+=(,1)-∞-0a <≤()(1)1x x ωω+=(,1)-∞-(2,e)(2,e)⎫+∞=⎪⎪⎭。
2025届上海市华东师大二附中高三下学期期末统一检测试题数学试题
2025届上海市华东师大二附中高三下学期期末统一检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多2.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>3.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( ) A .2B .0C .2-D .2±4.在三棱锥P ABC -中,5AB BC ==,6AC =,P 在底面ABC 内的射影D 位于直线AC 上,且2AD CD =,4PD =.设三棱锥P ABC -的每个顶点都在球Q 的球面上,则球Q 的半径为( ) A 689B 689C 526D 5265.若31nx x ⎛⎫+ ⎪⎝⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .566.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若//αβ,则l//m B .若αβ⊥,则l m ⊥ C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥7.已知f (x )=-1x x e e a+是定义在R 上的奇函数,则不等式f (x -3)<f (9-x 2)的解集为( )A .(-2,6)B .(-6,2)C .(-4,3)D .(-3,4)8.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个B .24个C .26个D .28个9.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .10.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③B .②④C .①②③D .②③④11.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交12.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x二、填空题:本题共4小题,每小题5分,共20分。
2024年上海市华师大二附中数学高三第一学期期末监测试题含解析
2024年上海市华师大二附中数学高三第一学期期末监测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为AB =( )A .6B .9C .D .2.己知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为( )A 1B 2C 1D 23.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( )A .15B .25C .35D .110 4.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1) C .D .45.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 6.若关于x 的不等式1127k x x ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9 B .8 C .7 D .67.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .2828.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan 21tan 2αα-=+( ) A .12- B .2- C .12 D .2 9.设i 为数单位,z 为z 的共轭复数,若13z i =+,则z z ⋅=( ) A .110B .110iC .1100D .1100i 10.已知,都是偶函数,且在上单调递增,设函数,若,则( ) A .且 B .且 C .且D .且11.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种. A .360 B .240 C .150 D .12012.函数1()1xx e f x e+=-(其中e 是自然对数的底数)的大致图像为( ) A . B . C . D .二、填空题:本题共4小题,每小题5分,共20分。
华师大二附中高三数学综合练习试卷共十套
上海市华师大二附中高三综合练习试卷(共十套)上海市华师大二附中高三年级综合练习[1]数学一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数))((R x x f y ∈=图象恒过定点)1,0(,若)(x f y =存在反函数)(1x f y -=,则1)(1+=-x fy 的图象必过定点 。
2.已知集合{}R x y y A x∈-==,12,集合{}R x x x y y B ∈++-==,322,则集合{}B x A x x ∉∈且=。
3.若角α终边落在射线)0(043≤=-x y x 上,则=⎥⎦⎤⎢⎣⎡-+)22arccos(tan α 。
4.关于x 的方程)(01)2(2R m mi x i x ∈=+++-有一实根为n ,则=+nim 1。
5.数列{}n a 的首项为21=a ,且))((21211N n a a a a n n ∈+++=+ ,记n S 为数列{}n a 前n 项和,则n S = 。
6.(文)若y x ,满足⎪⎪⎩⎪⎪⎨⎧-≥-≤-≥+≤+1315y x y x y x y x ,则目标函数y x s 23-=取最大值时=x 。
(理)若)(13N n x x n∈⎪⎭⎫ ⎝⎛-的展开式中第3项为常数项,则展开式中二项式系数最大的是第 项。
7.已知函数)20,0)(2sin()(πϕϕ<<>+=A x A x f ,若对任意R x ∈有)125()(πf x f ≥成立,则方程0)(=x f 在[]π,0上的解为 。
8.某足球队共有11名主力队员和3名替补队员参加一场足球比赛,其中有2名主力和1名替补队员不慎误服违禁药物,依照比赛规定,比赛后必须随机抽取2名队员的尿样化验,则能查到服用违禁药物的主力队员的概率为 。
(结果用分数表示) 9.将最小正周期为2π的函数)2,0)(sin()cos()(πϕωϕωϕω<>+++=x x x g 的图象向左平移4π个单位,得到偶函数图象,则满足题意的ϕ的一个可能值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市华师大二附中高三综合练习试卷(共十套)上海市华师大二附中高三年级综合练习[1]数学一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数))((R x x f y ∈=图象恒过定点)1,0(,若)(x f y =存在反函数)(1x f y -=,则1)(1+=-x fy 的图象必过定点 。
2.已知集合{}R x y y A x∈-==,12,集合{}R x x x y y B ∈++-==,322,则集合{}B x A x x ∉∈且=。
3.若角α终边落在射线)0(043≤=-x y x 上,则=⎥⎦⎤⎢⎣⎡-+)22arccos(tan α 。
4.关于x 的方程)(01)2(2R m mi x i x ∈=+++-有一实根为n ,则=+nim 1。
5.数列{}n a 的首项为21=a ,且))((21211N n a a a a n n ∈+++=+ ,记n S 为数列{}n a 前n 项和,则n S = 。
6.(文)若y x ,满足⎪⎪⎩⎪⎪⎨⎧-≥-≤-≥+≤+1315y x y x y x y x ,则目标函数y x s 23-=取最大值时=x 。
(理)若)(13N n x x n∈⎪⎭⎫ ⎝⎛-的展开式中第3项为常数项,则展开式中二项式系数最大的是第 项。
7.已知函数)20,0)(2sin()(πϕϕ<<>+=A x A x f ,若对任意R x ∈有)125()(πf x f ≥成立,则方程0)(=x f 在[]π,0上的解为 。
8.某足球队共有11名主力队员和3名替补队员参加一场足球比赛,其中有2名主力和1名替补队员不慎误服违禁药物,依照比赛规定,比赛后必须随机抽取2名队员的尿样化验,则能查到服用违禁药物的主力队员的概率为 。
(结果用分数表示) 9.将最小正周期为2π的函数)2,0)(sin()cos()(πϕωϕωϕω<>+++=x x x g 的图象向左平移4π个单位,得到偶函数图象,则满足题意的ϕ的一个可能值为 。
10.据某报《自然健康状况》的调查报道,所测血压结果与相应年龄的统计数据如下表,观察表中数据规律,并将最适当的数据填入表中括号内。
年龄(岁) 3035404550556065……收缩压(水银柱/毫米)110115120125130135145……舒张压(水银柱/毫米)70737578807385……11.若函数⎭⎬⎫⎩⎨⎧+=x x x f 241log ,log 3min )(,其中{}q p ,m in 表示q p ,两者中的较小者,则2)(<x f 的解为 。
12.如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为21的半圆得到图形2P ,然后依次剪去一个更小的半圆(其直径是前一个被剪掉半圆的半径)可得图形 ,,,,43n P P P ,记纸板n P 的面积为n S ,则=∞→n n S lim 。
二、选择题 (本大题满分16分) 本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号,选对得4分,不选、错选或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
13.已知c b a ,,满足0<<<ac a b c 且,则下列选项中不一定能成立的是( )A 、ac ab >B 、0)(>-a b cC 、22ca cb < D 、0)(<-c a ac14.下列命题正确的是( )A 、若A a n n =∞→lim ,B b n n =∞→lim ,则)0(lim≠=∞→n nn n b B Ab a 。
B 、函数)11(arccos ≤≤-=x x y 的反函数为R x x y ∈=,cos 。
C 、函数)(12N m x y m m∈=-+为奇函数。
D 、函数21)32(sin )(2+-=xx x f ,当2004>x 时,21)(>x f 恒成立。
15.函数11)(2-+-=x x a x f 为奇函数的充要条件是( )A 、10<<aB 、10≤<aC 、1>aD 、1≥a 16.不等式)10(2sin log ≠>>a a x x a 且对任意)4,0(π∈x 都成立,则a 的取值范围为( )A 、)4,0(πB 、)1,4(πC 、)2,1()1,4(ππ⋃ D 、)1,0(三、解答题 (本大题满分86分) 本大题共有6题,解答下列各题必须写出必要的步骤。
17.(本题满分12分)ABC ∆中角C B A ,,所对边分别为c b a ,,,若,2,32==c a bctgB tgA 21=+,求ABC ∆的面积S 。
18.(本题满分12分)设复数)0,,(1≠∈+=y R y x yi x z ,复数)(sin cos 2R i z ∈+=ααα,且1121,2z R z z ∈+在复平面上所对应点在直线x y =上,求21z z -的取值范围。
19.(本题满分14分)已知关于x 的不等式052<--ax ax 的解集为M 。
(1)当4=a 时,求集合M ;(2)若M M ∉∈53且,求实数a 的取值范围。
20.(本题满分14分)如图,一个计算装置有两个数据输入口Ⅰ、Ⅱ与一个运算结果输出口Ⅲ,当Ⅰ、Ⅱ分别输入正整数n m ,时,输出结果记为),(n m f , 且计算装置运算原理如下:①若Ⅰ、Ⅱ分别输入1,则1)1,1(=f ;②若Ⅰ输入固定的正整数,Ⅱ输入的正整数增大1,则输出结果比原来增大3;③若Ⅱ输入1,Ⅰ输入正整数增大1,则输出结果为原来3倍。
试求:(1))1,(m f 的表达式)(N m ∈; (2)),(n m f 的表达式),(N n m ∈;求出相应(3)若Ⅰ,Ⅱ都输入正整数n ,则输出结果),(n n f 能否为2006?若能,的n ;若不能,则请说明理由。
21.(本题满分16分)对数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中)(1N n a a a n n n ∈-=∆+。
对自然数k ,规定{}n k a ∆为{}n a 的k 阶差分数列,其中)(1111n k n k n k n k a a a a --+-∆∆=∆-∆=∆。
(1)已知数列{}n a 的通项公式),(2N n n n a n ∈+=,试判断{}n a ∆,{}n a 2∆是否为等差或等比数列,为什么?(2)若数列{}n a 首项11=a ,且满足)(212N n a a a nn n n ∈-=+∆-∆+,求数列{}n a 的通项公式。
(3)(理)对(2)中数列{}n a ,是否存在等差数列{}n b ,使得n nn n n n a C b C b C b =+++ 2211对一切自然Nn ∈都成立?若存在,求数列{}n b 的通项公式;若不存在,则请说明理由。
22.(本题满分18分)已知函数)(x f 是定义在[]2,2-上的奇函数,当)0,2[-∈x 时,321)(x tx x f -=(t 为常数)。
(1)求函数)(x f 的解析式;(2)当]6,2[∈t 时,求)(x f 在[]0,2-上的最小值,及取得最小值时的x ,并猜想)(x f 在[]2,0上的单调递增区间(不必证明);(3)当9≥t 时,证明:函数)(x f y =的图象上至少有一个点落在直线14=y 上。
上海市华师大二附中高三年级数学综合练习[1]参考答案1.()1,1 2.()+∞,2 3. 71- 4.i 2121- 5.1232-⎪⎭⎫⎝⎛⋅n 6.(文)4 ;(理)57.326ππor8.9125 9. 4π 10.140,88 11. 404<<>x or x 12. 3π13. C 14.C 15.B 16.B17.解:由b c tgB tgA 21=+及正弦定理,得 ()B C BB B A B A sin sin 2cos sin cos cos sin =+,即 21cos =A ,(其余略)。
18.解:⎩⎨⎧=∈+11121Im Re 2z z R z z ⎩⎨⎧≠=∈-++-⇒022222y x R yi x xyi y x ⎩⎨⎧≠==-⇒0022y x y xy1==⇒y x i z +=⇒11,21z z -()()⎪⎭⎫ ⎝⎛+-=-+-=4sin 223sin 1cos 122πααα ∴21z z -[]12,12+-∈。
19.解:(1)4=a 时,不等式为04542<--x x ,解之,得 ()⎪⎭⎫ ⎝⎛⋃-∞-=2,452,M ; (2)25≠a 时,⎩⎨⎧∉∈M M 53 ⎪⎪⎩⎪⎪⎨⎧≥--<--⇒025550953aa aa⎪⎩⎪⎨⎧<≤<>251359a ora a ()25,935,1⋃⎪⎭⎫⎢⎣⎡∈⇒a ,25=a 时,不等式为0255252<--x x , 解得()⎪⎭⎫⎝⎛⋃-∞-=5,515,M ,则 M M ∉∈53且,∴25=a 满足条件,综上,得 (]25,935,1⋃⎪⎭⎫⎢⎣⎡∈a 。
20.解:(1)()()()()11231,131,231,131,--===-=-=m m f m f m f m f ,(2),()()()()()()133131,232,31,,1-+=-+==⨯+-=+-=-n n m f n m f n m f n m f m ,(3)()()133,1-+=-n n n f n ,∵()20067471837,76<=+=f ,()200622082138,87>=+=f ,∴),(n n f 输出结果不可能为2006。
21.解:(1)()()()2211221+=+-+++=-=∆+n n n n n a a a n n n ,∴{}n a ∆是首项为4,公差为2的等差数列。
()()2222122=+-++=∆n n a n ,∴{}n a 2∆是首项为2,公差为0的等差数列;也是首项为2,公比为1的等比数列。
(2)n n n n a a a 212-=+∆-∆+,即n n n n n a a a a 211-=+∆-∆-∆++,即n n n a a 2=-∆,∴ n n n a a 221+=+,∵11=a ,∴12224⨯==a ,232312⨯==a ,342432⨯==a ,猜想:12-⋅=n n n a , 证明:ⅰ)当1=n 时,01211⨯==a ;ⅱ)假设k n =时,12-⋅=k k k a ;1+=k n 时, ()()111212222-++⋅+=+⋅=+=k k k k k k k k a a 结论也成立, ∴由ⅰ)、ⅱ)可知,12-⋅=n n n a 。