人工神经网络基础_ANN课程笔记 2、深度神经网络
《人工神经网络》课件
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
深度学习名词解释题
深度学习名词解释题引言深度研究是一种基于人工神经网络的机器研究方法,近年来在人工智能领域取得了重大突破。
在深度研究中,有许多重要的名词和概念需要了解和掌握。
本文将解释并介绍一些关键的深度研究名词,帮助读者更好地理解和应用深度研究技术。
名词解释1. 人工神经网络(Artificial Neural Network,ANN)人工神经网络是一种模拟人脑神经元之间连接的计算模型。
它由多个神经元层组成,每个神经元层包含多个节点,每个节点表示一个神经元。
节点之间以权重相连,通过输入数据的传递和计算,最终得到输出结果。
人工神经网络是深度研究的核心结构,可以通过训练和优化,实现从输入到输出的自动化任务。
2. 前馈神经网络(Feedforward Neural Network)前馈神经网络是一种最基础的神经网络结构,信息只能从输入层经过各隐藏层传递到输出层,信息流只有一方向,没有反馈连接。
前馈神经网络广泛用于分类、回归、模式识别等任务。
它的特点是结构简单、计算高效,但对于一些复杂的问题可能存在局限性。
3. 卷积神经网络(Convolutional Neural Network,CNN)卷积神经网络是一种特殊的前馈神经网络,其中的神经元层之间采用了卷积操作。
CNN主要应用于图像处理和计算机视觉任务,通过卷积层、池化层和全连接层的组合,能够有效地提取图像的特征,并进行分类、识别等任务。
相比于其他神经网络结构,CNN在处理图像数据上具有更好的表现和效果。
4. 递归神经网络(Recurrent Neural Network,RNN)递归神经网络是一种具有反馈连接的神经网络结构,主要用于处理序列数据,如语音识别、自然语言处理等任务。
与前馈神经网络不同,RNN的隐藏层之间存在循环连接,使得信息能够在网络中传递和记忆。
这种循环结构使得RNN在处理时序数据时具有优势,并广泛应用于语音、文本等领域。
5. 生成对抗网络(Generative Adversarial Network,GAN)生成对抗网络由一个生成器和一个判别器组成,通过交互训练来产生逼真的数据样本。
人工神经网络学习总结笔记
人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。
我认为这是人工神经网络研究的前身。
形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。
离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。
其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
人工神经网络基础_ANN课程笔记 2、深度神经网络
第二章深度神经网络一、概述1、基本概念深度学习(Deep Learning)是一种没有人为参与的特征选取方法,又被称为是无监督的特征学习(Unsupervised Feature Learning)。
深度学习思想的神经网络利用隐含层从低到高依次学习数据的从底层到高层、从简单到复杂、从具体到抽象的特征,而这一特性决定了深度学习模型可以学习到目标的自适应特征,具有很强的鲁棒性。
深度学习的另外一个思想是贪婪算法(greedy algorithm)的思想,其在训练的时候打破了几十年传统神经网络训练方法的“桎梏”,采用逐层训练(greedy layer-wise)的贪婪思想,并经过最后的微调(fine-tuning),这一训练算法的成功也使得深度学习获得了巨大成功。
传统的模式识别方法:机器学习过程从最初的传感器得到原始的数据,到经过预处理,都是为了第三步和第四步的特征提取和特征选择,而这个耗时耗力的工作一般要靠人工完成。
这种靠人工的,需要大量的专业知识的启发式的特征提取方法注定要限制机器学习的发展,而深度学习的非监督学习阶段的“盲学习”的特性能够解决该问题,即:深度学习在特征提取和选择时是完全自主的,不需要任何的人工干预。
2、神经网络发展受限之处多隐含层的网络容易收敛到参数空间的局部最优解,即偏导数为0 的点,尤其在目标识别中,由于图像的信噪比很低,神经网络很容易陷入局部极小点; 训练算法与网络的初始参数有很大关系,比较容易过拟合;训练速度慢;在误差反向传播的训练算法中,层数越深,误差越小,甚至接近于0,造成训练失败。
误差反向传播算法必须要用到带标签的数据(有导师学习、监督学习),获取带标签的数据十分困难。
3、深度学习的学习算法深度学习的基本模型从形式上来看和神经网络一致,基本的结构单元都是神经元,由神经元组成网络层,整个网络由输入层,隐含层和输出层组成。
在深度学习理论中,一个网络的学习算法每运行一次,只调整一层网络的参数。
10 人工神经网络(ANN)方法简介(完整)
神经元的结构
树突从细胞体伸向其它神经元,神经元之间接受信号的联结点 为突触。通过突触输入的信号起着兴奋/抑制作用。当细胞体接 受的累加兴奋作用超过某阈值时,细胞进入兴奋状态,产生冲 动,并由轴突输出。
x1
w1
x2 xn
w2 wn
wi xi
感知器的激活函数
神经元获得网络输入信号后,信号累计效果整合函数u(X)大于 某阈值 时,神经元处于激发状态;反之,神经元处于抑制状 态。 构造激活函数,用于表示这一转换过程。要求是[-1, 1]之间 的单调递增函数。 激活函数通常为3种类型,由此决定了神经元的输出特征。
第三阶段
突破性进展:1982年,CalTech的物理学家J. Hopfield提出Hopfield神经网络 系统(HNNS)模型,提出能量函数的概念,用非线性动力学方法来研究 ANN, 开拓了ANN用于联想记忆和优化计算的新途径; 1988年,McClelland和Rumelhart利用多层反馈学习算法解决了“异或 (XOR)”问题。
§10.2 感知器(Perceptron) ——人工神经网络的基本构件
1、 感知器的数学模型——MP模型
感知器(Perceptron):最早被设计并实现的人工神经网络。 W. McCulloch和W. Pitts总结生物神经元的基本生理特征,提出 一种简单的数学模型与构造方法,建立了阈值加权和模型,简 称M-P模型(“A Logical Calculus Immanent in Nervous Activity”, Bulletin of Mathematical Biophysics, 1943(5): 115~133)。 人工神经元模型是M-P模型的基础。
人工神经网络基础_ANN课程笔记 4、随机型神经网络
第四章随机型神经网络1、随机型神经网络的基本思想对于BP神经网络和Hopfield神经网络的网络误差容易陷入局部极小值,而达不到全局最小点,主要原因为:结构上:存在着输入与输出之间的非线性函数关系,从而使网络误差或能量函数所构成的空间是一个含有多极点的非线性空间;算法上:网络的误差或能量函数只能按单方向减小而不能有丝毫的上升趋势。
对于第一点,是为保证网络具有非线性映射能力而必不可少的。
解决网络收敛问题的途径就只能从第二点入手,即不但让网络的误差或能量函数向减小的方向变化,而且,还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部极小值而向全局最小点收敛。
这就是随机型神经网络算法的基本思想。
2、模拟退火算法在模拟退火算法中,有两点是算法的关键:①控制参数T;②能量由低向高变化的可能性。
这两点必须结合起来考虑,当T大时,可能性也大,T小时,可能性也小,把“可能性”当作参数T的函数。
“可能性”用数学模型来表示就是概率。
由此可以得到模拟退火算法如下:上式表明:在模拟退火算法中,某神经元的输出不象Hopfield 算法中那样,是由以内部状态Hi 为输入的非线性函数的输出(阶跃函数)所决定的,而是由Hi 为变量的概率(1)Hi P 或(0)Hi P 所决定的。
不同的Hi 对应不同的概率(1)Hi P 或(0)Hi P 来决定输出为兴奋或者抑制。
反复进行网络的状态更新,且更新次数N 足够大以后,网络某状态出现的概率将服从分布:式中,Ei 为状态{ui}所对应的网络能量。
这一概率分布就是Boltzmann分布。
式中的Z是为使分布归一化而设置的常数(网络所有状态的能量之和为常数)。
由这分布可以看出:状态的能量越小,这一状态出现的概率就越大。
这是Boltzmann分布的一大特点,即“最小能量状态以最大的概率出现”。
3、Boltzmann机20世纪80年代,Hinton、Ackley和Sejnowski等以模拟退火思想为基础,对Hopfield网络模型引入了随机机制,提出了一种统计神经网络模型-Boltzman 机。
关于人工神经网络进行机器学习的基础性发现和发明如何促进机器人发展的
引言人工神经网络(Artificial Neural Networks,ANN)是模仿人脑神经元结构和功能的一种计算模型,它在机器学习领域中扮演着至关重要的角色。
通过模拟生物神经网络的工作方式,人工神经网络能够处理复杂的模式识别、分类、预测等问题。
本文将探讨人工神经网络在机器学习中的基础性发现和发明,以及这些技术如何推动了机器人技术的发展。
人工神经网络的基础性发现和发明1.反向传播算法的发明反向传播算法(Backpropagation,BP)是人工神经网络研究中的一个里程碑。
该算法由David Rumelhart、Geoffrey Hinton和Ronald Williams于1986年提出,它使得人工神经网络能够从训练样本中学习统计规律,并对未知事件进行预测。
BP算法的出现极大地推动了神经网络的研究,并使其在模式识别、联想记忆等领域得到了广泛应用。
2.深度学习的兴起深度学习是基于人工神经网络的一种技术,它通过多层神经元的堆叠来提取数据的深层特征。
深度学习模型如卷积神经网络(CNN)、递归神经网络(RNN)等在图像识别、自然语言处理等领域取得了显著的成功。
谷歌大脑项目就是一个典型的例子,该项目构建了一个具有约一亿个连接的深度神经网络,成功地从随机YouTube视频中识别出面部和猫的概念。
3.神经网络的多样性发展随着研究的深入,各种类型的神经网络不断涌现。
例如,自适应神经网络、模糊神经网络等新型神经网络模型被开发出来,用于解决智能控制、组合优化、预测等问题。
这些模型不仅提高了神经网络的性能,还拓宽了其应用范围。
人工神经网络对机器人技术的影响1.提高机器人的感知能力人工神经网络通过模拟生物神经元的工作方式,使机器人能够更好地感知环境。
例如,在机器人学习探索行为的过程中,神经网络可以根据传感器输出调整特征向量,并计算奖励以指导机器人的行动。
这种感知能力的提升使得机器人能够更有效地识别物体并采取相应的行动。
人工神经网络基础_ANN课程笔记 1、前向神经网络
第一章前向神经网络一、感知器1、感知器网络结构设网络输入模式向量为:对应的输出为:连接权向量为:2、感知器的学习➢初始化连接权向量及输出单元的阈值赋予(-1,+1)区间内的随机值,一般为较小的随机非零值。
➢连接权的修正每个输入模式作如下计算:(a)计算网络输出:(b)计算输出层单元希望输出与实际输出y之间的误差:(c)修正各单元与输出层之间的连接权与阈值:➢对m个输入模式重复步骤,直到误差k d(k=1,2,…,m)趋于零或小于预先给定的误差限ε。
3、感知器的图形解释➢整个学习和记忆过程,就是根据实际输出与希望输出之间的误差调整参数w 和θ,即调整截割平面的空间位置使之不断移动,直到它能将两类模式恰当划分的过程。
➢学习过程可看作是由式决定的n维超平面不断向正确划分输入模式的位置移动的过程。
4、感知器的局限性➢两层感知器只能解决线性可分问题➢增强分类能力的唯一出路是采用多层网络,即在输入及输出层之间加上隐层构成多层前馈网络。
➢Kolmogorov理论经过严格的数学证明:双隐层感知器足以解决任何复杂的分类问题。
➢简单的感知器学习过程已不能用于多层感知器,必须改进学习过程。
二、BP 神经网络 1、反向传播神经网络1) 误差逆传播神经网络是一种具有三层或三层以上的阶层型神经网络: ➢ 上、下层之间各神经元实现全连接,即下层的每一个单元与上层的每个单元都实现权连接;➢ 而每层各神经元之间无连接; ➢ 网络按有监督的方式进行学习。
2)➢ 当一对学习模式提供给网络后,神经元的激活值,从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。
➢ 在这之后,按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,最后回到输入层,故得名“误差逆传播算法”。
➢ 随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断上升。
2、梯度下降法1)梯度法是一种对某个准则函数的迭代寻优算法。
人工神经网络知识概述
人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。
BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。
19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。
人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。
但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。
细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。
突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。
各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。
人工神经网络的基本原理及其应用
人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。
它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。
1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。
其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。
每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。
加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。
神经网络的学习过程主要包括前向传播和反向传播。
前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。
通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。
2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。
通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。
例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。
2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。
语音识别是其中的一个热点方向。
利用神经网络,可以将人类语言转化为计算机理解的信息。
语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。
LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。
ann模型的基础知识
ann模型的基础知识ANN模型,全称Artificial Neural Network,即人工神经网络,是一种模拟生物神经网络行为的计算模型。
它由大量的人工神经元节点组成,通过节点之间的连接和传递信息来进行计算和学习。
ANN模型可以用于解决各种问题,如分类、回归、聚类等。
ANN模型的基础知识包括以下几个方面:1. 神经元的结构和功能:神经元是ANN模型的基本单元,它接收输入信号,并通过激活函数对输入信号进行处理得到输出。
神经元之间通过连接进行信息传递,每个连接都有一个权重值,用于调节输入信号的影响力。
2. 前馈神经网络:前馈神经网络是最常见的ANN模型,它的信息流只能从输入层到输出层,不存在反馈回路。
前馈神经网络按照层数的不同可以分为单层感知机和多层神经网络。
3. 反向传播算法:反向传播算法是训练ANN模型的一种常用方法。
它通过计算输出与实际值之间的误差,并通过反向传播调整连接权重,以最小化误差。
反向传播算法包括前向计算和反向传播两个过程。
4. 激活函数:激活函数是神经元中对输入信号进行处理的一种函数。
常见的激活函数有Sigmoid函数、ReLU函数和Tanh函数等。
不同的激活函数具有不同的性质,选择适合的激活函数可以提高ANN 模型的性能。
5. 深度学习:深度学习是建立在ANN模型基础上的一种机器学习方法。
它通过构建多层神经网络来提取数据的高层次特征,并通过反向传播算法进行训练。
深度学习在图像识别、语音识别等领域取得了令人瞩目的成果。
6. 优化算法:优化算法用于调整ANN模型的参数,以使其在训练数据上达到最佳性能。
常见的优化算法有梯度下降算法、Adam算法等。
这些算法通过调整连接权重和偏置项来最小化损失函数。
7. 过拟合和欠拟合:过拟合和欠拟合是ANN模型常见的问题。
过拟合指模型在训练数据上表现良好,但在测试数据上表现较差,欠拟合则指模型无法很好地拟合训练数据。
解决过拟合和欠拟合的方法有增加数据集、正则化、模型选择等。
人工神经网络简介
人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。
本文是个科普文,来自网络资料的整理。
一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。
该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。
它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激活函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。
网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。
输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
2人工神经网络基础知识PPT课件
.
7
2.2人工神经元模型
人工神经网络是在现代神经生物学研究基础上提出的模 拟生物过程以反映人脑某些特性的计算结构。它不是人脑神 经系统的真实描写,而只是它的某种抽象、简化和模拟。根 据前面对生物神经网络的研究可知,神经元及其突触是神经 网络的基本器件。因此,模拟生物神经网络应首先模拟生物 神经元。
为简便起见,省去式中(t),而且常用向量表示
ne'tj WjT X
式中 W j和X 均为列向量:
X [x 1 x 2 .x .n ] .T ,W j [w 1 w 2 .w .n ] .T
若令 x0 1 ,w 0j,则 . w 0x 有 0j,则激 n表 e活 t 为
n
nejt wijxi WjTX
人的智能来自于大脑,大脑是由大量的神经细胞或神经元 组成的。每个神经元可以看作为一个小的处理单元,这些神经 元按照某种方式互相连接起来,构成了大脑内部的生物神经元 网络,他们中各神经元之间连接的强弱,按照外部的激励信号 作自适应变化,而每个神经元又随着接收到的多个激励信号的 综合大小呈现兴奋或抑制状态。据现在的了解,大脑的学习过 程就是神经元之间连接强度随外部激励信息做自适应变化的过 程,大脑处理信息的结果确由神经元的状态表现出来。显然, 神经元是信息处理系统的最小单元。虽然神经元的类型有很多 种,但其基本结构相似,生物学中神经元结构如图所示。
数。
.
9
上述约定是对生物神经元信息处理过程的简化和概括,它清晰 地描述了生物神经元信息处理的特点,而且便于进行形式化表 达。通过上述假定,人工神经元的结构模型如图所示。
.
10
人工神经元的数学模型描述:
第j个神经元,接受多个其它神经元i在t时刻的输入xi(t),引起 神经元j的信息输出为yj(t):
人工神经网络算法(基础精讲)
*
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不同的激活函数决定神经元的不同输出特性,常用的激活函数有如下几种类型:
*
1.6激活函数
当f(x)取0或1时,
阈值型激活函数 阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和抑制。
突触结构示意图
1
2
1.3生物神经元的信息处理机理
神经元的兴奋与抑制 当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时,为抑制状态,不产生神经冲动。
*
1.4生物神经元的特点
*
2.2学习方法
无导师学习也称无监督学习。在学习过程中,需要不断地给网络提供动态输入信息(学习样本),而不提供理想的输出,网络根据特有的学习规则,在输入信息流中发现任何可能存在的模式和规律,同时能根据网络的功能和输入调整权值。
②无导师学习
灌输式学习是指将网络设计成记忆特别的例子,以后当给定有关该例子的输入信息时,例子便被回忆起来。灌输式学习中网络的权值不是通过训练逐渐形成的,而是通过某种设计方法得到的。权值一旦设计好,即一次性“灌输给神经网络不再变动,因此网络对权值的”“学习”是“死记硬背”式的,而不是训练式的。
*
1.6激活函数
概率型激活函数 概率型激活函数的神经元模型输入和输出的关系是不确定的,需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出(状态)为1的概率为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章深度神经网络
一、概述
1、基本概念
深度学习(Deep Learning)是一种没有人为参与的特征选取方法,又被称为是无监督的特征学习(Unsupervised Feature Learning)。
深度学习思想的神经网络利用隐含层从低到高依次学习数据的从底层到高层、从简单到复杂、从具体到抽象的特征,而这一特性决定了深度学习模型可以学习到目标的自适应特征,具有很强的鲁棒性。
深度学习的另外一个思想是贪婪算法(greedy algorithm)的思想,其在训练的时候打破了几十年传统神经网络训练方法的“桎梏”,采用逐层训练(greedy layer-wise)的贪婪思想,并经过最后的微调(fine-tuning),这一训练算法的成功也使得深度学习获得了巨大成功。
传统的模式识别方法:
机器学习过程
从最初的传感器得到原始的数据,到经过预处理,都是为了第三步和第四步的特征提取和特征选择,而这个耗时耗力的工作一般要靠人工完成。
这种靠人工的,需要大量的专业知识的启发式的特征提取方法注定要限制机器学习的发展,而深度学习的非监督学习阶段的“盲学习”的特性能够解决该问题,即:深度学习在特征提取和选择时是完全自主的,不需要任何的人工干预。
2、神经网络发展受限之处
➢多隐含层的网络容易收敛到参数空间的局部最优解,即偏导数为0 的点,尤其在目标识别中,由于图像的信噪比很低,神经网络很容易陷入局部极小点;➢训练算法与网络的初始参数有很大关系,比较容易过拟合;
➢训练速度慢;
➢在误差反向传播的训练算法中,层数越深,误差越小,甚至接近于0,造成训练失败。
➢误差反向传播算法必须要用到带标签的数据(有导师学习、监督学习),获取带标签的数据十分困难。
3、深度学习的学习算法
深度学习的基本模型从形式上来看和神经网络一致,基本的结构单元都是神经元,由神经元组成网络层,整个网络由输入层,隐含层和输出层组成。
在深度学习理论中,一个网络的学习算法每运行一次,只调整一层网络的参数。
在依次对所有层进行这种贪婪(greedy)算法训练之后,再对网络进行一次整体调优(fine-tune),其中第一步称之为预训练(pre-training)。
这是整个深度学习理论中的训练算法思想。
在这种训练方式下,即先经过贪婪训练,再整体调优,高维度参数空间中的局部极小点对于最终的训练结果造成的影响可以忽略。
将深度学习的训练思想与误差反向传播算法相对比,将算法第一步的贪婪算法看作是对网络参数的初始化,第二步的整体调优实际中一般用的就是误差反向传播算法,因此深度学习训练算法第一步可以看作是对BP 神经网络进行一个参数空间上比较“合理”的即比较容易达到最优解的初始化,而这种初始化的方式要比误差反向传播算法的初始化方法(随机初始化)要“高明”的多,因为其更有理
论依据,更有说服力。
4、深度学习区别于传统的机器学习的几个方面:
➢强调了ANN模型结构的深度,与通常的浅层学习相比,深度学习使用更多隐含层,能够学习到从输入到输出更加复杂的非线性关系;
➢突出特征学习的重要性。
通过逐层特征变换,将数据在原始空间的特征表示变换到一个新特征空间,学习输入数据的有效特征表示,使分类或预测变得容易而且精确度得到提高;
➢深度学习来源于人工神经网络的发展,但是训练的方式与传统的人工神经网络不同,采用逐层训练的方法,然后再对网络参数进行微调;
➢深度学习模型需要大量数据来学习特征,而浅层学习不需要,使用浅层模型手工设计的特征数据量相对较少。