实验三三相同步电动机

合集下载

同步发电机参数的测量

同步发电机参数的测量

同步发电机同步发电机参数第13章三相同步发电机的参数测定所属专题:同步发电机发布时间:2014/8/2 15:54:12第13章三相同步发电机的参数测定原理简述各种电抗是定量分析同步电机性能的有用参数。

同步电机的参数主要有;(1)同步电抗等。

本次实验介绍同步发电机中最基本和常用的几个参数的测量方法。

一、同步电抗的求取如前述实验,可通过空载、稳态短路实验求出。

而利用转差率实验可以同时测出凸极式同步电机的直轴、交轴同步电抗的不饱和值。

转差率实验的作法是:把被试同步电机的励磁绕组开路,即不加励磁;原动机拖动转子以接近同步速旋转,约有左右,以避免转子被拖入同步,但其相序须保证电枢旋转磁场的转向与转子转向一致。

此时定子旋转磁场便以转差率速度切割转子。

当定子磁场轴线与转子直轴重合时,电抗达最高值,电枢电流便有最小值。

当定子磁场轴线与转子的交轴重合时,电抗达最低值,而电枢电流便有最大值。

由于线路中电压降的影响,随着电枢电流的变化,定子绕组上测得的电压也有相应的、较小幅度的变动,显然电枢电流有最小值时电压为最大,电枢电流有最大值时电压为最小。

电枢电流和端电压波动的频率正比于转差率。

由于转差率很低,电流表和电压表的指针摆动位置可以被清楚地读取,即记录出各最大电流,电压和最小电流、电压值。

设读取的数据为每相值,则每相同步电抗为:二、负序电抗研究电机不对称运行最有效的方法是对称分量法。

即把不对称的三相电压或三相电流分解为正序、负序和零序分量。

然后对各个分量分别建立方程并求解,最后迭加起来得到最后结果。

对不同相序的电流来说,同步电机的电抗也就有不同数值。

若定子电流为一稳定的对称三相电流,这时定子电流仅有正序分量,所遇到的电抗就是前述的同步电抗,其电抗的测取方法前已介绍。

故正序电抗值等于同步电抗值。

定子三相电流若不对称时则存在负序电流,由于负序电流所产生的旋转磁场与转子转向相反,此反向旋转磁场以两倍同步速度切割转子绕组(包括励磁和阻尼绕组),在其中感应一个两倍频率的交变电势。

三相同步发电机的并网运行(可打印修改)

三相同步发电机的并网运行(可打印修改)
图 5-4 三相同步发电机的并联运行 (3) 按他励电动机的起动步骤(校正直流测功机MG电枢串联起动电阻 Rst,并调至最大 位置。励磁调节电阻 Rf1 调至最小,先接通控制屏上的励磁电源,后接通控制屏上的电枢电 源),起动MG并使MG电机转速达到同步转速 1500 r/min。将开关 S2 合到同步发电机的 24V 励磁电源端(图示右端),调节 Rf2 以改变GS的励磁电流 If,使同步发电机发出额定电压 220 伏,可通过 V2 表观测,D53 整步表上琴键开关打在“断开”位置。 (4) 观察三组相灯,若依次明灭形成旋转灯光,则表示发电机和电网相序相同,若三 组相灯同时发亮、同时熄灭则表示发电机和电网相序不同。当发电机和电网相序不同则应
4
0.299 0.319 0.315 0.311 1.178
5
0.251 0.272 0.256 0.260 0.824
6
0.307 0.323 0.303 0.311 0.570
7
0.347 0.356 0.336 0.346 0.477
8
0.403 0.410 0.387 0.400 0.401
四、实验方法
1、实验设备
序号
型号
1
MET01
2
DD03
3
DJ23
4
DJ18
5
D34-2
6
D52
7
D53


电源控制屏
不锈钢电机导轨、测速系统及数显转速表
校正直流测功机
三相同步电机
智能型功率、功率因数表
旋转灯、并网开关、同步机励磁电源
整步表及开关

数量 1台 1件 1台 1台 1件 1件 选配
2、屏上挂件排列顺序 D52、D53、D34-2

三相永磁同步电机实验

三相永磁同步电机实验

实验三三相永磁同步电机实验一、实验目的1、掌握三相永磁同步电机结构特点2、掌握三相永磁同步电机工作原理3、掌握三相永磁同步电机运行特性二、预习要点1、三相永磁同步电机的工作原理2、三相永磁同步电机的运行特性三、实验项目1、测量定子绕组的冷态电阻。

2、速度—频率n=f(f)测试3、压频—转矩特性的测定4、测取三相永磁同步电机在工频下的工作特性。

四、实验方法1序号型号名称数量1 HK01 电源控制屏1件2 HK02 实验桌1件3 HK03 涡流测功系统导轨1件4 HK91 三相永磁同步电机控制箱1件5 HK91 三相永磁同步电机1件2、屏上挂件排列顺序HK913、测量定子绕组的冷态直流电阻。

将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。

当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

(1) 伏安法测量线路图为图3-1。

直流电源用主控屏上电枢电源先调到50V。

开关S选用D51挂件上的双刀双掷开关,R用1800Ω可调电阻。

图3-1 三相交流绕组电阻测定量程的选择:测量时通过的测量电流应小于额定电流的20%,约为50毫安,因而直流电流表的量程用200mA档,直流电压表量程用20V档。

按图3-1接线。

把R调至最大位置,合上开关S,调节直流电源及R阻值使试验电流不超过电机额定电流的20%,以防因试验电流过大而引起绕组的温度上升,读取电流值,再读取电压值。

调节R使A表分别为50mA,40mA,30mA测取三次,取其平均值,测量定子三相绕组的电阻值,记录于表3-1中。

表3-1 室温℃绕组Ⅰ绕组Ⅱ绕组ⅢI(mA)U(V)R(Ω)R平均(Ω)4、速度—频率n=f(f)测试(1) 按图3-2接线。

电机绕组为Y接法,直接与涡流测功机同轴联接。

图3-2 速度—频率n=f(f)测试接线图(2) 按下控制屏上的“启动”按钮,把交流调压器调至电压380V,首先按下变频器上的PU/EXT按钮,调节左侧旋钮使频率显示为零,然后按下RUN使电机运转起来,然后调节变频器左侧旋钮既可调节频率从而改变转速。

三相同步发电机的v形曲线实验原理

三相同步发电机的v形曲线实验原理

三相同步发电机的v形曲线实验原理原理是V形曲线的最低点对应于“正常励磁”情况,此时功率因数为1,定子电流最小且与电压同相。

由于P2=mUIcosφ,当电压与功率因数为常数时,输出有功功率正比于电流,前者增大必然使得后者增大。

由于电枢绕组本身的感性性质,此时电枢反应呈去磁性。

电流越大,去磁效果越明显,因此需要更多的励磁电流才能保持端电压不变。

发电机的“V”形曲线:
通过调节励磁电流可以调节同步发电机无功功率。

励磁电流变化时,发电机的电枢电流也会发生相应的变化。

在有功功率不变时,将励磁电流If从欠励调节到过励,Ia=f (If)的曲线是一个V形。

V形曲线是一簇曲线,每条曲线对应一定的有功功率。

V形曲线上都有一个最低点,对应cosφ=1的情况。

将所有的最低点连接起来,将得到与cosφ=1对应的曲线,该线左边为欠励状态,功率因数超前,右边为过励状态,功率因数滞后。

上海交大电机学实验+同步发电机运行特性

上海交大电机学实验+同步发电机运行特性

电机学实验报告实验四同步发电机运行特性一、实验目的1.掌握用实验方法测取三相同步发电机对称运行特性的方法;2.掌握用实验数据获取同步发电机稳态参数的方法。

二、实验内容1.测取发电机的空载特性;2.测取发电机的短路特性;3.测取额定电流条件下发电机的零功率因数负载特性。

三、实验接线图测取三相同步发电机对称运行特性的实验线路图如图4-1所示。

其中发电机G的转子与直流电动机M的转子机械连接,转子励磁绕组接励磁电源,电枢绕组为Y形连接。

图4-1 三相同步发电机运行特性接线图实验过程中,测定三相同步发电机空载特性的时候,将开关S2打开,这样同步发电机处于空载状态。

测定三相同步发电机短路特性的时候,将开关S2的右侧的三个端口短接,这样同步发电机处于短路运行状态。

测定额定电流条件下三相同步发电机零功率因数负载特性的时候,将开关S2闭合,X L 为一个三相饱和电抗器,忽略电阻,则它的功率因数为零,这样来测定零功率因数负载特性。

四、实验设备1.G同步发电机P N=2kW、U N=400V、I N=3.6A、n N=1500r/min;2.M直流电动机P N=2.2kW、U N=220V、I N=12.4A、U fN=220V、n N=1500r/min;3.变阻器R1:0/204Ω、0/17A,励磁变阻器R f1:0/500Ω、1A;4.X L三相饱和电抗器;5.直流电流表30A(电枢);6.直流电流表4A(励磁);7.直流电压表400V;8.交流电压表500V;9.交流电流表10A;10.功率表500V 10A。

五、实验数据1.测定发电机的空载特性:0AB AB CA2.测定发电机的短路特性:表4-2 发电机的短路特性实验数据n=nk A B C3.测定发电机的零功率因数负载特性:表4-3 发电机的零功率因数负载特性实验数据n=nAB AB CA六、特性曲线、参数计算及问题分析1.根据实验数据作出同步发电机的空载运行特性曲线U0=f(I f),如下图4-2所示:图4-2 发电机空载运行特性曲线2.根据实验数据作出同步发电机的短路运行特性曲线I k=f(I f),如下图4-3所示:图4-3 发电机短路运行特性曲线3.根据实验数据作出同步发电机的零功率因数负载特性曲线U=f(I f),如下图4-4所示图4-4 发电机零功率因数负载特性曲线4.利用空载特性和短路特性确定同步电机的直轴同步电抗X d(不饱和值)以及短路比:计算直轴同步电抗X d需要在取同一个I f值的情况下,计算空载电压U0和短路电流I k 的比值。

电机实验(8个电机试验)

电机实验(8个电机试验)

目录实验一单相变压器实验 (1)实验二三相变压器的联接组实验 (7)实验三三相异步电动机工作特性测定实验 (14)实验四三相同步发电机的并联运行实验 (18)实验五异步电动机同步化运行实验 (23)实验六直流他励电动机实验 (28)实验七直流伺服电动机实验 (33)实验八旋转变压器实验 (39)实验一单相变压器实验一、实验目的和任务1、通过空载和短路实验测定变压器的变比和参数。

2、通过负载实验测取变压器的运行特性。

二、实验内容1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。

2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。

三、实验仪器、设备及材料四、实验原理1、空载试验:接线如图1-1所示 。

为了便于测量和安全起见,通常在低压侧加电压,将高压侧开路。

为了测出空载电流和空载损耗随电压变化的曲线,外加电压应能在一定范围内调节。

在测定的空载特性曲线I 0=f (U 1),p 0=f (U 1)上,找出对应于U 1= U 1N 时的空载电流I 0和空载损耗p 0作为计算励磁参数的依据。

2、短路试验:接线如图1-2所示。

为便于测量,通常在高压侧加电压,将低压侧短路。

由于短路时外加电压全部降在变压器的漏阻抗Z k 上,而Z k 的数值很小,一般电力变压器额定电流时的漏阻抗压降I 1N Z K 仅为额定电压的4~17.5%,因此,为了避免过大的短路电流,短路试验应在降低电压下进行,使I k 不超过1.2I 1N 。

在不同的电压下测出短路特性曲线I k =f (U k )、p k =f (U k )。

根据额定电流时的p k 、U k 值,可以计算出变压器的短路参数。

五、主要技术重点、难点1、空载实验在三相调压交流电源断电的条件下,按图1-1接线。

被测变压器选用三相组式变压器DJK10中的一只作为单相变压器,其额定容量 S N =50VA ,U 1N /U 2N =127/31.8V ,I 1N /I 2N =0.4/1.6A 。

电机学 三相同步发电机的并联运行实验

电机学 三相同步发电机的并联运行实验

一、实验目的1.掌握三相同步发电机投入电网并联运行的条件与操作方法。

2.掌握三相同步发电机并联运行时有功功率与无功功率的调节方法。

二、预习要点1.同步发电机并联运行有哪些条件?如何满足这些条件?2.同步发电机并网运行时,怎样调节其有功功率和无功功率?在改变有功功率时,无功功率有无变化?3.同步发电机并网后,若原动机为直流电动机,为什么减少直流电动机的励磁电流可以增加发电机有功功率?三.实验项目1.用准确整步法将三相同步发电机投入电网并联运行。

2.三相同步发电机与电网并联运行时有功功率的调节。

3.三相同步发电机与电网并联运行时无功功率的调节。

(1)测取当输出功率时三相同步发电机的形曲线。

(2)测取当输出功率时三相同步发电机的形曲线。

四.实验设备及仪器1.MEL系列电机教学实验台主控制屏(含交流电压表、交流电流表)2.功率及功率因数表(MEL-20或含在主控制屏内)3.三相组式变压器(MEL-01)或单相变压器(在主控制屏的右下方)4.三相可调电阻900Ω(MEL-03)5.波形测试及开关板(MEL-05)6.三相可调电抗(MEL-08)五.实验方法接线说明:实验线路如图1。

图中为直流电动机,作原动机用;被试电机为三相凸极式同步电机,其额定值为:,,,;为涡流测功机。

、同步电机、由联轴器直接联接(虚线所示)。

电阻选用挂箱上的阻值为(接端,即两只串联)、电流为的可调电阻,作为直流并励电动机的起动电阻。

电阻选用挂箱上的阻值为、电流为的可调电阻,作为直流并励电动机励磁回路串接电阻。

直流电流表选用直流电机励磁电源上的励磁电流表(mA),选用直流稳压电源上的电枢电流表(A)。

同步发电机定子回路的电流表、功率表、电压表选用主控屏左侧的交流电流表、功率表、电压表。

同步指示灯为挂箱上的三组灯。

开关选用挂箱上的。

图1 同步发电机与电网并联接线图1.用准确整步法将三相同步发电机投入电网关联运行本实验采用交叉法将三相同步发电机投入电网关联运行。

实验三 三相同步电动机

实验三  三相同步电动机

实验报告实验名称:三相同步电动机小组成员:许世飞许晨光杨鹏飞王凯征一.实验目的1.掌握三相同步电动机的异步起动方法。

2.测取三相同步电动机的V形曲线。

3.测取三相同步电动机的工作特性。

二.预习要点1.三相同步电动机异步起动的原理及操作步骤。

2.三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)?3.三相同步电动机的工作特性怎样?怎样测取?三.实验项目1.三相同步电动机的异步起动。

≈0时的V形曲线。

2.测取三相同步电动机输出功率P23.测取三相同步电动机输出功率P=0.5倍额定功率时的V 形曲线。

24.测取三相同步电动机的工作特性。

四.实验设备及仪器1.实验台主控制屏;2.电机导轨及转速测量;3.功率、功率因数表(NMCL-001);4.同步电机励磁电源(含在主控制屏左下方,NMEL-19);5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18);6.三相可调电阻器900Ω(NMEL-03);7.三相可调电阻器90Ω(NMEL-04);8.旋转指示灯及开关板(NMEL-05A);9.三相同步电机M08; 10.直流并励电动机M03。

五.实验方法被试电机为凸极式三相同步电动机M08。

1.三相同步电动机的异步起动 实验线路图如图3-1。

实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。

R 的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。

开关S 选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。

a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约0.7A 左右,然后将开关S 闭合于可变电阻器R (图示左端)。

b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

《机电传动控制》实验指导书

《机电传动控制》实验指导书
(2)依次按下主控制屏绿色“闭合”按钮开关,使直流电动机电枢电源的船形开关处于“ON”,建立直流电源,并调节直流电源至110V输出。
调节R1使电枢电流达到0.2A(如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行,如果此时电流太小,可能由于接触电阻产生较大的误差),改变电压表量程为20V,迅速测取电机电枢两端电压UM和电流Ia。将电机转子分别旋转三分之一和三分之二周,同样测取UM、Ia,填入表1-1。
六.注意事项
1.直流他励电动机起动时,须将励磁电源调到最大,先接通励磁电源,使励磁电流最大,同时必须将电枢电源调至最小,然后方可接通电源,使电动机正常起动,起动后,将电枢电源调至220V,使电机正常工作。
2.直流他励电机停机时,必须先切断电枢电源,然后断开励磁电源。同时,必须将电枢电源调回最小值,励磁电源调到最大值,给下次起动作好准备。
b.从数字转速表上观察电机旋转方向,若电机反转,可先停机,将直流电动机电枢或励磁两端接线对调,重新起动,则电机转向应符合正向旋转的要求。
d.调节电动机电枢电源至220V,再调节电动机励磁电流,使电动机(发电机)转速达到1600r/min(额定值),并在以后整个实验过程中始终保持此额定转速不变。
e.调节发电机励磁电流,使发电机空载电压达UO=1.2UN(240V)为止。
2.在控制屏上按次序悬挂NMEL-13C、NMEL-03/4组件,并检查NMEL-13C和M01直流电机测功机的连接。
3.用伏安法测电枢的直流电阻,接线原理图见图1-1。
R:可调电阻箱(NMEL-03/4)中的单相可调电阻R1。
V:直流电压表
A:直流安培表
(1)经检查接线无误后,直流电动机电枢电源调至最小,R1调至最大,直流电压表量程选为300V档,直流电流表量程选为2A档。

三相同步发电机实验报告整合

三相同步发电机实验报告整合

同步发电机运行实验指导书王庆华贺秋丽编广西大学电气工程学院目录一、实验目的二、实验装置及接线三、实验内容实验一电动机- 发电机组的接线实验二发电机组的起动和同步电抗Xd测定实验三发电机同期并网实验实验四发电机的正常运行实验五发电机的特殊运行方式四、实验报告五、附录同步发电机运行实验指导书一、实验目的同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。

通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。

二、实验装置及接线实验在电力系统监控实验室进行,每套实验装置以7.5KW直流电动机与同轴的5KW 同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和计算机监视控制屏(计算机监控)。

可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。

直流电动机-同步发电机组的参数如下:直流电动机:型号Z2-52,凸极机额定功率7.5kW额定电压DC220V额定电流41A额定转速1500r/min额定励磁电压DC220V额定励磁电流0.98A(5、6、7号机组为0.5A)同步发电机型号T2-54-55额定功率5kW额定电压AC400V(星接)额定电流9.08A额定功率因数0.8空载励磁电流 2.9A额定励磁电流5A直流电动机-同步发电机组接线如图一所示。

发电机通过空气开关2QS和接触器2KM可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期用,两侧电压通过转换开关6SA接入同期表S(MZ-10)。

发电机励磁电源可以取自380V电网(他励方式),也可以取自机端(自励方式),通过4QS进行切换,交流电源经励磁变压器CB降压隔离后,经分立元件整流装置或模块式晶闸管SCR-L变为直流,再通过灭磁开关3KM供电给发电机励磁绕组FLQ,励磁电流通过调压按钮或电位器2WR进行调节。

电机学实验指导

电机学实验指导

实验一三相笼型异步电动机的工作特性一、实验目的1.用直接负载法测取三相笼型异步电动机的工作特性。

二、预习要点1.异步电动机的工作特性指哪些特性?2.异步电动机的等效电路有哪些参数?它们的物理意义是什么?3.工作特性的测定方法。

三、实验项目1.空载试验。

2.短路试验。

四、实验方法三相笼型异步电机在本装置的编号是M04。

1.空载试验测量线路图为图1-1,电机定子三相绕组Δ接法。

(额定电压220V)按图1-1接线。

首先把交流调压器退到零位,然后接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。

并使电机旋转方向符合要求。

注意:调整相序时,必须切断电源。

保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。

调节电压由1.2倍额定电压开始逐渐降低,直至电流或功率显著增大为止。

在这范围内读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表1-1中。

图1-1 三相笼型异步电动机试验接线图表1-1注意:空载试验读取数据时,在额定电压附近应多测几点。

2.短路试验测量接线图同图1-1。

把电机堵住,调压器退至零,合上交流电源,调节调压器使之逐渐升压至短路电流到1.2倍额定电流,再逐渐降压至0.3倍额定电流为止。

在这范围内读取短路电压、短路电流、短路功率共读取4~5组数据,记录于表1-2中。

3.负载试验选用设备与空载试验相同。

测量接线图同图1-1。

调节调压器使之逐渐升压至额定电压(在做试验时保持电压恒定),校正过的直流电机先合励磁电压,再调励磁电流至规定值,再调节负载电阻R L ,使异步电动机的定子电流逐渐上升,直至电流上升到1.25倍额定电流,从这负载开始,逐渐减小负载直至空载,在这范围内读取异步电动机的定子电流、输入功率、转速、直流电机的负载电流I F (可查对应的T 2值)等数据,共读取5~6组数据,记录于表1-3中。

N f五、实验报告1.计算基准工作温度时的相电阻由实验直接测得每相电阻值,此值为实际冷态电阻值。

同步电机实验

同步电机实验

同步电机实验5-1三相同步发电机的运行特性一、实验目的1、用实验方法测量同步发电机在对称负载下的运行特性。

2、由实验数据计算同步发电机在对称运行时的稳态参数。

二、预习要点1、同步发电机在对称负载在下有哪些基本特性?2、这些基本特性各在什么情况下测得?3、怎样用实验数据计算对称运行时的稳态参数?三、实验项目1、测定电枢绕组实际冷态直流电阻。

2、空载实验。

在n=n N、I=0的条件下,测取空载特性曲线U O=f(I f)。

3、三相短路实验。

在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。

ϕ0的条件下,测取纯电感负载特性4、纯电感负载特性。

在n=n N、I=I N、cos≈曲线。

5、外特性。

在n=n N、I f=常数、cosϕ=1和cosϕ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。

6、调节特性。

在n=n N、U=U N、cosϕ=1的条件下,测取调节特性曲线I f=f(I)。

四、实验方法1、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。

测量与计算方法参见实验4-1。

2、空载实验1)按图5-1接线,校正过的直流电机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y型接法(U N=220V)。

图5-1 三相同步发电机实验接线图2)调节M12组件上的24V励磁电源串接的R f2至最大位置(用M13组件上的90Ω与90Ω并联),调节MG的电枢串联电阻Rst至最大值(用D44上的180 Ω阻值)、断开开关S1、S2。

将控制屏左侧调压器旋纽向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,做好实验开机准备。

3)接通控制屏上的电源总开关,按下“开”按钮,接通励磁电源开关,看到电流表A2有励磁电流指示后,再接通控制屏上的电枢电源开关,启动MG。

MG启动运行正常后,把R st调至最小,调节R f1使MG转速达到同步发电机的额定转速1500转/分并保持恒定。

三相交流同步发电机的组成及工作原理介绍

三相交流同步发电机的组成及工作原理介绍

三相交流同步发电机的组成及工作原理介绍三相同步发电机由原动机拖动直流励磁的同步发电机转子,以转速n(rpm)旋转,根据电磁应原理,三相定子绕阻便感应交流电势。

定子绕阻若接入用电负载,电机就有交流电能输出。

若认为磁路不饱和,则电枢磁势与磁极磁势各自产生相应的磁通,并在定子绕阻内感因电势。

对于极电机,电枢磁势所感应的电势可以表示为Ea=-jIaXa. Xa被称为电枢反应电抗。

Xa+Xσ=Xs隐极同步发电机的同步电抗。

对于凸极电机,因直轴.交轴处磁阻不同,可将电枢磁势分解成Fad和Faq分别研究。

它们所感应的电势分别写成Ead=-jIdXad和Eaq=-jIqXaq,式中Xad.Xaq分别是直轴及交轴电枢反应电抗。

Xad+Xσ=Xd.Xaq+Xσ=Xq,Xd和Xq分别为直轴同步电抗和交交轴同步电抗。

Xσ为漏磁通引起的电抗。

同步电抗是决定同步电机性能的一个重要参数,通个开路实验和稳态实验就可求取。

同步发电机的空载特性是一个很重要的特性,它直接影响着电机的其它特性,通个开路实验还可以发现励磁系统的故障。

态短路特性和零功率因数特性也都属于同步电机的重要特性,和空载特性配合,可以求出同步发电机的态参数及确定出补偿电枢的励磁电流。

同步发电机的外特性曲线用来求取电机运行时的重要指标之一及电压调整率。

同步发电机的调整特性可使运行人员知道在功率因数一定时,不改变端电压值.负载电流到多小而不使励磁电流超过规定值。

国家标准"GB1029" 对三相同步电机的实验方法作了具体规定,适用于普通三相同步发电机的型式实验或检查实验。

通过实验可以确定该电机各性能指标。

各种电机的效率和电压调整率均在部颁标准的相应技术条件中有具体规定,将实验结果与标准规定数据比较即可确定某同步发电机的质量和性能了。

若求取额定励磁电流和电压变化率,一般用做图法,跟国家标准GB1029介绍,其具体步骤如下:(1)如图1上绘制开路特性曲线,并沿纵轴额定相电压相量UN.(2)自原点O作额定电枢电流相量IN,与纵轴成ΦN角(cosΦN 为额定功率因数)。

电机学实验报告三相感应电动机

电机学实验报告三相感应电动机

竭诚为您提供优质文档/双击可除电机学实验报告三相感应电动机篇一:电机学实验报告_实验报告课程名称:电机学实验指导老师:章玮成绩:__________________实验名称:异步电机实验实验类型:______________同组学生姓名:杨旭东一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、测定三相感应电动机的参数2、测定三相感应电动机的工作特性二、实验项目1、空载试验2、短路试验3、负载试验三、实验线路及操作步骤电动机编号为D21,其额定数据:pn=100w,un=220V,In=0.48A,nn=1420r/min,R=40Ω,定子绕组△接法。

1、空载试验(1)所用的仪器设备:电机导轨,功率表(DT01b),交流电流表(DT01b),交流电压表(DT01b)。

(2)测量线路图:见图4-4,电机绕组△接法。

(3)仪表量程选择:交流电压表250V,交流电流表0.5A,功率表250V、0.5A。

(4)试验步骤:安装电机时,将电机和测功机脱离,旋紧固定螺丝。

试验前先将三相交流可调电源电压调至零位,接通电源,合上起动开s1,缓缓升高电源电压使电机起动旋转,注意观察电机转向应符合测功机加载的要求(右视机组,电机旋转方向为顺时针方向),否则调整电源相序。

注意:调整相序时应将电源电压调至零位并切断电源。

接通电源,合上起动开关s1,从零开始缓缓升高电源电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。

调节电源电压由1.2倍(264V~66V)额定电压开始逐渐降低,直至电机电流或功率显著增大为止,在此范围内读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表4-3中。

注意:在额定电压附近应多测几点。

试验完毕,将三相电源电压退回零位,按下电源停止按钮,停止电机。

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告一、实验目的1、掌握三相同步电动机的异步起动方法。

2、测取三相同步电动机的V形曲线。

3、测取三相同步电动机的工作特性。

二、预习要点1、三相同步电动机异步起动的原理及操作步骤。

2、三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)使用?3、三相同步电动机的工作特性怎样?怎样测取?三、实验项目1、三相同步电动机的异步起动。

2、测取三相同步电动机输出功率P处0时的V形曲线。

4、测取三相同步电动机的工作特性。

3、测取三相同步电动机输出功率P=0∙5倍额定功率时的V形曲线。

四、实验方法1、实验设备2、屏上挂件排列顺序D31、D42、D33、D32、D34-3、D41、D52、D51、D31 3、三相同步电动机的异步起动图8-1三相同步电动机实验接线图1)按图8T 接线。

其中R 的阻值为同步电动机MS 励磁绕组电阻的 10倍(约90Q ),选用D41上90。

固定电阻。

R 选用D41上90。

串联90。

加上90 Q 并联90。

共225 Q 阻值。

R 选用D42上900。

串联 900。

共1800。

阻值并调至最小。

R 选用D42上900。

串联900。

加同步电机A 3~ Z∣zD52∣∣ij 步电力L 励磁电源 O 24V 0彩⅛奥畏出医箕111I0αα上900 Q并联900。

共2250。

阻值并调至最大。

MS为DJ18(Y接法,额定电压U=220V)02)用导线把功率表电流线圈及交流电流表短接,开关S闭合于励磁电源一侧(图8-1中为上端)。

3)将控制屏左侧调压器旋钮向逆时针方向旋转至零位。

接通电源总开关,并按下“开”按钮。

调节D52同步电机励磁电源调压旋钮及R阻值,使同步电机励磁电流I约0.7A左右。

4)把开关S闭合于R电阻一侧(图8-1中为下端),向顺时针方向调节调压器旋钮,使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

三相同步发电机的突然短路实验

三相同步发电机的突然短路实验

三相同步发电机的突然短路实验一、实验目的1、掌握超导体闭合回路磁链守恒原则。

2、熟悉三相突然短路的物理分析,短路电流及时间常数的计算。

3、了解瞬变电抗和超瞬变电抗及其测定方法。

4、观察三相同步发电机在空载状态下突然短路时定子绕组以及励磁绕组通过的瞬间电流波形。

二、预习要点1、三相同步电机突然短路的数学分析三、实验项目1、观察突然短路时定子绕组以及励磁绕组的瞬间电流。

四、实验方法2、控制屏上挂件顺序D523、观察三相同步发电机突然短路瞬间的电流波形(1)、按照图5-9接线,其中校正直流测功机的励磁电阻R f1选用R1上的900Ω加900Ω共1800Ω阻值,限流电阻选用R2上的90Ω串联90Ω共180Ω阻值。

电阻R选用R 上的650Ω并联650Ω共325Ω阻值,再调到5Ω。

R f2选用R3上900Ω串联900Ω共1800Ω阻值。

交流电流表选用MET01上的数模双显智能交流电流表,开关S选用D52上的交流接触器。

同步机的励磁电源选用D52上提供的电源。

启动之前电阻R1调至最大位置,R f1调至最小位置,电阻R f2调至最大位置。

开关S处于断开状态。

(2)、先接通校正直流测功机的励磁电源,然后接通电枢电源,同时使电机的转向符合正转要求。

升高电枢电压至220V,将启动电阻R1调至最小位置使校正直流测功机在额定电压下运行,再调节励磁电阻R f1使其转速达到同步转速1500r/min。

(3)、然后调节同步电机的励磁电流使同步电机输出电压等于额定电压110V。

在表5-19中记录此时电机的转速、电压、定子电流、励磁电流以及校正直流测功机的电枢电流。

图5-9 三相同步发电机突然短路实验接线图(5)、按下D52上的停止按钮使三相同步发电机开路。

将示波器的探头接至励磁绕组所串联电阻R f2两端,按步骤(4)所述方法用数字式记忆示波器摄录短路瞬间三相同步发电机的励磁电流的波形,并在图5-10中画出突然短路瞬间励磁电流的波形。

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告一、实验目的1. 掌握三相同步发电机的空载、短路及零功率因数负载特性的实验求取法。

2.学会用实验方法求取三相同步发电机对称运行时的稳太参数。

二、实验内容:1.空载实验:在n=nN,I=0的条件下,测取同步发电机的空载特性曲线Uo=f(If)。

2.三相短路实验:在n=n N,U=0的条件下,测取同步发电机的三相短路特性曲线I k=f(I f).3..求取零功率因数负载特性曲线上的一点,在n=nN;U=UN;cosØ≈0的条件下,测取当I=IN 时的If值。

三、实验仪器及其接线1.实验仪器如下图所示:2.实验室实际接线图如下图所示:图1 实验室实际接线图四、实验线路及操作步骤:1. 空载实验实验接线图如图2所示图2 实验接线图实验时启动原动机(直流电动机),将发电机拖到额定转速,电枢绕组开路,调节励磁电流使电枢空载电压达到120%U N值左右,读取三相线电压和励磁电流,作为空载特性的第一点。

然后单方向逐渐减小励磁电流,较均匀地测取8到9组数据,最后读取励磁电流为零时的剩磁电压,将测量数据记录于表1中。

表1 空载实验数据记录 n=no=1500转/分 I=0(1)表1中U 0=3AC BC AB U U U ++ U 0*=NU U 0 I f =I ´f +ΔI f0 I I fofI f =* I f0为U 0= U N 时的I f 值,在本实验室中取U N =400V,I N =3.6A 。

(2)若空载特性剩磁较高,则空载特性应予以修正,即将特曲线的的直线部分延长与横轴相交,交点的横坐标绝对植ΔI f0即为修正量,在所有试验测得的励磁电流数据上加上ΔI f0,即得通过坐标原点之空载校正曲线。

如图3所示。

图3 空载特性曲线校正2.短路实验实验线路图如图2所示。

在直流电动机不停机状态下,并且,发电机励磁电流等于零的情况下,这时合上短路开关K 2,将电枢三相绕组短路,将机组转速调到额定值并保持不变,逐步增加发电机的励磁电流I f ,使电枢电流达到(1.1-1.2)倍额定值,同时量取电枢电流和励磁电流,然后逐步减小励磁电流直到降为0为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验名称:三相同步电动机
小组成员:许世飞许晨光杨鹏飞王凯征
一.实验目的
1.掌握三相同步电动机的异步起动方法。

2.测取三相同步电动机的V形曲线。

3.测取三相同步电动机的工作特性。

二.预习要点
1.三相同步电动机异步起动的原理及操作步骤。

2.三相同步电动机的V形曲线是怎样的怎样作为无功发电机(调相机)3.三相同步电动机的工作特性怎样怎样测取
三.实验项目
1.三相同步电动机的异步起动。

≈0时的V形曲线。

2.测取三相同步电动机输出功率P
2
3.测取三相同步电动机输出功率P
=倍额定功率时的V 形曲线。

2
4.测取三相同步电动机的工作特性。

四.实验设备及仪器
1.实验台主控制屏;
2.电机导轨及转速测量;
3.功率、功率因数表(NMCL-001);
4.同步电机励磁电源(含在主控制屏左下方,NMEL-19);
5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18);
6.三相可调电阻器900Ω(NMEL-03);
7.三相可调电阻器90Ω(NMEL-04);
8.旋转指示灯及开关板(NMEL-05A);
9.三相同步电机M08;
10.直流并励电动机M03。

五.实验方法
被试电机为凸极式三相同步电动机M08。

1.三相同步电动机的异步起动
实验线路图如图3-1。

实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。

R的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。

开关S选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。

a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约左右,然后将开关S 闭合于可变电阻器R (图示左端)。

b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

c .当转速接近同步转速时,把开关S 迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程完毕,接通功率表、功率因数表、交流电流表。

2.测取三相同步电动机输出功率P 2≈0时的V 形曲线
a .按1方法异步起动同步电动机。

使同步电动机输出功率P 2≈0。

b .调节同步电动机的励磁电流I f 并使I f 增加,这时同步电动机的定子三相电流亦随之增加,直至电流达同步电动机的额定值,记录定子三相电流和相应的励磁电流、输入功率。

c .调节同步电动机的励磁电流I f 使I f 使逐渐减小,这时定子三相电流亦随之减小,直至电流过最小值,记录这时的相应数据,
图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)图3-1 三相同步电动机接线图(MCL-11、MEL-11B )
d.继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在这过励和欠励范围内读取9~11组数据。

数据记录于表3-1。

≈0
表3-1 n=1500r/min; U=220V;P
2
表中I = (I A + I B + I C)/3
P = P
Ⅰ+ P

3.测取三相同步电动机输出功率P
2
≈ 倍额定功率时的V形曲线。

a.按1方法异步起动同步电动机,调节测功机“转矩设定”旋钮使之加载,使同步电动机输出功率改变,输出功率按下式计算:
P
2
=
式中 n——电机转速,r/min; T
2
——由转矩表读出,N·m。

b.使同步电动机输出功率接近于倍额定功率且保持不变,调节同步电动机的励
磁电流I
f 使I
f
增加,这时同步电动机的定子三相电流亦随之增加直到电流达同
步电动机的额定电流,记录定子三相电流和相应的励磁电流、输入功率。

c.调节同步电动机的励磁电流If,使I
f
逐渐减小,这时定子三相电流亦随之减小直至电流达最小值,记录这时的相应数据,继续调小同步电动机的励磁电流,这时同步电动机的定子三相电流反而增大直到电流达额定值,在过励和欠励范围
内读取9~11组数据并记录于表3-2中。

表3-2 n=1500r/min; U=220V;P

2
表中 I = (I A + I B + I C)/3 P = PⅠ+ PⅡ
4.测取三相同步电动机的工作特性
a.按1方法异步起动同步电动机,按3方法改变负载电阻,使同步电动机输出功率改变,输出功率按下式计算:
P
2
=
式中 n——电机转速,r/min;
T
2
——由直流发电机的电枢电流.转矩表读出,N·m
b.同时调节同步电动机的励磁电流使同步电动机输出功率达额定值时,且功率因数为1。

c.保持此时同步电动机的励磁电流恒定不变,逐渐减小负载, 使同步电动机输出功率逐渐减小直至为零,读取定子电流、输入功率、功率因数、输出转矩、转速,共取6~7组数据并记录于表3-3中。

表3-3 U=U
N =220V; I
f
= A; n=1500r/min
表中 I = (I A + I B + I C )/3
P = P Ⅰ+ P Ⅱ P 2=
%1001
2
⨯=
P P η
六.实验报告分析
1.作P
2≈0时同步电动机的V形曲线I =f(I
f
),并说明定子电流的性质。

定子电流的性质:在输出功率为0的状态下,电动机从电源吸收的功率用于定子铜损耗和机械损耗。

当励磁电流很小时,定子电流I相对于U的相位处于滞后状态,此时同步电动机相当于电阻电感负载,从电源吸收滞后的无功功率;当励磁电流逐渐增大时,定子电流逐渐减小,直至与电压同相位,此时处于正常励磁状态;当励磁电流继续增大时,定子电流随之增大,电动机处于过励磁状态。

2.作P
2≈倍额定功率时同步电动机的V形曲线I =f(I
f
),并说明定子电流的性
质。

定子电流:当励磁电流很小时,定子电流是相位滞后于电压的正弦交流电,同步
电动机从电源吸收的功率除了用于定子铜损耗和机械损耗之外,其余转化为机械功率;当励磁电流增大时,定子电流随之减小,定子电流与电压的相位差逐渐减小直至为0,此时同步电动机处于正常励磁状态;当励磁电流继续增大时,定子电流随之增大,电动机处于过励磁状态,此时电动机从电网中吸收超前的无功功率,对于改善电网的功率因数有很大好处。

3.作同步电动机的工作特性曲线:I、P、cosφ、T
2、η=f(P
2
)
分析:由图中可以看出,当定子电流增大时,输出功率随之增大,且系统效率逐渐提高。

当定子电流逐渐增大时,功率因数基本保持1不变,这是由于调节了励磁电流,使得电动机的定子电流和电压处于同相位;定子电流很小、输出功率很小的时候,功率因数略小于1,这是由于当输出功率增大时,各条V型曲线逐渐向右上方移动,使得功率因数为1的点连成一条向右上方倾斜的曲线,在这种情况下,由于我们保持励磁电流不变,当输出功率很小时,功率因数会略小于1。

由于输出转矩正比与输出功率,故图中没有画出输出转矩与定子电流的关系曲线。

七.思考题
1.同步电动机异步起动时先把同步电动机的励磁绕组经一可调电阻组成回路,这可调电阻的阻值调节在同步电动机的励磁绕值的10倍约90欧姆,这电阻在起动过程中的作用是什么若这电阻为零时又将怎样
这是由于在启动时,励磁绕组不能开路。

所以用一个较大的电阻组成一个回路。

若励磁绕组开路,在大转差时,气隙旋转磁场在励磁绕组里感应出较高的电动势,有可能损坏他的绝缘。

若没有该电阻,励磁绕组中感应出的电流产生的转矩,有可能使电动机启动不到接近同步速的转速。

2.在保持恒功率输出测取V形曲线时输入功率将有什么变化为什么
在V型曲线中,定子电流随着励磁电流的增大而先减小后增大。

由于输入功率与输入电流成正比关系,则输入功率将先减小后增大。

从原理上讲,当定子电流减小时,电动机从电源中吸收滞后的无功功率逐渐减小;当定子电流增大时,电动机从电源中吸收的超前无功功率逐渐增多。

因此,输入功率先减小后增大。

3.对这台同步电动机的工作特性作分析。

同步电动机在启动的时候,采用异步启动的方式。

给定子绕组通入220V交流电,使得转子达到95%的转速。

随后将励磁绕组与直流电源接通,使得转子产生恒定磁场。

在磁场吸引力的作用下将电机拖入同步转速。

励磁电流的变化会影响定子电流的相位,呈现一条V型曲线。

当定子电流与电压同相位时,功率因数为1,此时电流越大,输入功率、输出功率、输出转矩就越大。

当定子电流超前于电压相位时,电动机从电网中吸收超前的无功功率,对于改善电网的功率因数有很大作用。

相关文档
最新文档