椭圆离心率问题

合集下载

椭圆离心率问题

椭圆离心率问题

、椭圆离心率的 1、运用几何图形中线段的几何意义。

基础题目 如图,0为椭圆的中心,F 为焦点,A 为顶点,准线L 交0A 于B, P 、Q 在椭圆上,PD 丄L于D, QFL AD 于 F,设椭圆的离心率为 e,则①e = |②e= | Q ; |③e=yAOp ④e= ||2aI AO | =a, | OF | =c,有⑤;T 丨 AO | =a, | BO | = —有③。

c思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取 AF 2的中点B,连接BF i ,把已知条件放在椭圆内,构造△ F i BE 分析三角形的各边长及关系。

解:丁| F 1F 2 | =2c | BF | =c | BE | 活c2 2X y变形1:椭圆h + —=1(a>b >0)的两焦点为F i 、F 2,点P 在椭圆上,使△ OPF 为正三角形,求椭圆离a b2 2x y题目1:椭圆 h + —=1(a>b >0)的两焦点为 R a b的两边,则椭圆的离心率 eF 2,以FF 2为边作正三角形,若椭圆恰好平分正三角形评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④c+ 3c=2a心率解:连接 PF2,则 I 0F2| = | OF | =| OP| , / F i PR =90 ° 图形如上图,e^3-12 2X y变形2:椭圆尹+話=1(日比>0)的两焦点为F i、F2 , AB为椭圆的顶点,P是椭圆上一点,且PF i丄X轴,• 2 厂2• • a =5c e=点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率二、运用正余弦定理解决图形中的三角形2 2X y题目2:椭圆 p + —=1(a>b >0),A是左顶点,F是右焦点,B是短轴的一个顶点,/ ABF=90°,求ea bPE // AB,求椭圆离心率解:v| PF F2 F i | =2c | OB| =b | OA| =aPH // ABI PF1 |I F2 F1 | a又•/ b= a2-c2解:a 2+b 2+a 2 =(a+c) 2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以 a 2点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。

椭圆中离心率问题(共19张PPT)

椭圆中离心率问题(共19张PPT)
2、体悟数学思想方法的运用: 转化思想,方程思想,函数思想等.
3、致胜秘诀: 理清算理耐心算,成功就在不远处!
典例剖析
根据直角三角形中斜边与直角边的不等 关系,得到关于a,c的齐次不等式.
典例剖析
典例剖析
根据椭圆的范围(点坐标分量的有界性), 得到关于a,c的齐次不等式.
典例剖析
设线法
建立离心率和某个 变量的(函数)关系 式,求值域.
典例剖析
设点法
根据曲线的范围,得到 关于e的不等式.
典例剖析
典例剖析
典例剖析
利用椭圆的定义和勾股定理建立 线段之间的关系,从而得到关于 a,c的齐次等式.
典例剖析
椭圆的第一定义和第二定义
典例剖析
典例剖析
解法提炼
求椭圆离心率的值: (1)解题方向:建立关于a,c的齐次等式. (2)实现策略
几何转化:利用椭圆的定义寻找线段之间的等量关系ห้องสมุดไป่ตู้ 方程思想:利用点在椭圆上,将点的坐标代入椭圆方程.
椭圆中离心率问题
高三 数学
考点概述
离心率是圆锥曲线的一个重要知识点,同时也是圆锥 曲线的重要几何性质.纵观近几年江苏高考,求离心率的 值或范围的题目屡见不鲜.这节课以椭圆为例,复习求椭 圆离心率的值或范围的一些方法.
典例剖析
通过将条件中的直角转化为向量 数量积等于零,找到曲线上点的 坐标满足的关系式,从而得到关 于a,c的齐次等式.
典例剖析
解法提炼
求椭圆离心率的范围: (1)解题方向:建立关于a,c的齐次不等式. (2)实现策略
几何性质:利用圆锥曲线的范围(如点坐标或焦半径的范围) 建立不等关系求解.
函数思想:根据条件建立离心率和其他变量的函数关系式, 然后利用函数求值域的方法求解离心率的范围.

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注江西临川二中 何泉清解几是高考重点考查的内容,故椭圆、双曲线的离心率问题依然是高考数学的热点和重点.一、求离心率的值 求解椭圆、双曲线离心率的值的方法:一是直接利用其定义;二是利用直线与其位置关系,转化到一个关于离心率e 的方程来求解.例1 已知P 是以F 1、F 2为焦点的双曲线2222by a x -=1上的一点,1PF ·2PF =0,且tan ∠P F 1F 2=21,则此双曲线的离心率e = . 解:如图1,∵1PF ·2PF =0,∴△P F 1F 2为直角三角形.∵tan ∠P F 1F 2=21,∴12PF PF =21,即| P F 1|=2| P F 2|. 又| PF 1|-| PF 2|=2a ,| PF 1|2+| PF 2|2=(2c )2, 图1∴| PF 2|=2a ,5| PF 2|2=4c 2,20a 2=4c 2, ∴22ca =5,则e =c a =5.例2 已知椭圆的短轴长为 6,F 1、F 2分别为它的左、右焦点,CD 是过F 1的弦,且与x 轴成α角(0<α<)π,若△F 2CD 的周长为20,则椭圆的离心率e =.解:如图2,∵| CF 1|+| CF 2|=2a ,|DF 1|+|DF 2|=2a ,∴两式相加,得:| CF 1|+| CF 2|+|DF 1|+|DF 2|=20=4a .∴a =5,又b =3,∴c =4, 则e =a c =54. 图2 点评:例1、例2是直接利用双曲线、椭圆的一义来求离心率的.例3 设双曲线2222by a x -=1(0<a <b =的半焦距为c ,直线l 过(a ,0),(b ,0)两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A .2 B .3 C .2 D .2或332 解:由l : by a x -=1,得bx +a -yab =0 原点到直线l 的距离为22b a ab+-=43c ,又a 2+b 2=c 2, ∴ab =43c 2,∴a 2b 2= 163c 4,即a 2c 2-a 4=163c 4,两边同除以a 4,则e 2-1=163e 4,解得e =2或e =332. 又b >a >0,∴ab >1,即e 2-1>1,e 2>2. ∴e =2.故选A .例4 已知椭圆C 的方程为2222x y a b+=1(a >b >0),若直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F 2,则椭圆的离心率e 的( )A .21B .22C .23D .2-1解:设半焦距为c ,则F 2(c ,0).∵M 在轴上的射影恰好是右焦点F 2,∴M (c , 22c ). ∴22a c +22)22(bc =1,又a 2-c 2=b 2, ∴22ac +)(2222c a c -=1, 整理得,2c 4-52a c 2+2a 4=0,即2e 4-5e 2+2=0.∴e 4=21,故选B . 点评:例3、例4求离心率的方法是有相同的特点:先根据条件得到一个关于a 、c 的齐次等式,然后等式两边同除以a 的方幂,得到一个关于离心率的方程,解出e 并注意条件即得到所求.二、求离心率的取值范围其方法可以利用椭圆、双曲线的变化范围,直线与椭圆、双曲线的三种位置关系建立的一元二次方程存在实根的条件,图形的直观性,实数的非负性或已知变量的取值范围(隐含条件的不等关系)等来确立含离心率e 的不等式,从而获解.例5 已知椭圆2222x y a b+=1(a >b >0)的左、右顶点分别为A 、B ,如果椭圆上存在点P ,使得∠APB =1200,求椭圆的离心率e 的取值范围.解法一:设P (x 0,y 0),由椭圆的对称性,不妨令0≤x 0<a , 0<y 0≤b .∵A (-a ,0),B (a ,0), ∴PA k =a x y +00,PB k =ax y -00. ∵∠APB =1200,∴tan ∠APB =-3,又tan ∠APB =1PB PA PB PA k k k k -+=2202002a y x ay -+, ∴2202002a y x ay -+=-3,……① 而点P 在椭圆上,∴b 2x 02+a 2y 02=a 2b 2……②由①、②得 y 0=)(32222b a ab -.∵0<y 0≤b ,∴0<)(32222b a ab -≤b .∵a >b >0,∴2ab ≤3(a 2-b 2),即4 a 2b 2≤3 c 4,整理得,3e 4+4e 2-4≥0.考虑0<e <1,可解得36≤e <1. 解法二:以AB 为弦,含0120的角且在x 轴上方的弓形弧与上半椭圆的交点除A 、B外至多有两个,至少有一个,所以上顶点D (0,b )在弓形内,即∠ADB ≥0120, ∴∠ODB ≥600(点O 为坐标原点),∴ba ≥3,即a 2≥3b 2=3(a 2-c 2), 则e 2≥32. ∴33≤e ≤1. 点评:椭圆、双曲线上点的横、纵坐标的取值范围往往可以确立含离心率e 的不等式.解法二是考虑到几何性质运用数形结合的思想方法建立了含e 的不等式,简化了求解过程.下面再看例6对这一方法漂亮的应用.例6 已知椭圆2222by a x +=1(a >b >0)上有点P ,使∠F 1PF 2为直角,求椭圆离心率的取值范围.解:依题意知,以F 1F 2为直径的圆C与椭圆必有公共点P ,则椭圆短轴上端点B 必在圆C的内部或圆上,即|OB |≤r =c (r 为圆C的半径),∴b ≤c ,∴a 2- c 2≤c 2, 即2 c 2≥a 2,则22≤e <1. 点评:本题还有其他多种解法,请同学们试试.例7 过双曲线2222by a x -=1(a >0,b >0)的右焦点F 且倾斜角为045的直线与双曲线的右支交于A 、B 两点.求双曲线离心率的取值范围.解:设F (c ,0),则直线AB 的方程为y =x -c ,且c 2= a 2+ b 2 由⎪⎩⎪⎨⎧-==-c x y b y a x 12222,消去y ,得2222)(b c x a x --=1, 即(a 2- b 2)x 2-2 a 2cx + a 2 (b 2 -c 2)=0.∵直线AB 与双曲线有两个交点,∴a 2- b 2≠0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2222b a c a -,x 1x 2=22222)(ba cb a -+. 又∵A 、B 分别在双曲线的右支上, ∴⎪⎩⎪⎨⎧〉-+=≠-0)(022*******b a c b a x x b a ,即a 2> b 2,a 2>c 2- a 2, ∴e 2<2,则1<e <2.点评:本题是以直线与双曲线的位置关系来确立含e 的不等式,亦可由图形上根据角度的大小关系确立含e 的不等式来求解.例8 已知梯形ABCD 中,|AB |=2|CD |,点E 满足=λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当32≤λ≤43时,求双曲线e 的取值范围. 解:以AB 为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,如图3,由双曲线的对称性知C 、D 关于y 轴对称.设A (-c ,0), C (2c ,h ), E (x 0,y 0),其中c =21|AB |,h 是梯形的高. ∵=λ, 图3∴(x 0+c ,y 0)=λ(2c -x 0,h -y 0), ∴x 0=)1(2)2(+-λλc ,y 0=λλ+1h . 设双曲线方程为2222by a x -=1, ∵C 、E 在双曲线上,并考虑e =a c , ∴222222221,(1)42()() 1.(2)411e h b eh b λλλλ⎧-=⎪⎪⎨-⎪-=⎪++⎩ 由(1)得22bh =42e -1,代入(2),得42e (4-4λ)=1+2λ, ∴λ=1-132+e ,由32≤λ≤43,得32≤1-132+e ≤43, 解得7≤e ≤10. 故双曲线离心率的取值范围为[7,10].点评:本题依据已知变量的范围来确立含e不等式从而获解.―――原载《广东教育》2005年第18期。

求解椭圆离心率的常见方法

求解椭圆离心率的常见方法

ʏ河南省郑州市第二高级中学 韦道田椭圆的离心率是椭圆的重要几何性质之一,下面就求解椭圆的离心率(或取值范围)给出几种重要方法,供同学们参考㊂一㊁利用椭圆离心率的定义求解例1 (1)在平面直角坐标系中,椭圆x 2a 2+y2b2=1(a >b >0)的焦距为2,以O 为圆心,a 为半径的圆,过点P a2c ,0作圆的两条切线且互相垂直,则离心率e =㊂(2)设M 为椭圆x 2a 2+y2b2=1(a >b >0)上一点,F 1,F 2为两个焦点,过M 作M F 1ʅx 轴,且øF 1M F 2=60ʎ,则椭圆的离心率为( )㊂A.12 B .22 C .33 D .32图1解析:(1)如图1,切线互相垂直,又半径O A ʅP A ,所以әO A P 是等腰直角三角形㊂因为2c=2,即c =1,所以a 2c=a 2,|O P |=2|O A |,a 2=2a ,则a =2㊂所以e =c a =22㊂(2)设|M F 1|=d ,因为øF 1M F 2=60ʎ,所以|M F 2|=2d ,|F 1F 2|=3d ㊂因此e =2c 2a =|F 1F 2||M F 1|+|M F 2|=3d d +2d =33,选C ㊂点评:e =2c2a =|F 1F 2||P F 1|+|P F 2|,其中F 1,F 2为椭圆的焦点,P 为椭圆上任意一点㊂二㊁利用圆锥曲线的统一定义求解依据e =|M F |d ,其中|M F |表示椭圆上的点M 到焦点F 的距离,d 表示椭圆上的点M 到焦点F 相应准线l 的距离㊂例2 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )㊂A.2 B .22 C .12 D .24解析:设过焦点F 1且垂直于长轴的弦为A B ,则|A B |=2㊂焦点F 1到准线l 的距离为1,则点A 到l 的距离也为1㊂由圆锥曲线的统一定义得离心率e =|A F 1|1=22,选B ㊂点评:利用圆锥曲线的统一定义,可以较快地求出圆锥曲线的离心率㊂三㊁构造离心率的方程(不等式)求解例3 (1)已知A ,B 为椭圆x 2a2+y 2b2=1(a >b >0)的长轴与短轴端点,F 为一个焦点,若A B ʅB F ,则该椭圆的离心率为( )㊂A.-1+52 B .1-22C .2-1D .22(2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的42 解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.左㊁右焦点分别为F 1(-c ,0)㊁F 2(c ,0),若椭圆上存在点P ,使a s i n øP F 1F 2=cs i n øP F 2F 1,则该椭圆离心率的取值范围为㊂解析:(1)在R tәA B F 中,|A F |2=|A B |2+|B F |2,即(a +c )2=(a 2+b 2)+(b 2+c 2)㊂因为e =c a,所以整理得e 2+e -1=0,e =-1+52,选A ㊂(2)由已知条件及正弦定理求得|P F 1|=ca|P F 2|㊂又|P F 1|+|P F 2|=2a ,则|P F 2|=2a 2c +a ㊂由|P F 2|<a +c ,得2a2c +a<a +c ,即e 2+2e -1>0㊂结合0<e <1,解得2-1<e <1㊂点评:如果直接求解椭圆离心率的值(或取值范围)有困难,那么可以通过构造离心率的方程(或不等式)求解㊂四㊁利用数形结合思想求解例4 ʌ第12届希望杯 试题ɔ设F 1㊁F 2是椭圆的两个焦点,若椭圆上存在点P ,使øF 1P F 2=120ʎ,则椭圆离心率e 的取值范围是㊂图2解析:如图2,当点P 与短轴端点B 重合时,øF 1P F 2最大㊂于是得øF 1P F 2ȡ120ʎ,故t a n øF 1P O ȡt a n 60ʎ=3,即cbȡ3㊂所以e =c a =cb 2+c 2=1bc2+1ȡ113+1=32㊂又0<e <1,所以32ɤe <1㊂点评:利用数形结合思想求椭圆的离心率e ,可回避繁杂的推理与计算过程㊂五㊁利用椭圆的光学性质求解例5 ʌ第一届 希望杯 高二试题ɔ椭圆的两个焦点是F 1(3,-6),F 2(6,3),一条切线方程为4x =3y ,这个椭圆的离心率是㊂解析:设切点为P ,切线为l ,作F 1㊁F 2关于l 的对称点F 1'㊁F 2',则由椭圆的光学性质知点P 是等腰梯形F 1F 2F 2'F 1'对角线的交点,对角线的长应等于椭圆长轴的长㊂由点到直线的距离公式,得F 1㊁F 2到直线l 的距离分别为6㊁3,可见梯形上㊁下底长分别为6㊁12㊂该等腰梯形的腰长即椭圆的焦距310㊂利用6,12,310,求出梯形的对角线长为92,从而得到椭圆的离心率e =31092=53㊂练一练:1.若椭圆的两个焦点与短轴的一个顶点构成一个等边三角形,则椭圆的离心率是( )㊂A.12 B .32 C .34 D .642.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且B F ʅx 轴,直线A B 交y 轴于点P ㊂若A Pң=2P B ң,则椭圆的离心率是( )㊂A.32 B .22 C .13 D .123.已知F 1㊁F 2是椭圆的两个焦点,满足M F 1ң㊃M F 2ң=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )㊂A.(0,1) B .0,12C .0,22D .22,14.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 且倾斜角为60ʎ的直线交椭圆于A ,B 两点,若|F A |=2|F B |,则椭圆的离心率等于( )㊂A.33 B .22 C .12 D .23参考答案:1.A2.D3.C4.D(责任编辑 徐利杰)52解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

(完整版)椭圆离心率高考练习题

(完整版)椭圆离心率高考练习题

椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C. D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B.C. D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B. C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A.B. C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C. D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A. B. C.D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A.B.C. D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C.D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B. C.D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C. D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A .B .C .D .解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e >.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b ,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A .B .C .D .解解:∵表示焦点在x 轴上且离心率小于,答:∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x 轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A .B .C .D .解解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,答:F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值范围为[]故选:A4.斜率为的直线l 与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A .B .C .D .解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c ,﹣c)(c ,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C :=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A .B .C .D .解解:设|PF2|=x,答:∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I ,且有(其中λ为实数),椭圆C的离心率e=()A .B .C .D .解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为 G (,),∵,∴IG∥x轴,∴I 的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I 的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是()A .B .C .D .解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A .B.2﹣C.2(2﹣)D .解解:如图,答:在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c∴MF2=4c,MF1=2 cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P 满足,则椭圆C的离心率e的取值范围是()A .B .C .D .或解答:解:∵椭圆C上的点P 满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e 的取值范围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A .B .C .D .解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是 e ∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P ,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C .D .解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的范围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A .B .C .D .解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C :+=1(a>b>0)的左焦点为F,若F 关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A .B .C .D .一l解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则解答:,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A .B .C .D .解答:解:F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,设F 1(﹣c ,0),F 2(c ,0),(c >0),P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|, 可得2c=2,即ac=b 2=a 2﹣c 2.可得e 2+e ﹣1=0. 解得e=.故选:D . 15.已知椭圆(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( ) A . B . C . D .解答: 解:由题意作图如右图,l 1,l 2是椭圆的准线,设点Q (x 0,y 0),∵2|PF 1|=3|QF 1|,∴点P (﹣c ﹣x 0,﹣y 0); 又∵|PF 1|=|MP|,|QF 1|=|QA|, ∴2|MP|=3|QA|, 又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+,∴3(x 0+)=2(﹣c ﹣x 0+),解得,x 0=﹣,∵|PF 2|=|F 1F 2|, ∴(c+x 0+)=2c ; 将x 0=﹣代入化简可得,3a 2+5c 2﹣8ac=0, 即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C :的左、右焦点分别为F1,F2,O为坐标原点,M为y 轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A .B .C .D .解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A .B .C .D .解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+co s∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)解答:解:由已知P (,y),得F1P的中点Q 的坐标为(),∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F 为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A .B .C .D .﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c ,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C :=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C 的离心率的取值范围是.故选:C.21.在平面直角坐标系xOy 中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C :+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C :+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e ∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P 满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]解答:解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A .B .C .D .解答:解:设P(x0,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A .B .C .D .解答:解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a 有最小值,对应的离心率e 有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k <,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)解解:如图所示:|AF2|=a+c,|BF2|=,答:∴k=tan∠BAF2=,又∵0<k <,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B 使得∠BPA=,则椭圆C1的离心率的取值范围是()A .B .C .D .解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP 中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值范围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A .B .C .D .解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。

椭圆中的离心率问题

椭圆中的离心率问题

专题4 椭圆中的离心率问题一、选择题1.已知椭圆 ()2222:10x y C a b a b+=>>的上顶点为A ,左、右两焦点分别为12,F F ,若12AF F ∆为等边三角形,则椭圆C 的离心率为( )A.12B.C.13D.2.若12,F F 是椭圆的两个焦点,P 是椭圆上一点,当12PF PF ⊥,且1230PF F ∠=︒,则椭圆的离心率为( )A.1B.C. 1D.3.若椭圆()222210x y a b a b+=>>的左、右焦点分别为12F F 、,线段12F F 被抛物线 ()220y bx b =>的焦点分成5:3的两段,则此椭圆的离心率为( )A.1617B.C.45D.4.如图,己知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,12PF PF ⊥,直线1PF 与y 轴交于点Q ,若4bOQ =,则椭圆C 的离心率为( )A.B.C.12D.235.已知ABCDEF 为正六边形,若A 、D 为椭圆W 的焦点,且B 、C 、E 、F 都在椭圆W 上,则椭圆W 的离心率为( )A.1B. 1C.D.6.如图,椭圆()222210x y a b a b+=>>的右焦点为F ,A ,B 分别为椭圆的上、下顶点,P 是椭圆上一点,AP //BF 、|AF |=|PB |,记椭圆的离心率为e ,则2e = ( ).A.B.C.12D.7.设椭圆()2222:12x y C a a b+=>的左、右焦点分别为12,F F ,直线l y x t =+:交椭圆C 于点A ,B ,若1F AB ∆的周长的最大值为12,则C 的离心率为( )A.B.C.D.598.设F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,P 是C 上的点,圆2229a x y +=与直线PF交于A ,B 两点,若A ,B 是线段PF 的两个三等分点,则C 的离心率为( )A.B.C.D.二、多选题9.椭圆 ()2222:10x y C a b a b+=>>, 12,F F 分别为左、右焦点,12,A A 分别为左、右顶点,P 为椭圆上的动点,且12120PF PF PA PA ⋅+⋅≥恒成立,则椭圆C 的离心率可能为( )A.12B.C.D.10.已知椭圆 ()2222:10x y C a b a b+=>> 的左右焦点分别12F F 、,过1F 且斜率为2的直线交椭圆E 于p 、Q 两点,若12PF F ∆为直角三角形,则该椭圆C 的离心率e =( )A.1B.C. 1D.11.已知椭圆()2222:10x y M a b a b+=>>的左、右焦点分别为12F F ,,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从12F F ,,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为( )A.B.C.D.12.的椭圆为“黄金椭圆”,如图,已知椭圆 ()2222:10x y C a b a b+=>>,12A A ,分别为左、右顶点,12B B ,分别为上、下顶点,12F F ,分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( ) A. 2112212A F F A F F ⋅=B. 11290F B A ∠=︒C. 1PF x ⊥轴,且21//PO A BD. 四边形221AB A B 的内切圆过焦点12F F ,三、填空题13.已知椭圆()222210x y a b a b +=>>,左焦点F (-c ,0),右顶点A (a ,0),上顶点B (0,b ),满足0FB AB ⋅=则椭圆的离心率为_____.14.椭圆()2222:10x y C a b a b+=>>, 以原点为圆心,半径为椭圆C 的半焦距的圆恰与椭圆四个项点围成的四边形的四边都相切,则椭圆C 的离心率为_______.15.如图,过原点O 的直线AB 交椭圆()2222:10x y C a b a b+=>> 于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若34AM AP =,则椭圆C 的离心率是________.16.椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为12F F ,,点P 在椭圆上且同时满足;①12F F P ∆是等腰三角形;②12F F P ∆是纯角三角形;③线段12F F 为12F F P ∆的腰;④椭圆C 上恰好有4个不同的点P .则椭圆C 的离心率的取值范围是_______. 【提高题】 一、选择题1.10的化简结果为( )A. 2212516x y +=B. 2212516y x +=C. 221259x y +=D. 221259y x +=2.如果方程22143x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是( )A. ()3,4B. 7,2⎛⎫+∞ ⎪⎝⎭C. 73,2⎛⎫⎪⎝⎭D. 7,42⎛⎫ ⎪⎝⎭3.“1<m <5”是“方程 22215x y m m+=--表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设定点 (()()120,3, 0,3F F -.动点P 满足条件()1290PF a PF a a-=->则点P 的轨迹是( ) A.椭圆B.线段C.不存在D.椭圆或线段5.(多选题)己知P 是椭圆 22197x y +=上一点,椭圆的左、右焦点分别为12F F ,,且121cos 3F PF ∠=,则( )A. 12PF F ∆的周长为12B. 1PF F S ∆=C.点P 到x 轴的距离为D. 122PF PF ⋅=6.(多选题)设P 是椭圆22:12x C y +=上任意一点12F F ,是椭圆C 的左、右焦点,则( )A. 12PF PF +=B. 1222PF PF -<-<C.1212PF PF ≤⋅≤D. 2101PF PF ≤⋅≤二、填空题7.在平面直角坐标系xOy 中,已知△ABC 顶点A (-3,0)和C (3,0),顶点B 在椭圆 2212516x y +=上,则sin sin 2sin A CB+=___________.8.已知 12F F ,是椭圆 22197x y +=的两个焦点A 为椭圆上一点,且12AF F ∠=45°,则12AF F ∆的面积为___,此时 2AF =________.9.如图把椭圆 2212616x y += 的长轴AB 分成8等分,过每个分点作x 轴的垂线交椭圆的上半部分于127P P P ⋯,,,七个点,F 是椭圆的焦点,则127PFP F P F +++=______.10.已知椭圆()2222:10x y C a b a b+=>>的右焦点为F (1,0),A ,B 为椭圆C 的左右顶点,且3AF FB =,则椭圆C 的方程为______.三、解答题11.如图所示,在圆()22:125C x y ++=内有一点A (1,0).Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.12.如图,椭圆 ()2222:10x y C a b a b +=>>经过点41,33M ⎛⎫⎪⎝⎭且点M 到椭圆的两焦点的距离之和为(1)求椭圆C 的标准方程;(2)若R , S 是椭圆C 上的两个点线段RS 的中垂线l 的斜率为12且直线)与BS 交于点P , O 为坐标原点,求证:P 、O 、M 三点共线.。

求椭圆离心率常用的三种方法

求椭圆离心率常用的三种方法

椭圆的离心率是椭圆的一个重要性质,它是反映椭圆的扁平程度的量.求椭圆的离心率问题比较常见.这类问题常与平面几何、三角函数、平面向量等知识相结合,侧重于考查同学们的逻辑推理和数学运算能力.那么,求椭圆的离心率有哪些方法呢?下面结合实例进行探讨.一、公式法我们知道,圆锥曲线的离心率公式为e=ca.因此要求椭圆x2a2+y2b2=1(a>b>0)的离心率,只需求出椭圆方程中的参数a、c的值或c与a的比值即可.例1.已知椭圆E:x2a2+y2b2=1(a>b>0)的长轴长是短轴长的2倍,则E的离心率为_______.解:因为椭圆的长轴长是短轴长的2倍,所以2a=4b,所以ba=12,可得e=ca本题较为简单,由题意可以很容易确定椭圆中参数a、b之间的关系,直接根据椭圆方程中参数a、b、c之间的关系a2=b2+c2,即可求得c与a的比值,从而求得椭圆的离心率.例2.已知椭圆C:x2a2+y2b2=1()a>b>0的右焦点为F()2,0,P为椭圆的左顶点,且||PF=5,则椭圆C的离心率为().A.23B.12C.25D.13解:因为椭圆的右焦点为F()2,0,所以c=2,因为P为椭圆的左顶点,所以||PF=a+c=a+2=5,解得a=3,所以椭圆C的离心率为e=ca=23.故选A.我们首先根据题意可以确定c的值;然后根据P点的位置,确定a的值,即可根据椭圆离心率的公式求得问题的答案.二、几何性质法几何性质法是指利用平面几何图形的性质解题.在求椭圆的离心率时,我们可以根据题意画出几何图形,将椭圆参数方程中的a视为长半轴长、b视为短半轴长、c视为焦半径,根据椭圆、三角形、平行四边形、梯形的性质来求得椭圆的长半轴长、短半轴长、焦半径,或建立三者之间的关系式.例3.已知椭圆C:x2a2+y2b2=1()a>b>0的左右焦点分别为F1,F2,点M是椭圆C上第一象限的点,若||MF1=||F1F2,直线F1M与y轴交于点A,且F2A是∠MF2F1的角平分线,则椭圆C的离心率为_______.解:由题意得||MF1=||F1F2=2c,由椭圆的定义得||MF2=2a-2c,记∠MF1F2=θ,则∠AF2F1=∠MF2A=θ,∠F1F2M=∠F1MF2=∠MAF2=2θ,则||AF2=||AF1=2a-2c,所以||AM=4c-2a,故ΔMF1F2∽ΔMF2A,则||MF2||F1F2=||AM||MF2,则2a-2c2c=4c-2a2a-2c,可得e2+e-1=0,解得e=5-12或e=-5-12(舍).解答本题,需运用相似三角形的性质建立关于||MF1、||F1F2||AM、||MF2的关系式,并根据椭圆的定义,即在平面内到两个定点的距离之和为定值的点的轨迹,确定||MF1、||F1F2||AM、||MF2与a、c之间的关系,从而使问题获解.例4.如图1,已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),点M()x0,y0()x0>c是C上的一点,点A是直线MF2与y轴的交点,ΔAMF1的内切圆与MF1相切于点N,若|MN|=2||F1F2,则椭圆C的离心率e=______.解:设内切圆与AM切于Q,与AF1切于P,所以||MN=||MQ=2||F1F2=22c,||F1N=||F1P,||AP=||AQ,图141由圆的对称性知||AF 1=||AF 2,所以||PF 1=||QF 2,即||NF 1=||QF 2,所以2a=||MF 2+||MF 1=()||MQ -||QF 2+()||MN +||NF 1=||MQ +||MN =42所以e =c a =242我们先结合图形明确点、圆、椭圆之间的位置关系;然后根据椭圆的定义将问题转化为线段问题,即可根据圆的对称性、圆与切线的位置关系建立线段||MF 2、||MF 1、||MQ 、||QF 2、||MN 、||NF 1之间的关系,得到关于a 、c 的关系式,进而求出椭圆的离心率.用几何性质法解题的计算量较小,有利于提升解题的效率.三、构造齐次式在求椭圆的离心率时,若不易求出a 、c 的值或比值,则可考虑根据题目中的条件与椭圆的方程,建立关于a 、b 、c 的二次齐次式,即可根据离心率公式e =ca,得到关于e 的二次方程,进而通过解方程求得离心率e 的值.例5.如图2,已知椭圆的方程为:x 2a 2+y 2b2=1()a >b >0,过原点的直线交椭圆于M ,N 两点,点P 在x 轴上,其横坐标是点M 横坐标的3倍,直线NP 交椭圆于点Q .若直线QM 恰好是以MN 为直径的圆的切线,求椭圆的离心率.解:设M ()x 1,y 1,Q ()x 2,y 2,则N ()-x 1,-y 1,P ()3x 1,0,设直线MN 、QM 、NP 的斜率分别为k 1、k 2、k 3,则k 1=y 1x 1,k 2=y 2-y 1x 2-x 1,k 3=0+y 13x 1-()-x 1=y 14x 1=14k 1,因为直线QM 是圆的切线,所以QM ⊥MN ,k 1k 2=-1,所以k 2k 3=-14,又Q 在直线NP 上,所以k 3=y 2+y 1x 2+x 1,因为M 、Q 在椭圆x 2a 2+y 2b 2=1()a >b >0上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,将上述两式相减得x 21-x 22a 2+y 21-y 22b 2=0,整理得y 2+y 1x 2+x 1⋅y 2-y 1x 2-x 1=-b 2a 2,故k 2k 3=-b 2a 2=-14,即b 2a 2=14,可得a 2-c 2a 2=34,即a2-c 2a 2=1-e 2=14,解得e 我们先根据三条直线与圆、椭圆的位置关系建立关于a 、c 的二次齐次式a 2-c 2a 2=34;再根据离心率公式e=c a ,建立关于e 的方程,即可求得e 的值.在求得e 的值后,一定要注意检验所得的值是否在(0,1)内,以确保得到的答案是正确的.图2图3例6.如图3,已知AB 直线过椭圆x 2a 2+y 2b2=1()a >b >0的左焦点F ()-2,0,且与椭圆交于A 、B 两点,与y 轴交于点C ,若点C ,F 分别是线段AB 的三等分点,则该椭圆的离心率为_______.解:因为点C 、F 是线段AB 的三等分点,由图3可知C 为AF 的中点,右焦点为F 2,所以AF 2//OC ,所以AF 2⊥x 轴,由椭圆的方程得A 点的坐标为()c ,b 2a ,C ()0,b 22a,因为C ,B 关于F 对称,所以B 点的坐标为()-2c ,-b 22a ,将其代入椭圆的方程x 2a 2+y 2b2=1()a >b >0中得:4c 2a 2+b 24a2=1,即16c 2+b 2=4a 2,得a 2=5c 2,所以离心率为e =c a 先由点C 、F 是线段AB 的三等分点可得AF 2//OC ;再根据线段的对称性可求得B 点的坐标;最后将其代入椭圆中,即可建立关于a 、b 、c 的二次齐次式,进而得到关于椭圆离心率e 的方程.无论采用哪种方法求椭圆的离心率,我们需明确解题的目的有两个:一是通过计算求得c 与a 的值;二是利用已知条件建立关于c 与a 的齐次式,进一步将其转化为关于ca的方程.(作者单位:四川省内江市威远中学校)42。

椭圆离心率问题

椭圆离心率问题

一.椭圆离心率的1、运用几何图形中线段的几何总义.基础®n:如图• 0为椭圆的中心,F为优点• A为顶点.交OATB. P、Q在櫛圆上・PD丄L T D.QF1AD FF,设椭圆的离心率为e,则①ehj■斛©€晋押+^歸@。

寺窘V I AO I =a, I OF I =c, M⑤:••T AO I I BO I =牛.••有③.g 椭圆* &皿〉b〉0)的两焦点为Fl、F:.以F用为边作正二角形,若椭圆恰好平分正二角形的常边•则椭岡的离心率e?思路:A点在椭圆外•找"b. C的关系应借助椭圆.所以取AF:的屮点B.连接BF:,把己知条件放在椭圆内.构造△F:BF:分析三角形的存边长及关系.解:V I F1F: I =2c I BF11 =c I BF: I pc c*^c=2a /.e= -^-=萌TV* Y"变形1: tfW古P"=2b >0)的两焦点为F「F:.点Mtfm上,使△OPR为正三角形,求椭财心率? 解;逢接 PF :,则 I OF : I = I OF J = I OP L ZFxPF : =90° 图形如上图.0=^3-1变形2:椭凤忖 &gb 〉。

)的两焦点为Fl 、F : , AB 为椭酗顶点,P 址椭圆上-点•且PF ;丄X 轴,PF : "AB,求椭圆离心率?U : 解 S 7 I PF11 = — I F : F J =2c I OB I =b I OA I =a aI PF" b … 厂LT PF : //ABIF 旧 | —- 又 TX .•.a:=5r e 妾U点评:以卜•题目•构造焦点二角形,通过各边的几何总义及关系•推导右关a 与C 的方程式.推导离心率. 二.运用正余弦定理解决图形中的三角形題目2: tffi 圆匚 召vl (a>b >0). A 足左顶点,F 圧右似点,B 肚短轴的一个顶点.ZABF=90".求e? a D解:I AO I =a I OF I =c I BF I =a I AB I 寸沁a'+b'-a* =(a+c)"二¥+2ac+c* a*-c'-ac=0 两边同除以 a :e>e-l=0 e=^ 舍却变形:椭圆三一 WrYl(a 〉b >0), G 士爭-,A 是左顶点,F 卅右焦点,B 址短轴的一个顶点,求ZABF? a b 2点评:此題足上一題的条件与结论的互换-解题中分析各边-山余弦泄理解决角的问题.答案:90。

2.2.2椭圆的简单几何性质2——离心率问题

2.2.2椭圆的简单几何性质2——离心率问题

练习:
x2 y 2 (3)设 F1F2 是椭圆 E : 2 2 1(a b 0) 的左、右焦点 , a b
ABF2 为等边三角 过F 1 作轴的垂线与椭圆交于 A,B 两点 ,
形 ,则 E 的离心率为 __________.
x2 y 2 (4)[2013 辽 宁 ] 已 知 椭 圆 C : 2 2 1(a b 0) 的 左 焦 点 为 a b
变式2:已知椭圆
x2 y2 + = 1(a > b > 0) 的左、右焦点分别为F 、F , 1 2 a 2 b2
o F PF = 60 若椭圆上存在一点P,使得 , 则椭圆离心率e的范围 1 2 o F PF = 120 1 2 是 .
总结:
1.椭圆离心率的问题,通常有两类:一是求椭圆的离 心率;二是求椭圆离心率的取值范围。 2.求椭圆的离心率:只需要由条件得到一个关于基本 量 a,b,c,e 的一个方程,就可以从中求出离心率. 3.求椭圆的离心率的取值范围:通常可以从两个方面 来研究:一是考虑几何的大小,例如线段的长度、 角的大小等;二是通过设椭圆点的坐标,利用椭圆 本身的范围,列出不等式.
椭圆的焦点三角形问题 2 2 x y 例 3.椭圆 点 P 为椭圆上的点, 1的焦点为 F1、F2 , 25 9 (1) 满足F1PF2 为直角的点 P 的个数; (2)当 F1 PF2 为钝角时,求点 P 的横坐标的取值范围;
(3)若 F1PF2 的内切圆半径为 1 ,求 PF 的值. 1 PF2
2
x2 y 2 (1)(12 新课标 )设 F1F2 是椭圆 E : 2 2 1(a b 0) a b
3a 的左、右焦点 , P 为直线 x 上一点 , F2 PF 1 是底角 2

椭圆离心率题型-总结

椭圆离心率题型-总结

的离心率;【答案】24、( 06山东)在给定的椭圆中,过焦点且垂直于长轴的弦长为,2,焦点到相应准线距离为 1,则该椭圆的离心率为 _________ 。

占=1 ( a > b > 0)的左、右顶点分别是 AB 左、右焦点分别是 F 1, F 2。

若|AF | , | F 1F 2I , | RB|利用椭圆及等比数列的性质解题.由椭圆的性质可知:AF 」=a —c , RF 2 =2c , F 1B =椭圆离心率题型:b 2 2a一)求离心率1)用定义(求出 a,c2x1、已知椭圆C :a或找到c/a )求离心率 2y 2= 1,(a b 0)的两个焦点分别为 F i (-1,0), F 2(1,0),且椭圆C 经过点【答案】解:2a =PF i + PF 2 =41^ 1 233所以,a =::貶.c又由已知,c = 1,所以椭圆C 的离心率e 二上a-2 y 23a2、(12)设F 1F 2是椭圆E : —^ 2~ 1(a b 0)的左、右焦点,P 为直线-上一点,丄F 2PF 1是底角为30;的等腰三角形,则 E 的离心率为()【解析】选C(B)I(C)-4(D)-.A解:.■: F 2PF 1是底角为30的等腰三角形3 cn PF 2 = F 2F 1 = 2(_ a — c) = 2c= e = _2 a3、 ( 12辽理)已知点(2,3)在双曲线 C :2 2計i 0,®)上,C 的焦距为4,则它的离心率为2b 2[解法一]:通径:仝- a=、2①根据焦准距有 椭圆的第二定义[解法二]:(老手的方法)e =2/2| AD| 1|AF2|_ X 2 5、(江西)椭圆飞a 2 b成等比数列,则此椭圆的离心率为 .13.辽5=a c .又已知AF 1 ,b 2一 =1②;①式除以②式,得cF 1F 2 , F i B 成等比数列,故(a —c )(a+c ) =(2c )2,即 a 2—c 2=4c 2,则 a 2=5c 2.故 ^-=—.即椭圆的离a 5心率为上5.52)、根据题设条件构造a 、c 的齐次式方程,解出e 。

椭圆离心率50道题训练含详解

椭圆离心率50道题训练含详解
(1)求椭圆 的方程;
(2)设椭圆 : , 为椭圆 上一点,过点 的直线交椭圆 于A, 两点,且 为线段 的中点,过 , 两点的直线交椭圆 于 , 两点,如图.当 在椭圆 上移动时,四边形 的面积是否为定值?若是,求出该定值;若不是,请说明理由.
参考答案
1.C
【详解】
由椭圆 ,可得 ,所以 ,
所以椭圆的离心率为 .
15.已知椭圆 : 的离心率为 ,则 的值可能是()
A. B. C. D.
16.椭圆的中心在原点,离心率为 ,则该椭圆的方程可能为()
A. B.
C. D.
17.已知曲线 : ,其中 为非零常数,则下列结论中正确的是()
A.当 时,则曲线 是一个圆
B.当 时,则曲线 是一个椭圆
C.若 时,则曲线 是焦点为 的椭圆
A.椭圆的离心率是 B.线段AB长度的取值范围是
C. 面积的最大值是 D. 的周长存在最大值
22.如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为 和 ,半焦距分别为 和 ,离心率分别为 和 ,则下列结论正确的是()
A. B.
C. D.椭圆Ⅱ比椭圆Ⅰ更扁
34.椭圆 : 的左右焦点分别为 , ,过点 的直线 交椭圆 于 , 两点,已知 , ,则椭圆 的离心率为___________.
35.已知椭圆 的左、右焦点分别为 , ,上顶点为 ,且 ,若第一象限的点 、 在 上, , , ,则直线 的斜率为__________.
36.设 , 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点, ,若 ,则椭圆 的离心率为___________.
四、解答题
44.已知椭圆的焦点为 和 , 是椭圆上的一点,且 是 与 的等差中项.

求椭圆离心率的题型

求椭圆离心率的题型

椭圆离心率的题型椭圆的离心率是椭圆最重要的几何性质,求解椭圆的离心率的三种方法:1.定义法:求出a ,c ,代入公式c e a=,根据离心率的定义求解离心率; 2.齐次式法:由已知条件得出关于,a c 的齐次方程,然后转化为关于e 的方程求解; 3.特殊值法:通过取特殊值或特殊位置,求出离心率.一、定义法,求出a ,c ,代入公式c e a=,根据离心率的定义求解离心率e 1.已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3二、齐次式法,由已知条件得出关于,a c 的齐次方程,然后转化为关于e 的方程求解 (1)通过等量关系列式得出关于,a c 的齐次方程1.若一个椭圆的焦距、短轴长、长轴长组成一个等比数列,则该椭圆的离心率e =( )A B C .35 D 2.椭圆22221x y a b+=(0a b >>)的左焦点1()0F c -,到过顶点(0)A a -,,(0)B b ,的直线的,则该椭圆的离心率e =( )A B .12 C .2 D 3.已知椭圆22221(0)x y a b a b+=>>左右焦点分别为1(,0)F c -,2(,0)F c ,若椭圆上一点P 满足2PF x ⊥轴,且1PF 与圆2224c x y +=相切,则该椭圆的离心率为( )A .3B .12C D4.若椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线22(0)y bx b =>的焦点分成5:3的两段,则此椭圆的离心率为( )A .1617BC .45D 5.已知椭圆()222210x y a b a b+=>>的左顶点为M ,上顶点为N ,右焦点为F ,若0MN NF ⋅=,则椭圆的离心率为( )A .2 B .12 C .12 D .12(2)通过特殊三角形的边关系列式得出关于,a c 的二元齐次方程 1.设椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为12F F P 、,是C 上的点2121230PF F F PF F ⊥∠=︒,,则C 的离心率为( )A B .13 C .12 D .32.若1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,当12PF PF ⊥,且1230PF F ∠=︒,则椭圆的离心率为( )A 1BC 1D .23.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点A 是椭圆短轴的一个顶点,且123cos 4F AF ∠=,则椭圆的离心率e =( )A .12 B .2 C .14 D4.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是e =( )A B 1 C 1 D -5.设1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左右焦点,点A ,B 分别为椭圆C 的右顶点和下顶点,且点1F 关于直线AB 的对称点为M .若212MF F F ⊥,则椭圆C 的离心率为( )A B C D 6.设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左右焦点,点P 在椭圆C 上,且213PF PF =,若线段1PF 的中点恰在y 轴上,则椭圆的离心率为( )A B C .2 D .127.椭圆C :22221(0)x y a b a b+=>>的左.右焦点为1 F ,2 F ,过2 F 垂直于 x 轴的直线交C 于 A ,B 两点,若1AF B △为等边三角形,则椭圆 C 的离心率为( )A .12B .2C .13D 8.在Rt ABC 中,AB AC =,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1 C 1 D -9.如图,已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,212PF F F ⊥,直线1PF 与y 轴交于点Q ,若||4b OQ =,则椭圆C 的离心率为( )A .2B .2C .12D .2310.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为( )A B C .2 D 11.设1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=︒,则椭圆C 的离心率为( )A B C .13 D .1612.已知椭圆()2222:10x y C a b a b+=>>的上顶点为A ,左、右两焦点分别为1F 、2F ,若12AF F △为等边三角形,则椭圆C 的离心率为( )A .12BC .13D 13.已知椭圆22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆的离心率是( )A .3B .3C .2D .2 14.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切于椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为( )A .12B .13C .2D .315.已知P 是椭圆()2222:10x y C a b a b+=>>上的点,1F ,2F 分别是C 的左,右焦点,O 是坐标原点,若212OP OF OF +=且1260F PF ∠=︒,则椭圆的离心率为( )A .12 B C D(3)求出某个在椭圆上的点的坐标,再把坐标代入标准方程,得出关于,a c 的齐次方程1.已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A B .34 C .12 D .142.椭圆22221(0)y x a b a b+=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN 使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为( )A .2B .12C .2D .123.已知12,F F 是椭圆与22221(0)x y a b a b+=>>的左、右焦点,过左焦点1F 的直线与椭圆交于,A B 两点,且满足112||2||,||||AF BF AB BF ==,则该椭圆的离心率是( )A .12B .3C D4.椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为12,F F ,焦距为2c .若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于( )A 1B .2CD .15.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上一点,且2PF x ⊥轴,直线1PF 与C 的另一个交点为Q ,若114PF FQ =,则C 的离心率为( )A B .2 C .5 D .76.已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y += B .22186x y + C .22142x y += D .22184x y += 7.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为( )A B C D(4)点差法 1.已知P 是椭圆22221x y a b+=(0a b >>)上一点,过原点的直线交椭圆于A ,B 两点,且34PA PB k k ⋅=-,则椭圆的离心率为( )A .12 B .13 C .14 D .2(5)涉及到最值1.设椭圆C :22214x y a +=(2a >)的左、右焦点分别为1F ,2F ,直线l :y x t =+交椭圆C 于点A ,B ,若1F AB 的周长的最大值为12,则C 的离心率为( )A B .3 C .3 D .59 2.已知椭圆C 过点(5,0),(0,)A B b -,左、右焦点分别为1F 、2F ,中心在原点,点M 的坐标为(1,2),P 为椭圆上一动点,若1PF PM +的最大值为10,则椭圆C 的离心率为( )A .15 B .25 C .35 D .45。

一个椭圆离心率问题的推广探究

一个椭圆离心率问题的推广探究

一个椭圆离心率问题的推广探究椭圆是数学中一类几何形状,由于其外形似椭圆,因此得名。

椭圆的特点是椭圆的两个不同的轴的长度不同,且这两个轴都是不极大的。

在数学上,椭圆的长短轴之比即称为椭圆的离心率,它是描述椭圆形状特征的重要参数。

从椭圆离心率的参数中可以看出,椭圆的离心率其实是由它本身的长短轴之比确定的。

因此,正如数学家们发现的,椭圆的离心率与它的长短轴之比之间的关系十分密切。

这样,从而可以从椭圆的长短轴之比中推算出其离心率。

但是,当涉及到更复杂的、更多参数的椭圆时,这种简单的离心率推算将不再适用。

比如,在多参数椭圆中,除了长短轴之比之外,还有椭圆的偏离率(或称偏心率),它是衡量椭圆主轴与副轴相对于椭圆的长轴的角度偏移的指标。

当椭圆的偏离率存在时,那么仅仅靠椭圆的长短轴之比就不能很好的推算出其离心率了。

不过,数学家们解决了这个问题,他们提出了一种特殊的椭圆模型,该模型同时考虑了椭圆的长短轴之比和偏离率。

这个模型得到了数学家们的广泛认可,它是工程技术和科学研究中常用的椭圆离心率模型,用来估算椭圆形状的特征参数。

虽然最初这种椭圆模型仅仅支持了普通二次椭圆的特征参数,但随着时间的推移,数学家们不断地推广其应用范围,使其能够支持多参数椭圆的特征参数。

它们给出了一种便捷的方法,用来推算出多参数椭圆的离心率。

由此可见,椭圆的离心率问题经过了不断的扩展,从一个简单的参数椭圆扩展到多参数椭圆,这样,椭圆离心率在很大程度上能够更好的反映出椭圆形状的多参数特征。

而这种扩展也使得椭圆在工程技术和科学研究中越来越受到重视,椭圆的离心率不再是一个简单的参数,而是一组复杂的参数,可以更好的反映出椭圆形状的特征。

综上所述,椭圆的离心率问题可以说经过了不断的推广和拓展,从最初非多项式椭圆的形状特征参数发展到多参数椭圆,使得椭圆在科学研究和工程技术中受到了更多的重视,同时也更好地反映出椭圆形状的复杂特征参数。

椭圆离心率经典题型总结

椭圆离心率经典题型总结

椭圆离心率经典题型总结一、基础题1. 已知椭圆2215x y m+=的离心率e =m 的值为( )A .3B CD .253或32. 的两段,则其离心率为________.3. 若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.244. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( )11A.D.54325. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于________.6. 已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 17. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF △是等腰直角三角形,则这个椭圆的离心率是( )A B C 1 D8. 椭圆22221x y a b+=上一点到两焦点的距离分别为12d d 、,焦距为2c ,若122d c d 、、成等差数列,则椭圆的离心率为_____.9. 已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A 、13B C 、12D10. 在ABC ∆中,7,cos .18AB BC B ==-若以,A B 为焦点的椭圆经过点,C 则该椭圆的离心率e =________.11. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A. 45B.35C.25D.1512. 已知椭圆()222210x y a b a b+=>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为( )A B C D13. 椭圆22221(a b 0)x y a b+=>>的两顶点为A(,0),B(0,)a b 且左焦点为F ,FAB ∆是以角B为直角的直角三角形,则椭圆的离心率e 为( )A.B. C. D.14. 设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点.若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1B.5-12C.22 D.2+115. 已知椭圆22221x y a b+=,焦点为12,F F ,在椭圆上存在点P ,使得12PF PF ⊥,则椭圆的离心率e 的取值范围为________.16. 斜率为2的直线l 与椭圆22221(0)x y a b a b+=>>交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( )A .2B .12C D .1317. 已知椭圆()222210x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是A B C .13 D .1218. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是________.19. 与椭圆x 22+y 2=1有相同的焦点且与直线l :x -y +3=0相切的椭圆的离心率为________.20. 设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2B .1[,1)2C .(0,2D .1(0,]2二、中档题21. 在平面直角坐标系xOy 中,设椭圆22221x y a b+=(0a b >>)的焦距为2c ,以点O 为圆心,a 为半径作圆M .若过点2,0a P c ⎛⎫⎪⎝⎭所作圆M 的两条切线互相垂直,则该椭圆的离心率为 .22. 如图,在平面直角坐标系xOy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,直线12A B 与直线1B F 相交于点,T 线段OT 与椭圆的交点M 恰为OT 的中点,则该椭圆的离心率为 .23. 已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13 D.1424. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为 .25. 如图,已知椭圆22221x y a b+=(0a b >>)的左顶点为A ,左焦点为F ,上顶点为B ,若90BAO BFO ∠+∠=°,则该椭圆的离心率是 .26. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G (,)63c c ,则椭圆C 的离心率为_____.27. 已知O 为坐标原点,F 是椭圆22:1(0)C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点。

离心率问题的7种题型15种方法

离心率问题的7种题型15种方法

离心率问题的7种题型15种方法求离心率常用公式题型一 椭圆离心率的求值方法一 定义法求离心率1. 已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为( ) A .31 B .21 C .22 D .322 【解析】 14222=+y a x ,∵ a 2−4=4⇒a =2√2 ,则 e =c a =2√2=√22 ,选C2. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13 B .12 C .23 D .34【解析】由直角三角形的面积关系得bc =124⨯12c e a ==,选B3. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .45 B .35 C .25D . 15【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯ 即22222()44()a c b a c b a c +=⇒+==-. 整理得:2225230,5230c ac a e e +-=+-=,选B4. 椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为【解析】椭圆12222=+by a x (a >b >0)左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2若|AF1|,|F1F2|,|F1B|成等比数列,所以(a﹣c)(a+c)=4c2,即a2=5c2,所以e=55方法二运用通径求离心率5.设椭圆C2222x ya b+=1(a>b>0)的左右焦点为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率等于【解析】不妨假设椭圆中的a=1,则F1(﹣c,0),F2(c,0),当x=c时,由2222x ya b+=1得y=ab2=b2,即A(c,b2),B(c,﹣b2),设D(0,m),∵F1,D,B三点共线,∴,得m=﹣2b2,即D(0,﹣2b2),∴若AD⊥F1B,在,即=﹣1,即3b4=4c2,则3b2=2c=3(1﹣c2)=2c,即3c2+2c﹣3=0,解得c==,则c=,∵a=1,∴离心率e=ac=336.从椭圆22221x ya b+=(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥O P(O是坐标原点),则该椭圆的离心率是【解析】由题意知A(a,0),B(0,b),P2,bca⎛⎫-⎪⎝⎭∵AB∥O P,∴2b bac a-=-.∴b=c;又∵a2=b2+c2,∴22212cea==.∴2e=7.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是【解法一】设1(,0)F c-,2(,0)F c,由题意易知,21212,PF F F c PF===,1212212F Fcea PF PF∴====+【解法二】由题意易知,2122,PF FF c ==由通径得22=a b PF ,故22c=ab ,解得e 1方法三 运用e =e = 8. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为【解】 如图,,作DD 1⊥y 轴于点D 1,则由,得,所以,,即,由椭圆的第二定义得又由|BF |=2|FD |,得,a 2=3c 2,解得e ==33,9. 经过椭圆2222=1x y a b+(a >b >0)的左焦点F 1作倾斜角为60°的直线和椭圆相交于A ,B两点,若||||AF BF 112=,求椭圆的离心率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、椭恻离心率的1.运川几何图形中线段的几何意义。

基础题目:如图• 0为椭圆的中心,F为焦点• A为顶点,准线L交0A于B. P、Q在椭恻上• PD丄L于D.QFIAD于F,设椭圆的离心率为e.则(!)*晋卞②^罟禺算④*+|吕厂、I F0 I⑤ *1757评:AQP为椭圆上的点•根据椭圆的第一定义得,V I A0 I =a, I OF I =c,・••有⑤:Tl AO I =aU BO I =辛.••有③。

题目1:椭圆务+^l(a>b>0)的两焦点为F, . F2 •以F1F2为边作正三角形.若椭圆恰好平分正三角形的两边.则椭圆的离心率e思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2的中点B.连接8F_把已知条件放在椭圆内•构造△RBF2分析三角形的^^^边长及关系。

解:V I F1F2 I =2c I BF1 I =c I BFz I =©C c-K/3c=2a Ae= yjs-l*2 u2变形椭圆农+h=lSb>0)的两儘点为F1、F2 •点P在椭圆上,使△OPF1为正三角形•求椭恻离心解:连接 PF2测 I OF2 I = I OFJ = I OP I ,ZF I PF2 =90^ 图形如上图,y2变形2:椭圆农+^i(a>b>0)的两焦点为F 八Fz . AB 为椭恻的顶点.P 是椭圆上一点•且PF 】丄X 轴.tP•■TP Fl I = — I Fa Fl I =2c I OB I =b I OA I =a "AB •■- I F X' I ■夕 又"b=毎疋•'•a2=5c2 e=¥ 点评:以上题目,构造焦点三角形・通过#边的几何总义及关系,推寻有关a 与C 的方程式,推导离心率。

一、运用正余弦定理解决图形中的三角形y2 \i2题目2:椭圆+^l(a>b>0), A 是左顶点.F 是右焦点.B 是短轴的一个顶点.ZA8F=90" ■求ePF2 〃 AB,求椭圆离心率解: PF2根据和比性质:I FiP I + I PF2 I sinFiFzP+sin PF1F22c ZPFiFa =75 * Z PF2Fi=15「 5in9(r V e* sin75“ +5inl5' " 3点评:在焦点三角形中・使用第一定义和正弦定理可知X2 v2变形 h 椭圆+^l(a>b>O)rrj 两焦点为 Fl (-C. 0)、F2 (c,0), P 是椭圆上一点,且ZFiPF ; =60 .求 e 的取值范ra解 S I AO I =3 I OF I =C I BF I =a I AB I 而 a^b^+a^ =(a+c)2 =$2+2合c+c2 aJ :2・ac=0 两边同除以 aPe^+e-l=0 e=—e - '-护(舍去)变形:椭+^l{a>b>0). e=2号E A 是左顶点,F 是右焦点.B 是短轴的一个顶点,求ZABF 点评: 此题是上一题的条件与结论的互换•解题中分析各边.由余弦定理解决角的问題。

答案:90°此类e=^的椭圆为优茨椭鬪。

性质:1、ZABF=90^ 2、假设下端点为8_则ABFBi 四点共圆.3.焦点与相应准线之间的距离等于 长半轴长。

焦点三角形以外的三角形的处理方法根据几何恿义, 总结: 关e 的方程找伶边的表示.结合解斜三角形公式•列出有 X2 v2题目3:椭恻活+^=l(a>b>0).过左焦点Fl 且倾斜角为60° 的直线交椭圆与AB 两点,若I F1A I =2 I Bfi L求e解:设 I BF) I =m 则 I AF2 I =2a-am I BF21 =2a-ma2 -c2=m{2a-c) fa2 _c^=m(2a-cl “ …“ :2a-c 1 亠 2在△AF 」F2及△BF*2中,由氽弦定理御:X 2(a2・c2)=m(28+c) 两式相除五孑题目4:椭圆令+器1阿>0)的两焦点为F1 (-C. 0)、”©0)・P 是以I 时2 I 为直径的圆与椭圆的一个 交点.且ZPFiFa =5 ZPF2F1 ,求分析:此题有角的值,可以考堪正弦定理的应用。

I FiFz I I F1P II PF2 I 解:由正弦定理:sin 护2 ■ sin 吋2» " sin PF1F2 I F1F2 Isin变形得:I F1F2 1 I PF2 I + I sin F1PF2"sin F1F2P +sin PF1F2 " sin F1PF2®=sin F1F2P +sin PF1F2分析:上题公式直接应用.解:设ZFiF2p=a -则ZF2F I P=12O" -asin60""sin F1F2P +sin PF1F2 "sin a +sin(120^ -a))(2 y2变形2:已知椭恻牙+十总=1 {t>0) F1F2为椭恻两焦点• M 为椭恻上任总一点{M 不与长轴两端点重合)设 ZPFiF2 = a ,ZPF2卩讦P 若扌<tan 手tan 事寺,求e 的取{ft 范FR 分析:运用三角函数的公式•把正弦化正切。

a p1- tan 丁"tan 亍 a F" 1- tan -ylan 〒 1 1-e 111以直线与椭圆的位g 关系为背景•用设而不求的方法找e 所符合的关系式.题目5:椭恻宗+^=l{a>b>0),斜率为1.且过椭圆右焦点F 的直线交椭恻于A 、8两点.6i+5kj1;=(34b^x^+a^y^=a^b^ 尸x ・c{a^+b^)x^-2a^cx+a^c^-a^b^=0 2a^c 2a^c . -2b^cXi+X2=歹丽 yi+y#而Jc 亏而OA+OB=(xi+X2,yi+y2)(3, -1)共线•则sin FiPfz MFe<lsin FiPFa 解;根据上题结论 e=£jn F2F2P +sin PF1F2 "sin a +sin Pa + P Q +Ba P a p2sin —2—cos —2— cos —cos 亍 sin p-sin丁 a+P a -P a 卩 a p2sin —2—cos —— cos —cos -y+sin 亍sinp-共线.-(X1+X2)=3(¥1+丫2)既 a2=3b2 e=¥ 法二2设AB 的中点N ・则20N=0A+0B 例2力2 評于1① X22泞①阀得:Vl-yi b2 X"X2 …b2—…、 册•农耐 ••g0・3)既 a2=3b2 e=f- 由图形中暗含的不等关系,求离心率的取值范ffl 。

题目6:椭圆右■ +材=l (a>b>0)的两焦点为F1(Y. 0)、F2(C,O )・满足的点M 总在椭圆内部.解:Ac<ba^=b^+c^ >2c20<@<¥y2 护题目7:椭圆歹■+詁1@比>0)的两焦点为F1 (-C. 0)、”©0)・P 为右准线L 上一点.FiP 的垂直平分线 恰过F2点,求e 的取值范困四、分析:VMfi-MF2=0A 以F I F2为直径作圆.M 在恻0上・与椭圆没有交点。

分析:思路b 如图F 」P 与FzM 垂直,根据向a 垂直•找a. b 、c 的不等关系。

思路2:根据图形中的边长之间的不等关系.求e既(羌》则帚・(¥+") =-(余七曇) PF] • MF2 =0(阴•(务)+驴=0化半Wed解法 2: I F1F2 I = I Ph I =2c则2C M|-・C 3心I"3c2Ma2 则半 Wxl 总结:对比两种方法,不难看出法一具有代表性,可谓通法.而法二是运用了垂直平分线的几何性质.巧 妙的运用三角形边的大小求解的妙法。

侨以垂直平分线这个条件经常在解析几何中出现•对于它的应用方 法,值御大家注意。

离心率为商考的一个重点題目,多以选择题或解答题的第一问形式出现,望大家经过此系列题目能对 它有一些认识和掌握。

椭圆中与焦点三角形有关的问题X ■ V ~题1:椭圆—+ — = 1的焦点为Fl 、F2•点P 为其上动点,沟 ZF'PF ]为钝角时•点P横坐标的取az —-C解法一2 F1 (-c> 0) Fa {c,0J值范碉是 ______ .设计意图:从习题入手,不陌生,并且让学生明白本节课内容有很强的实用价值. (二)问题的分析与引导 问题分解:2 2问题】.椭圆& +冷=]的焦点为斤、F"P 为其上-点,.凸眛为M 时,点P 的横坐 标是 ______ n问题2.而此题为钝角・处竞钝角和直角有何联系解題的关键在于点动,发现Z F'PF Q 的大小与点P 的位a 有关,尤竞有何联系,成r 大家探索的焦点。

设计意图:把一个看似未知的问題转化为几个“己经具备的经验"可以解决的问题,是数学常规解题 策略,这个任务不可能一a 而但可以水滴石穿-性质一:严I 点P 从右至左运动时.Zf ;PF2由说角变成直角,又变成钝角•过j'Y 轴之后.对称地由 钝角变成直角再变成说角,并且发现为点P 与短釉端点重合时.纠PF?达到最大。

3. “性质一坊是为什么呢你能证明吗提示:“这节课我们研处的是焦点三角形.在三角形中.求角的最值往往可转化为求什么的最值”学生 思考后回答:求某个三角函数的最值。

问《3:解三角形巾我们常用的理论依据是什么问题4:究竞转化为求哪种三角函数的最值・经大家演算、试验,悟出火欲求ZF'PF Q 的最大值,只 需求cosZFiPF,的最小值“(面对cosZFfFg JP 斥+ I r 巧耳I 如何求嚴小值.有的同学尝试后发现箱用两次均值不等式,则两次不等号方向相反,达不到目的。

能否少用一次均值不等式求出报值呢学生们发现 分子变化的部分是I PF, I- +1 PF,卩・分译变化的部分是2IPFJ JPF, L -者的关系是+IPFJ'=(I PF, 1 + IP F, I)'+2 IP 杠 I • I 卩耳匸 一 2 IP 片1・1 PF? '•于是目标式可分成两部分閒两八最后对阳 W I 利用均值不等式,即可大功告成。

设计意图:在课堂教学和作业中渗透两个7: 3是我们一直致力在研宪的课题,本例很好地体现了三 角及基本不等式的应用-从而求得'1IPF, l=IPFJ .即点P 与短轴端点重合时,cosZF.PF,有报小值为算一21戶斥l-IP 传I2b'3^JsZF;PF2有最大值c此題结果为一亠,亠5 5\ /问题5,由上面的分析,你能得出cosZfjPf;与离心率e的关系吗X~ y"性质二已知椭圆方程为—+ ^ = 1(«>/?>0),两焦点分别为设焦点三角形PF]f;a- h- '"巾ZF|P耳=&,则cos&>l-2,・(卅且仅!动点为短轴端点时取等号)设计意图^进一步的挖掘,可以ih问题简单化.应用价值就更奇,“看似一小步,其实一大步"x~ V"题2:已知斤、化是椭圆— + 2— = \(a>h> 0)的两个焦点,椭圆上一点P使ZF'PF,®。

相关文档
最新文档