2018年高考数学二轮复习 专题6 解析几何 第2讲 圆锥曲线的概念与性质、与弦有关的计算问题课后强

合集下载

2018年高考数学二轮复习课件 专题6 第2讲圆锥曲线的概念与性质、与弦有关的计算问题(65张)

2018年高考数学二轮复习课件 专题6 第2讲圆锥曲线的概念与性质、与弦有关的计算问题(65张)
2 a =8, 解得 2 b =8,
x2 y2 故双曲线方程为 8 - 8 =1. 故选 B.
x2 y 2 3.(2017· 全国卷Ⅲ,5)已知双曲线 C:a2-b2=1(a>0,b>0)的一条渐近线方 5 x2 y2 程为 y= 2 x,且与椭圆12+ 3 =1 有公共焦点,则 C 的方程为 导学号 52134713 ( B ) x2 y2 A. 8 -10=1 x2 y2 C. 5 - 4 =1 x2 y 2 B. 4 - 5 =1 x2 y 2 D. 4 - 3 =1
第一部分 专题强化突破
专题 六 解析几何
第二讲 圆锥曲线的概念与性质、 与弦有关的计算问题
1
高考考点聚焦
2
3 4 5
核心知识整合
高考真题体验 命题热点突破 课后强化训练
高考考点聚焦
高考考点
考点解读 1.求圆锥曲线的标准方程、离心率、 双曲线的渐近线方程 2.考查圆锥曲线的定义、性质 1.位置关系的判定 2.几何或代数关系式的证明 1.考查弦长问题
b c 1+a2 ②在双曲线中______________;离心率为 e=a=__________.
c2=a2+b2
(2)双曲线的渐近线方程与焦点坐标
b y=± x x y a ① 双 曲 线 a2 - b2 = 1(a>0 , b>0) 的渐 近 线 方 程 为 ___________ ; 焦 点 坐标
(3)抛物线的焦点坐标与准线方程
p p (± x=∓2 2,0) ,准线方程为__________ ①抛物线 y2=± 2px(p>0)的焦点坐标为__________ . p p (0,± ) 2 2 ②抛物线 x =± 2py(p>0)的焦点坐标为__________ ,准线方程为 y=∓2.

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大.圆锥曲线的定义、标准方程与几何性质|x|≤a,|y|≤b |x|≥a x≥0热点一 圆锥曲线的定义与标准方程例1 若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( )A .30°B .60°C .120°D .150°(2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-12的一个焦点重合,且在抛物线上有一动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y .根据抛物线的定义可知m =|PF |-1,设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |.易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4|5-1=5-1.思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图.(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x答案 (1)D (2)C解析 (1)∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20. ∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知,|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠A 1AF =60°. 连接A 1F ,则△A 1AF 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则|NF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.热点二 圆锥曲线的几何性质例2 (1)已知离心率为e 的双曲线和离心率为22的椭圆有相同的焦点F 1,F 2,P 是两曲线的一个公共点,若∠F 1PF 2=π3,则e 等于( )A.52 B.52 C.62D .3 (2)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1思维启迪 (1)在△F 1F 2P 中利用余弦定理列方程,然后利用定义和已知条件消元;(2)可设点P 坐标为(a 2c ,y ),考察y 存在的条件.答案 (1)C (2)D解析 (1)设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,焦距为2c ,|PF 1|=m ,|PF 2|=n ,且不妨设m >n ,由m +n =2a 1,m -n =2a 2得m =a 1+a 2,n =a 1-a 2. 又∠F 1PF 2=π3,∴4c 2=m 2+n 2-mn =a 21+3a 22,∴a 21c 2+3a 22c 2=4,即1(22)2+3e 2=4,解得e =62,故选C. (2)设P ⎝⎛⎭⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y 2, 当2QF k 存在时,则1F P k =cy a 2+c 2,2QF k =cyb 2-2c 2, 由12F P QF k k ⋅=-1,得 y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当2QF k 不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1, 即所求的椭圆离心率的取值范围是⎣⎡⎭⎫33,1.思维升华 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3 C. 2 D. 3(2)(2014·课标全国Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3m D .3m 答案 (1)C (2)A解析 (1)设OF 的中点为C ,则 AO →+AF →=2AC →,由题意得, 2AC →·OF →=0,∴AC ⊥OF ,∴AO =AF , 又∠OAF =90°,∴∠AOF =45°, 即双曲线的渐近线的倾斜角为45°, ∴ba =tan 45°=1, 则双曲线的离心率e =1+(ba)2=2,故选C.(2)双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±33m x =±m mx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +31+m= 3.故选A.热点三 直线与圆锥曲线例3 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知AB →=613BC →.(1)求椭圆的离心率;(2)设动直线y =kx +m 与椭圆有且只有一个公共点P ,且与直线x =4相交于点Q ,若x 轴上存在一定点M (1,0),使得PM ⊥QM ,求椭圆的方程.思维启迪 (1)根据AB →=613BC →和点B 在椭圆上列关于a 、b 的方程;(2)联立直线y =kx +m 与椭圆方程,利用Δ=0,PM →·QM →=0求解.解 (1)∵A (-a,0),设直线方程为y =2(x +a ),B (x 1,y 1), 令x =0,则y =2a ,∴C (0,2a ), ∴AB →=(x 1+a ,y 1),BC →=(-x 1,2a -y 1),∵AB →=613BC →,∴x 1+a =613(-x 1),y 1=613(2a -y 1),整理得x 1=-1319a ,y 1=1219a ,∵点B 在椭圆上,∴(1319)2+(1219)2·a 2b 2=1,∴b 2a 2=34,∴a 2-c 2a 2=34,即1-e 2=34,∴e =12.(2)∵b 2a 2=34,可设b 2=3t ,a 2=4t ,∴椭圆的方程为3x 2+4y 2-12t =0,由⎩⎪⎨⎪⎧3x 2+4y 2-12t =0y =kx +m ,得 (3+4k 2)x 2+8kmx +4m 2-12t =0,∵动直线y =kx +m 与椭圆有且只有一个公共点P , ∴Δ=0,即64k 2m 2-4(3+4k 2)(4m 2-12t )=0, 整理得m 2=3t +4k 2t ,设P (x 1,y 1)则有x 1=-8km 2(3+4k 2)=-4km 3+4k 2, y 1=kx 1+m =3m 3+4k 2,∴P (-4km 3+4k 2,3m3+4k 2), 又M (1,0),Q (4,4k +m ),∵x 轴上存在一定点M (1,0),使得PM ⊥QM ,∴(1+4km 3+4k 2,-3m3+4k 2)·(-3,-(4k +m ))=0恒成立, 整理得3+4k 2=m 2.∴3+4k 2=3t +4k 2t 恒成立,故t =1. ∴椭圆的方程为x 24+y 23=1.思维升华 待定系数法是求圆锥曲线方程的基本方法;解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点(1,22),右焦点为F 2.设A ,B 是C 上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q 两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.解 (1)因为焦距为2,所以a 2-b 2=1.因为椭圆C 过点(1,22), 所以1a 2+12b 2=1.故a 2=2,b 2=1.所以椭圆C 的方程为x 22+y 2=1.(2)由题意,当直线AB 垂直于x 轴时,直线AB 的方程为x =-12,此时P (-2,0),Q (2,0), 得F 2P →·F 2Q →=-1.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M (-12,m )(m ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 212+y 21=1,x222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0,则-1+4mk =0,故4mk =1.此时,直线PQ 的斜率为k 1=-4m , 直线PQ 的方程为y -m =-4m (x +12).即y =-4mx -m .联立⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1消去y , 整理得(32m 2+1)x 2+16m 2x +2m 2-2=0. 设P (x 3,y 3),Q (x 4,y 4)所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1.于是F 2P →·F 2Q →=(x 3-1)(x 4-1)+y 3y 4=x 3x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1 =(4m 2-1)(-16m 2)32m 2+1+(1+16m 2)(2m 2-2)32m 2+1+1+m 2 =19m 2-132m 2+1. 由于M (-12,m )在椭圆的内部,故0<m 2<78,令t =32m 2+1,1<t <29,则F 2P →·F 2Q →=1932-5132t.又1<t <29,所以-1<F 2P →·F 2Q →<125232.综上,F 2P →·F 2Q →的取值范围为[-1,125232).1.对涉及圆锥曲线上点到焦点距离或焦点弦的问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2.椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3.求双曲线、椭圆的离心率的方法:(1)直接求出a ,c ,计算e =ca ;(2)根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5.抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24;(2)|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1|F A |+1|FB |为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.真题感悟1.(2014·湖北)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433B.233C .3D .2答案 A解析 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2, 由(2c )2=r 21+r 22-2r 1r 2cos π3, 得4c 2=r 21+r 22-r 1r 2.由⎩⎪⎨⎪⎧ r 1+r 2=2a 1,r 1-r 2=2a 2得⎩⎪⎨⎪⎧r 1=a 1+a 2,r 2=a 1-a 2,∴1e 1+1e 2=a 1+a 2c =r 1c. 令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+(r 2r 1)2-r 2r 1=4(r 2r 1-12)2+34,当r 2r 1=12时,m max =163, ∴(r 1c )max =433, 即1e 1+1e 2的最大值为433. 2.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限, 所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8), 所以直线BF 的斜率为43.押题精练1.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是_____________.答案264解析 如图所示,设双曲线的右焦点为H ,连接PH , 由题意可知|OE |=a4,由OE →=12(OF →+OP →),可知E 为FP 的中点.由双曲线的性质,可知O 为FH 的中点, 所以OE ∥PH ,且|OE |=12|PH |,故|PH |=2|OE |=a2.由双曲线的定义,可知|PF |-|PH |=2a (P 在双曲线的右支上), 所以|PF |=2a +|PH |=5a 2. 因为直线l 与圆相切,所以PF ⊥OE .又OE ∥PH ,所以PF ⊥PH .在△PFH 中,|FH |2=|PH |2+|PF |2, 即(2c )2=(a 2)2+(5a2)2,整理得c a =264,即e =264.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,O为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明:直线OP 的斜率k 满足|k |> 3. (1)解 设点P 的坐标为(x 0,y 0),y 0≠0.由题意,有x 20a 2+y 20b2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP · k BP =-12,可得x 20=a 2-2y 20, 代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)证明 方法一 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2,② 由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2, 代入②,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.方法二 依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b2=1. 因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.③ 由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2. 代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3, 所以|k |> 3.(推荐时间:60分钟)一、选择题1.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 答案 D解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b 2=1的离心率为( ) A .2或233B.6或233 C .2或 3 D.3或 6 答案 A解析 由题意,可知双曲线x 2a 2-y 2b 2=1的渐近线的倾斜角为30°或60°,则b a =33或 3. 则e =c a =c 2a 2= 1+(b a )2=233或2. 故选A. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 答案 B解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.故选B. 4.已知椭圆y 2a 2+x 2b2=1 (a >b >0),A (4,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC →=0,|OB →-OC →|=2|BC →-BA →|,则其焦距为( ) A.463B.433C.863D.233 答案 C解析 由题意,可知|OC →|=|OB →|=12|BC →|,且a =4, 又|OB →-OC →|=2|BC →-BA →|,所以,|BC →|=2|AC →|.故|OC →|=|AC →|.又AC →·BC →=0,所以AC →⊥BC →.故△OAC 为等腰直角三角形,|OC →|=|AC →|=2 2.不妨设点C 在第一象限,则点C 的坐标为(2,2),代入椭圆的方程,得2242+22b 2=1,解得b 2=163. 所以c 2=a 2-b 2=42-163=323,c =463. 故其焦距为2c =863. 5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0), 因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程,化简得4y 2-123y -9=0,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. 方法二 联立方程得x 2-212x +916=0, 故x A +x B =212. 根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94. 6.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且 PF →1·PF →2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12] B .[12,22] C .(22,1) D .[12,1) 答案 B解析 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12, 所以12≤e ≤22.故选B. 二、填空题7.(2014·北京)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案 x 23-y 212=1 y =±2x 解析 设双曲线C 的方程为y 24-x 2=λ, 将点(2,2)代入上式,得λ=-3,∴C 的方程为x 23-y 212=1, 其渐近线方程为y =±2x .8.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.答案 2解析 由抛物线的定义可得|MQ |=|MF |,F (p 2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p 4, 解得p =2,故答案为 2.9.抛物线C 的顶点在原点,焦点F 与双曲线x 23-y 26=1的右焦点重合,过点P (2,0)且斜率为1的直线l 与抛物线C 交于A ,B 两点,则弦AB 的中点到抛物线准线的距离为________. 答案 11解析 因为双曲线x 23-y 26=1的右焦点坐标是(3,0). 所以p 2=3,所以p =6. 即抛物线的标准方程为y 2=12x .设过点P (2,0)且斜率为1的直线l 的方程为y =x -2,联立y 2=12x 消去y 可得x 2-16x +4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16,所以弦AB 的中点到抛物线准线的距离为x 1+x 2+p 2=16+62=11.故填11. 10.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若|OA |= b ,则该双曲线的离心率为_______. 答案 2解析 延长F 2A 交PF 1于B 点,则|PB |=|PF 2|,依题意可得|BF 1|=|PF 1|-|PF 2|=2a .又因为点A 是BF 2的中点.所以得到|OA |=12|BF 1|,所以b =a . 所以c =2a .所以离心率为 2.三、解答题11.已知曲线C 上的动点P (x ,y )满足到定点A (-1,0)的距离与到定点B (1,0)的距离之比为 2.(1)求曲线C 的方程;(2)过点M (1,2)的直线l 与曲线C 交于两点M 、N ,若|MN |=4,求直线l 的方程.解 (1)由题意得|P A |=2|PB | 故(x +1)2+y 2=2(x -1)2+y 2化简得:x 2+y 2-6x +1=0(或(x -3)2+y 2=8)即为所求.(2)当直线l 的斜率不存在时,直线l 的方程为x =1.将x =1代入方程x 2+y 2-6x +1=0得y =±2,所以|MN |=4,满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -k +2,由圆心到直线的距离d =2=|3k -k +2|1+k 2, 解得k =0,此时直线l 的方程为y =2.综上所述,满足题意的直线l 的方程为x =1或y =2.12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程.解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,因为2|AB |=|AF 2|+|BF 2|,所以|AB |=43a . l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1, 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2].故43a =4ab 2a 2+b2,得a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1.13.(2013·北京)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点. (1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0) ∴线段OB 的垂直平分线x =1.在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32. ∴|AC |=|y A -y C |= 3.∴菱形的面积S =12|OB |·|AC |=12×2×3= 3. (2)假设四边形OABC 为菱形.∵点B 不是W 的顶点,且直线AC 不过原点,∴可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2, ∵M 为AC 和OB 交点,∴k OB =-14k. 又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.∴OABC 不是菱形,这与假设矛盾.综上,四边形OABC 不是菱形.。

高考数学中的圆锥曲线基本概念及相关性质

高考数学中的圆锥曲线基本概念及相关性质

高考数学中的圆锥曲线基本概念及相关性质圆锥曲线是高中数学中非常重要的一个概念,与其相关的知识点在高考中也是经常出现的考点。

本文将介绍圆锥曲线的基本概念以及其相关性质,希望能对正在备考高考数学的同学有所帮助。

一、圆锥曲线的基本概念圆锥曲线是由圆锥面和一个平面相交而形成的曲线。

根据平面与圆锥面相交的位置和方向不同,可以分为四种圆锥曲线,分别是椭圆、抛物线、双曲线和圆。

1. 椭圆椭圆是圆锥曲线中比较常见的一种曲线。

它可以由一个平面沿着圆锥面的两个平行直母线截取而成。

椭圆有两个焦点和一条长轴和短轴,其特点是离焦点的距离之和等于常数,即椭圆的离心率小于1。

2. 抛物线抛物线是另一种常见的圆锥曲线。

它可以由一个平面沿着圆锥面的一条直母线截取而成。

抛物线有一个焦点和一条准轴,其特点是离焦点的距离等于离准轴的距离。

3. 双曲线双曲线和椭圆和抛物线不同,它可以由一个平面沿着圆锥面的两个非平行直母线截取而成。

双曲线有两个焦点和两条渐近线,其特点是离焦点的距离之差等于常数,即双曲线的离心率大于1。

4. 圆圆是圆锥曲线中最简单的一种曲线,它可以由一个平面与圆锥面的一个直母线相交而得到。

圆是只有一个焦点的特殊情况,它的离心率等于0。

二、圆锥曲线的相关性质除了基本概念之外,圆锥曲线还有一些重要的性质,在高考中也是需要掌握的知识点。

1. 椭圆的性质(1)椭圆的两个焦点与中心三点共线;(2)椭圆的长轴与短轴的长度之比等于焦距之和与焦距之差的比;(3)椭圆的离心率等于焦距之长除以长轴的长度。

2. 抛物线的性质(1)抛物线的对称轴垂直于准轴;(2)抛物线的焦点在准轴上的中点。

3. 双曲线的性质(1)双曲线的两条渐近线一定是不相交的;(2)双曲线的离心率等于距离两个焦点最远的点与焦点之间的距离之比。

4. 圆的性质(1)圆的任何直径经过圆心;(2)圆的内切和外切线垂直于半径并且相切于切点。

总结圆锥曲线作为高中数学中的一个重要概念,其基本概念和相关性质都需要仔细掌握。

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质

高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质
(1)已知双曲线 C: 2 − =1(a>0)的离心率为 2,左、右焦点分别为 F1,F2,点 A
3
a
在双曲线 C 上,若△AF1F2 的周长为 10,则△AF1F2 的面积为(
)
A. 15
B.2 15
C.15
D.30
(2)已知|z+ 5i|+|z- 5i|=6,则复数 z 在复平面内所对应的点 P(x,y)的轨迹方程


是椭圆的右焦点,若 AF⊥BF,则 a=
答案 3+ 3
.
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形 AF1BF
π
为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.

.
(3)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x
Hale Waihona Puke 轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程

答案 (1)A
.
2
(2)
9
2
+ =1
4
3
(3)x=2
解析 (1)由题意得

e=
所以双曲线方程为
=
2
1 + 2
=
3
1 + 2=2,所以 a2=1.
2
即 x±2y=0,故 B 正确;
2 5
5
e1·
e2= 5 × 2 =1,所以 C1 与 C2 的离心率互为倒数,故 C

2018高考数学浙江专版二轮复习与策略课件 专题12 圆锥曲线的定义、方程、几何性质 精品

2018高考数学浙江专版二轮复习与策略课件 专题12 圆锥曲线的定义、方程、几何性质 精品

[解] (1)由题意可得,抛物线上点 A 到焦点 F 的距离等于点 A 到直线 x=
-1 的距离,
2分
由抛物线的定义得p2=1,即 p=2.
4分
(2)由(1)得,抛物线方程为 y2=4x,F(1,0),可设 A(t2,2t),t≠0,t≠±1.
因为 AF 不垂直于 y 轴,可设直线 AF:x=sy+1(s≠0),
(1)(2016·全国乙卷)已知方程m2x+2 n-3my2-2 n=1 表示双曲线,且该
双曲线两焦点间的距离为 4,则 n 的取值范围是( )
A.(-1,3)
B.(-1, 3)
C.(0,3)
D.(0, 3)
(2)已知抛物线 C:y2=8x 的焦点为 F,准线为 l,P 是 l 上一点,Q 是直线
8分
设 M(m,0),由 A,M,N 三点共线得t2-2tm=t2-2t+tt22+ -2t 31,
于是 m=t22-t21=2+t2-2 1, 所以 m<0 或 m>2. 经检验,m<0 或 m>2 满足题意. 综上,点 M 的横坐标的取值范围是(-∞,0)∪(2,+∞).
11 分 15 分
热点题型 1 圆锥曲线的定义、标准方程 题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填 空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系 数法求“值”.
由y=bax, x-3y+m=0,
得 A3ba-m a,3bb-m a,
由y=-bax, x-3y+m=0,
得 Ba-+a3mb,a+bm3b,
所以 AB 的中点 C 坐标为9ba22-ma2,9b32b-2ma2. 设直线 l:x-3y+m=0(m≠0), 因为|PA|=|PB|,所以 PC⊥l, 所以 kPC=-3,化简得 a2=4b2. 在双曲线中,c2=a2+b2=5b2,所以 e=ac= 25.]

高考数学二轮复习 专题六 解析几何 2.6.2 圆锥曲线的方程与性质课件 理

高考数学二轮复习 专题六 解析几何 2.6.2 圆锥曲线的方程与性质课件 理

⊥l交l于点A1,过点B作BB1⊥l交l于点B1,设弦AB的中点为M,
过点M作MM1⊥l交l于点M1,则
|MM1|=
|AA1|+|BB1| 2
.因为|AB|≤|AF|+|BF|(F为抛物线的焦
点),即|AF|+|BF|≥6,所以|AA1|+|BB1|≥6,2|MM1|≥6,
|MM1|≥3,故点M到x轴的距离d≥2,选D.
1.(2018·江西九江模拟)F1,F2是椭圆
x2 9

y2 7
=1的左、右焦
点,A为椭圆上一点,且∠AF1F2=45°,则△AF1F2的面积为
()
A.7 B.74 C.72 D.725
2021/12/11
第七页,共四十七页。
[解析] 由题意可得,a=3,b= 7,c= 2,|AF1|+|AF2|= 6.
p 2
×
3 p=4
3 ,解得p=4(p=
-4舍去).所以抛物线的方程为y2=8x.
[答案] B
2021/12/11
第十二页,共四十七页。
4.(2018·安徽淮南三校联考)已知双曲线
x2 4

y2 2
=1右焦点为
F,P为双曲线左支上一点,点A(0, 2 ),则△APF周长的最小
值为( )
A.4+ 2
2021/12/11
第四十三页,共四十七页。
[解析] 如图所示,设PF1、PF2分别与△PAF2的内切圆切于
M、N,依题意,有|MA|=|AQ|,|NP|=|MP|,|NF2|=|QF2|,|AF1|
=|AF2|=|QA|+|QF2|,2a=|PF1|-|PF2|=(|AF1|+|MA|+|MP|)-
2021/12/11

2018届高三数学文二轮新课标专题复习课件:1.6.2圆锥曲线的概念与性质、与弦有关的计算问题 精品

2018届高三数学文二轮新课标专题复习课件:1.6.2圆锥曲线的概念与性质、与弦有关的计算问题 精品

=1(a>0,b>0)的渐近线方程为_y____ba_x_;
焦点坐标F1_(_-_c_,_0_)_,F2_(_c_,_0_)_;
a
②双曲线
y2 a2
x2 b2
=1(a>0,b>0)的渐近线方程为y____b__x,
焦点坐标F1_(_0_,_-_c_)_,F2_(_0_,_c_)_.
(3)抛物线的焦点坐标与准线方程: ①抛物线y2=±2px(p>0)的焦点坐标为_(__p2_, 0_)_,准线方 程为_x____p2_; ②抛物线x2=±2py(p>0)的焦点坐标为_(_0,__p2_)_,准线方
3
左焦点相同,所以- a =-c,所以e= 1 .
3
3
2.(2016·合肥二模)已知抛物线y2=2px(p>0)上一点M 到焦点F的距离等于2p,则直线MF的斜率为 ( )
A. 3
B. 1
C. 3 4
D. 3 3
【解析】选A.设M(x0,y0),由题意x0+p =2p,
2
则x0=3p,从而y02=3p2,
3.混淆a,b,c的关系致误:在椭圆中a2=b2+c2,在双曲线 中c2=a2+b2,在使用时谨防张冠李戴. 4.注意隐含,在涉及求最值或范围问题时可能要用到.
【考题回访】
1.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个
焦点,若椭圆中心到l的距离为其短轴长的
【规范解答】(1)选B.如图所示,
因为 FP 4所FQ,以
P过Q点 Q3,作QM⊥l,垂足为M,
PF 4
则MQ∥x轴,所以MQ PQ所以3,|MQ|=3,
4 PF 4
由抛物线定义知|QF|=|QM|=3.

通用版2018年高考数学二轮复习专题五解析几何第二讲小题考法__圆锥曲线的方程与性质课件理共38页文

通用版2018年高考数学二轮复习专题五解析几何第二讲小题考法__圆锥曲线的方程与性质课件理共38页文
通用版2018年高考数 学二轮复习专题五解析 几何第二讲小题考法__ 圆锥曲线的方程与性质
课件理
聪明出于勤奋,天才在于积累
谢谢你的阅读
❖ 知识就是财富ห้องสมุดไป่ตู้❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

2018届高考数学二轮复习 第一部分 专题六 解析几何 1.6.2 圆锥曲线的定义、性质,直线与圆锥曲线讲义 理

2018届高考数学二轮复习 第一部分 专题六 解析几何 1.6.2 圆锥曲线的定义、性质,直线与圆锥曲线讲义 理

类型一 圆锥曲线的定义、标准方程
[典例 1] (1)已知抛物线 C:y2=x 的焦点为 F,A(x0,y0)是 C
上一点,|AF|=45x0,则 x0=( A )
A.1
B.2
C.4
D.8
解析:通解:由 y2=x 得 2p=1,即 p=12,因此焦点 F14,0, 准线方程为 l:x=-14,设点 A 到准线的距离为 d,由抛物线的定 义可知 d=|AF|,从而 x0+41=45x0,解得 x0=1,故选 A.
类型二 圆锥曲线的几何性质
[典例 2] (1)已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E
上,△ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为( D )
A. 5
B.2
C. 3
D. 2
解析:通解:设双曲线 E 的方程为ax22-by22=1. 如图所示,可知|AB|=|BM|=2a,∠ABM=120°,则∠MBx= 60°.
提醒:利用点差法,对求出的结果要验证其是否满足相交的要 求,即 Δ>0.
[自我挑战]
5.(2017·山西太原模拟)中心为原点,一个焦点为 F(0,5 2)的椭
圆,截直线 y=3x-2 所得弦中点的横坐标为12,则该椭圆方程为
( C) A.27x52+22y52=1
C.2x52 +7y52 =1
B.7x52 +2y52 =1 D.22x52+27y52=1
所以双曲线的方程为x42-1y22 =1.故选 D.
2.(2017·山东威海模拟)已知抛物线 y2=2px(p>0)的焦点 F 与
双曲线x42-y52=1 的右焦点重合,抛物线的准线与 x 轴的交点为 K,
点 A 在抛物线上且|AK|= 2|AF|,则 A 点的横坐标为( B )

2018年高考数学(理)二轮复习 精品课件:专题六 解析几何 第2讲 椭圆、双曲线、抛物线

2018年高考数学(理)二轮复习 精品课件:专题六 解析几何  第2讲 椭圆、双曲线、抛物线

方程为
A.y=± 2x C.y=±2x
√B.y=± 3x
D.y=±4x
解析 答案
热点三 直线与圆锥曲线 判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法 (1)代数法:联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消 去y(或x)得一元二次方程,此方程根的个数即为交点个数,方程组的解 即为交点坐标. (2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.
是高考命题的热点.
12
押题依据 解析 答案
2.已知椭圆 C:ax22+by22=1(a>b>0)的离心率为12,且点1,32在该椭圆上. (1)求椭圆C的方程;
押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的 弦长、中点等知识应给予充分关注.
12
押题依据 解答
(2)过椭圆 C 的左焦点 F1 的直线 l 与椭圆 C 相交于 A,B 两点,若△AOB 的面积为672,求圆心在原点 O 且与直线 l 相切的圆的方程.
B.2y52 +x92=1(y≠0)
√D.2x52 +y92=1(y≠0)
解析 答案
热点二 圆锥曲线的几何性质 1.椭圆、双曲线中a,b,c之间的关系
(1)在椭圆中:a2=b2+c2,离心率为 e=ac=
1-ab2.
(2)在双曲线中:c2=a2+b2,离心率为 e=ac= 1+ba2. 2.双曲线ax22-by22=1(a>0,b>0)的渐近线方程为 y=±bax.注意离心率 e 与渐
则双曲线的标准方程是
A.71x62-1y22 =1
B.y32-x22=1
√C.x2-y32=1
D.32y32-2x32 =1
解析 答案

高考数学二轮复习 专题6 解析几何 第2讲 圆锥曲线的概

高考数学二轮复习 专题6 解析几何 第2讲 圆锥曲线的概

第2讲圆锥曲线的概念、方程与性质圆锥曲线的定义与标准方程1.(2015广东卷)已知椭圆错误!未找到引用源。

+错误!未找到引用源。

=1(m>0)的左焦点为F1(-4,0),则m等于( B )(A)2 (B)3 (C)4 (D)9解析:由4=错误!未找到引用源。

(m>0)⇒m=3,故选B.2.若圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( A )(A)错误!未找到引用源。

-错误!未找到引用源。

=1 (B)错误!未找到引用源。

-错误!未找到引用源。

=1(C)错误!未找到引用源。

-错误!未找到引用源。

=1 (D)错误!未找到引用源。

-错误!未找到引用源。

=1解析:解方程组错误!未找到引用源。

得错误!未找到引用源。

或错误!未找到引用源。

因为圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,所以A(0,-3),B(0,3),所以a=3,2c=18,所以b2=(错误!未找到引用源。

)2-32=72,所以双曲线方程为错误!未找到引用源。

-错误!未找到引用源。

=1.故选A.3.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C 的准线上一点,则△ABP的面积为( C )(A)18 (B)24 (C)36 (D)48解析: 设抛物线方程y2=2px(p>0),F为抛物线焦点,则直线l垂直于x轴,AF=错误!未找到引用源。

=6,所以△ABP的边AB上的高h=6,所以S△ABP=错误!未找到引用源。

×12×6=36.故选C.4.已知P为椭圆错误!未找到引用源。

+错误!未找到引用源。

=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为.解析:由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.答案:75.(2015佛山模拟)设F1,F2是双曲线x2-错误!未找到引用源。

2018年高考数学二轮总复习 第一部分 专题攻略 专题六 解析几何 6.3 圆锥曲线的综合问题课件 文

2018年高考数学二轮总复习 第一部分 专题攻略 专题六 解析几何 6.3 圆锥曲线的综合问题课件 文

2.(2016·北京卷)已知椭圆 C:ax22+by22=1(a>b>0)的离心率为
23,A(a,0),B(0,b),O(0,0),△OAB 的面积为 1. (1)求椭圆 C 的方程; (2)设 P 是椭圆 C 上一点,直线 PA 与 y 轴交于点 M,直线 PB
与 x 轴交于点 N.求证:|AN|·|BM|为定值.

P
到直线
AB
的距离为
d=
|m| , 3
所以
S△PAB

1 2
|AB|·d=
3 2
·
4-m22
·
|m| 3

1 2
4-m22·m2

1 22
m28-m2
≤ 2
1
2·m2+82-m2=
2.
当且仅当 m=±2∈(-2 2,2 2)时取等号,所以(S△PAB)max= 2.
考点 2 圆锥曲线中的定点、定值问题
考点 1 圆锥曲线中的范围、最值问题
例 1(2017·浙江卷)如图,已知抛物线 x2=y,点 A-12,14, B32,94,抛物线上的点 P(x,y)-12<x<32.过点 B 作直线 AP 的垂线, 垂足为 Q.
(1)求直线 AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.
因为|PA|= 1+k2x+12= 1+k2(k+1), |PQ|= 1+k2(xQ-x)=-k-1k2+k+1 12, 所以|PA|·|PQ|=-(k-1)(k+1)3. 令 f(k)=-(k-1)(k+1)3, 因为 f′(k)=-(4k-2)(k+1)2,
所以 f(k)在区间-1,12上单调递增,12,1上单调递减, 因此当 k=12时,|PA|·|PQ|取得最大值2176.

高三数二轮专题复习课件圆锥曲线

高三数二轮专题复习课件圆锥曲线
理解参数方程与圆锥曲线的关联,掌 握利用参数方程解决圆锥曲线问题的 方法。
极坐标与圆锥曲线
理解极坐标与圆锥曲线的交汇点,掌 握利用极坐标解决圆锥曲线问题的方 法。
05
圆锥曲线解题技巧与策略
代数法求解圆锥曲线问题
利用代数方法进行求解
代数法是解决圆锥曲线问题的一种基本方法,主要通过将问题转化为代数方程, 然后进行求解。这种方法需要掌握圆锥曲线的标准方程和相关性质,以及代数方 程的求解技巧。
抛物线
离心率e为1,因为抛物线是所有点与固定点(焦 点)距离相等的点的集合。
03
圆锥曲线的应用
曲线的切线问题
切线斜率
通过求导数或利用曲线的参数方程,求出切线的斜率,进而求出 切线方程。
切线长
利用切线斜率和点到直线的距离公式,求出切线长。
切线与弦的关系
利用切线与弦的垂直关系,求出弦的中点坐标和长度。
THANKS
感谢观看
关于x轴和y轴都是对称的 。
抛物线
只有一条对称轴,通常为 y=x或y=-x。
曲线的范围
椭圆
在x轴和y轴上都有一定的范围, 确保所有点都在椭圆上。
双曲线
在x轴和y轴上都有一定的范围,确 保所有点都在双曲线上。
抛物线
只关于一个轴有范围,通常为y≥0 或y≤0。
曲线的顶点和焦点
椭圆
有两个顶点和两个焦点,顶点是 曲线的最高和最低点,焦点用于
确定曲线的形状。
双曲线
有一个顶点和两个焦点,顶点是 曲线的最高或最低点,焦点用于
确定曲线的形状。
抛物线
有一个顶点和焦点,顶点是曲线 的最高或最低点,焦点在顶点的
正上方或正下方。
曲线的离心率
椭圆

2018届高考数学二轮复习 第1部分 专题六 解析几何 1-6-2 圆锥曲线的定义、性质,直线与

2018届高考数学二轮复习 第1部分 专题六 解析几何 1-6-2 圆锥曲线的定义、性质,直线与

限时规范训练 圆锥曲线的定义、性质,直线与圆锥曲线限时40分钟,实际用时________ 分值80分,实际得分________一、选择题(本题共12小题,每小题5分,共60分)1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等解析:选A.由25+(9-k )=(25-k )+9,知两曲线的焦距相等.2.(2017·宁夏银川质检)抛物线y 2=8x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3解析:选D.由抛物线y 2=8x ,有2p =8⇒p =4,焦点坐标为(2,0),双曲线的渐近线方程为y =±3x ,不妨取其中一条3x -y =0,由点到直线的距离公式,有d =|3×2-0|3+1=3,故选D.3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点.则C 的方程为( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 解析:选B.∵双曲线的一条渐近线方程为y =52x ,则b a =52,① 又∵椭圆x 212+y 23=1与双曲线有公共焦点,易知c =3,则a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1,故选B.4.已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:选D.因为抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点(4,0)重合,所以p =8.设A (m ,n ),又|AK |=2|AF |,所以m +4=|n |, 又n 2=16m ,解得m =4,|n |=8, 所以△AFK 的面积为S =12×8×8=32.5.(2017·安徽合肥模拟)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0解析:选A.设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A.6.(2017·浙江宁波模拟)点A 是抛物线C 1:y 2=2px (p >0)与双曲线C 2:x 2a 2-y 2b2=1(a >0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6解析:选C.取双曲线的一条渐近线为y =bax ,联立⎩⎪⎨⎪⎧y 2=2px ,y =bax ⇒⎩⎪⎨⎪⎧x =2pa 2b2,y =2pab ,故A ⎝ ⎛⎭⎪⎫2pa 2b2,2pa b .因为点A 到抛物线C 1的准线的距离为p .所以p 2+2pa 2b 2=p ,所以a 2b 2=14.所以双曲线C 2的离心率e =ca=a 2+b 2a 2= 5. 7.(2017·山东德州一模)已知抛物线y 2=8x 与双曲线x 2a2-y 2=1(a >0)的一个交点为M ,F为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( )A .5x ±3y =0B .3x ±5y =0C .4x ±5y =0D .5x ±4y =0解析:选A.抛物线y 2=8x 的焦点为F (2,0),准线方程为x =-2,设M (m ,n ),则由抛物线的定义可得|MF |=m +2=5,解得m =3,由n 2=24,可得n =±2 6.将M (3,±26)代入双曲线x 2a2-y 2=1(a >0),可得9a 2-24=1(a >0),解得a =35,故双曲线的渐近线方程为y =±53x ,即5x ±3y=0.故选A.8.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A.由题意可知直线AE 的斜率存在,设为k ,直线AE 的方程为y =k (x +a ),令x =0可得点E 坐标为(0,ka ),所以OE 的中点H 坐标为⎝⎛⎭⎪⎫0,ka 2,又右顶点B (a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y =-k 2x +k2a ,联立⎩⎪⎨⎪⎧y =k x +a ,y =-k 2x +k 2a ,可得点M 横坐标为-a3,又点M 的横坐标和左焦点相同,所以-a 3=-c ,所以e =13.9.已知双曲线的标准方程为x 29-y 216=1,F 为其右焦点,A 1,A 2分别是实轴的左、右端点,设P 为双曲线上不同于A 1,A 2的任意一点,直线A 1P ,A 2P 与直线x =a 分别交于M ,N 两点,若FM →·FN→=0,则a 的值为( )A.169B.95C.259D.165解析:选B.∵双曲线x 29-y 216=1,右焦点F (5,0),A 1(-3,0),A 2(3,0),设P (x ,y ),M (a ,m ),N (a ,n ),∵P ,A 1,M 三点共线,∴m a +3=y x +3,m =y a +x +3, ∵P ,A 2,N 三点共线,∴na -3=yx -3,∴n =y a -x -3.∵x 29-y 216=1,∴x 2-99=y 216,∴y 2x 2-9=169.又FM →=⎝⎛⎭⎪⎫a -5,y a +x +3,FN →=⎝ ⎛⎭⎪⎫a -5,y a -x -3,∴FM →·FN →=(a -5)2+y 2a 2-x 2-9=(a -5)2+a 2-9,∵FM →·FN →=0,∴(a -5)2+a 2-9=0,∴25a 2-90a +81=0,∴a =95.故选B.10.(2017·山东东营模拟)设F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使PF 1→·PF 2→=0,且|PF 1|=3|PF 2|,则该双曲线的离心率为( )A.2+12 B.2+1C.3+12D.3+1解析:选C.因为双曲线右支上存在一点P ,使PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 因为|PF 1|=3|PF 2|,所以|F 1F 2|=2|PF 2|=4c ,即|PF 2|=2c , 所以|PF 1|-|PF 2|=3|PF 2|-|PF 2| =(3-1)|PF 2|=2a ,因为|PF 2|=2c ,所以2c (3-1)=2a ,e =c a =13-1=3+12. 11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:选B.设抛物线方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4.12.(2017·高考全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A.设AB 倾斜角为θ,则|AB |=2psin 2θ,又DE 与AB 垂直,即DE 的倾斜角为π2+θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=2p cos 2θ而y 2=4x ,即p =2. ∴|AB |+|DE |=2p ⎝⎛⎭⎪⎫1sin 2θ+1cos 2θ=4sin 2θcos 2θ=16sin 22θ≥16,当θ=π4时取等号, 即|AB |+|DE |最小值为16,故选A.二、填空题(本题共4小题,每小题5分,共20分)13.已知离心率e =52的双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O ,A 两点,若△AOF 的面积为4,则a 的值为________.解析:因为e =1+⎝ ⎛⎭⎪⎫b a2=52,所以b a =12,|AF ||OA |=b a =12,设|AF |=m ,|OA |=2m ,由面积关系得12×m ×2m =4,所以m =2,由勾股定理,得c =m 2+m2=25,又c a =52,所以a =4. 答案:414.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.解析:设F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得(-2c ,-b 2)=3(x 0+c ,y 0),故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得-b29+19b 2=1, 解得b 2=23,故椭圆方程为x 2+3y 22=1.答案:x 2+3y22=115.(2016·高考江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b 2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0), ∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, 即c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.答案:6316.(2017·山东潍坊模拟)抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|AB ||MN |的最小值为________.解析:设AF =a ,BF =b ,由余弦定理得|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab ≥(a +b )2-⎝ ⎛⎭⎪⎫a +b 22=34(a +b )2,因为a +b 2=AF +BF2=MN ,所以|AB |2≥34|2MN |2,所以|AB ||MN |≥3,所以最小值为 3.答案: 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六 第二讲 圆锥曲线的概念与性质、与弦有关的计算问题A 组1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是 ( C )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)[解析] 由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C .2.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为 ( B )A .y 2=6x 2=8x C .y 2=16x=152x[解析] 依题意,设M (x ,y )×3p =43,x .和椭圆x 2m +y 2n=1(m >n >0)有共同的焦点F 1、F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|= ( D )A .m 2-a 2B .m -aC .12(m -a ) D . (m -a )[解析] 不妨设F 1、F 2分别为左、右焦点,P 在双曲线的右支上,由题意得|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,∴|PF 1|=m +a ,|PF 2|=m -a ,故|PF 1|·|PF 2|=m -a .4.(文)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D )A .73B .54C .43D .53[解析] 由题利用双曲线的渐近线经过点(3,-4),得到关于a ,b 的关系式,然后求出双曲线的离心率即可.因为双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),∴3b =4a ,∴9(c 2-a 2)=16a 2,∴e =c a =53,故选D .(理)(2016·天津卷,6)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为 ( D )A .x 24-3y 24=1B .x 24-C .x 24-y 24=1 2-12=[解析] 为矩形.双曲线的渐近线方程为y =±b x ,圆的方程为x 2+y 2=4y =b2x ,x 2+y 2=4得x A =4x A y A =32b 4+b 2=2b ,解得b 2=12, D .C 于A ,B 两点,交C 的准线于D ,E 两点.已 ( B )B .4 D .8[解析] 由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p24+5,得p =4.故选B .(理)(2016·浙江卷,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则 ( A )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1[解析] 由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A . 6.(2016·全国卷Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为 ( A )A . 2B .32C . 3D .2[解析] 设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a 2,所以y =±b 2a .因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a 2c =b 22ac =c 2-a 22ac =c 2a -a 2c =e2-12e =24,所以e 2-22e -1=0,所以e = 2.故选A . 7.(2017·甘肃一诊)如图,F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B 、A .若△ABF 2为等边三角形,则双曲线的离心率为 ( A )A .7B .4C .233D . 3[解析] 本题主要考查双曲线的离心率.依题意得|AB |=|AF 2|=|BF 2|,结合双曲线的定义可得|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,根据等边三角形,可知∠F 1BF 2=120°,应用余弦定理,可得4a 2+16a 2+2·2a ·4a ·12=4c 2,整理得c a=7,故选A .8.(2017·河北邯郸一模)已知M (x 0,y 0)是曲线C :x 22-y =0上的一点,F 是曲线C 的焦点,过M 作x 轴的垂线,垂足为点N ,若MF →·MN →<0,则x 0的取值范围是 ( A )A .(-1,0)∪(0,1)B .(-1,0)C .(0,1)D .(-1,1)[解析] 由题意知曲线C 为抛物线,其方程为x 2=2y ,所以F (0,12).根据题意,可知N (x 0,0),x 0≠0,MF →=(-x 0,12-y 0),MN →=(0,-y 0),所以MF →·MN →=-y 0(12-y 0)<0,即0<y 0<12.因为点M 在抛物线上,所以有0<x 202<12.又x 0≠0,解得-1<x 0<0或0<x 0<1.故选A .9.(2017·福建厦门一模)已知椭圆x 29+y 25=1的右焦点为F ,P 是椭圆上一点,点A (0,23),当△APF 的周长最大时,△APF 的面积等于 (B )A .1134B .2134C .114D .214[解析] 由椭圆x 29+y 25=1知a =3,b =5,c 中,|OF |=2,|OA |=23,则|AF |=4.设椭圆的左焦点为F 1,则△APF |PF |=|AF |+|AP |+2a -|PF 1|=4+6+|PA |-|PF 1|≤10+|1|(P 在线段AF 1的延长线上时取“=”).此时直线+y23=1,与椭圆的方程为5x 2+9y2=-538(正值舍去),则△APF 的周长×4×|23+538|=2134.故选B .C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=P 是两曲线的一个公共点,e 1,e 2又分别是两曲线的 ( C )B .4C .2D .9[解析] 由题意设焦距为2c ,令P 在双曲线的右支上,由双曲线的定义知|PF 1|-|PF 2|=2a 2,① 由椭圆定义知|PF 1|+|PF 2|=2a 1, ② 又∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=4c 2.③ ①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22, ④将④代入③,得a 21+a 22=2c 2,∴4e 21+e 22=4c2a 21+c 2a 22=a 21+a 222a 21+a 21+a 222a 22=52+2a 22a 21+a 212a 22≥52+22a 22a 21·a 212a 22=92, 当且仅当2a 22a 21=a 212a 22,即a 21=2a 22时,取等号.故选C .11.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为__-2__.[解析] 由已知得A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.12.已知椭圆C :x 29+y 24=1,点M 与椭圆C 的焦点不重合.若M 关于椭圆C 的焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=__12__.[解析] 取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF |1+|GF |2)=4a =12.13.已知抛物线C :y 2=4x 的顶点、焦点分别为点A ,F ,抛物线上的一点P 到直线l :x -y +3=0的距离为d 1,则以F 为圆心,|AF |为半径的圆上一点的距离为d 2,则d 1+d 2的最小距离为[解析] 本题关键在于数形结合,作PM ⊥l 交l 于点M ,作FN ⊥l 交l 于点N ,由图形转化线段之间的关系:|PM |+|PF |≥|FN |,d 1+d 2=|PM |+|PF |-r ≥|FN |-r .焦点即圆心F (1,0),r =|AF |=1,要求d 1+d 2的最小值,只需求点P 到直线l 的距离与到圆心的距离的和的最小值,如图,作PM ⊥l 交l 于点M ,作FN ⊥l 交l 于点N .由图知|PM |+|PF |≥|FN |,|FN |=|1-0+3|12+-2=42=22,所以d 1+d 2=|PM |+|PF |-r ≥|FN |-r=22-1.14.(2017·山东莱芜一模)已知圆G :x 2+y 2-22x -2y =0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点及上顶点.过椭圆外一点M (m,0)(m >a ),倾斜角为2π3的直线l 交椭圆于C ,D 两点,若点N (3,0)在以线段CD 为直径的圆E 的外部,则m 的取值范围是__(72,3)__.[解析] ∵圆G :x 2+y 2-22x -2y =0与x 轴,y 轴交点为(22,0)和(0,2),∴c =22,b =2,∴a 2=b 2+c 2=12, ∴椭圆方程为x 212+y 24=1,设直线l 的方程为y =-3(x -m )(m >23),由⎩⎪⎨⎪⎧y =-3x -m ,x 212+y 24=1得10x 2-18mx +9m 2-12=0.由Δ=324m 2-40(9m 2-12)>0, 可得-2303<m <2303,∴23<m <2303.设C (x 1,y 1),D (x 2,y 2), x 1+x 2=9m 5,x 1·x 2=9m 2-1210,NC →·ND →=(x 1-3,y 1)·(x 2-3,y 2)=(x 1-3)(x 2-3)+y 1y 2=4x 1x 2-(3m +3)(x 1+x 2)+9+3m 2>0. .B 组已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的(O 为原点),则双曲线的方程为 ( D )B .x 212-y 24=1 C .x 3-y 2=1D .x 2-y 23=1[解析] 根据题意画出草图如图所示(不妨设点A 在渐近线y =b ax 上).由△AOF 的边长为2的等边三角形得到∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =b ax 上, ∴b a=tan 60°=3.又a 2+b 2=4,∴a =1,b =3, ∴双曲线的方程为x 2-y 23=1.故选D .2.(2017·陕西质检)已知直线l :x -y -m =0经过抛物线C :y 2=2px (p >0)的焦点,l 与C 交于A ,B 两点.若|AB |=6,则p 的值为 ( B )A .12B .32C .1D .2[解析] 因为直线l 过抛物线的焦点,所以m =p2.联立⎩⎪⎨⎪⎧x -y -p 2=0,y 2=2px得,x 2-3px+p 24=0.设A (x 1,y 1),B (x 2,y 2),则x +x 2=3p ,故|AB |=x 1+x 2+p =4p =6,p =32. 故选B .3.(2017·沈阳质检)已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则PA →·PB →的值是 ( A )A .-38B .316C .-38D .不能确定[解析] 令点P (x 0,y 0),因为该双曲线的渐近线分别是x3-y =0,x3+y =0,所以可取|PA |=|x 03-y 0|13+1,|PB |=|x 03+y 0|13+1,又cos ∠APB =-cos ∠AOB =-cos 2∠AOx =-cosπ3=-12,所以PA →·PB →=|PA →|·|PB →|·cos∠APB =⎪⎪⎪⎪⎪⎪x 203-y 2043·(-12)=34×(-12)=-38.故选A .4.(2017·南昌三模)已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为 ( D )A .2+2B .5+1C .3+1D .2+1(p2,0).又A 位-4c 2b2=1,结合c2D .AB 的斜率k 1=1,设AB 的中点为G ,则由椭圆的对称性知,O 为平行四边形ABCD 的对角线的交点,则GO∥AD .设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 212=1x 224+y222=1,两式相减得x 1-x 2x 1+x 24=-y 1-y 2y 1+y 22,整理得x 1+x 2y 1+y 2=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12.又G (x 1+x 22,y 1+y 22),所以k OG =y 1+y 22-0x 1+x 22-0=-12,即k 2=-12.故选B .6.(2017·唐山统考)焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是__x 25-y 220=1__.[解析] 设所求双曲线的标准方程为y 24-x 2=-λ(λ>0),即x 2λ-y 24λ=1,则有4λ+λ=25,解得λ=5,所以所求双曲线的标准方程为x 25-y 220=1.7.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__94__.[解析] 易知直线AB 的方程为y =33(x -34),与y 2=3x 联立并消去x ,得4y 2-123y -9=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94.S △OAB =12|OF |·|y 1-y 2|=12×34y 1+y 22-4y 1y 2=3827+9=94. 8.设F 1、F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A 、B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|; (2)若cos ∠AF 2B =35,求椭圆E 的离心率.[解析] (1)由|AF 1|=3|F 1B |及|AB |=4得|AF 1|=3,|F 1B |=1, 又∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8. ∴|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k , 由椭圆定义知:|AF 2|=2a -3k ,|BF 2|=2a -k , 在△ABF 2中,由余弦定理得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),∴(a +k )(a -3k )=0,而a +k >0, ∴a =3k ,于是有|AF 2|=3k =|AF 1|,|BF 2|=5k , ∴|BF 2|2=|F 2A |2+|AB |2∴F 2A ⊥AB ,F 2A ⊥AF 1, ∴△AF 1F 2是等腰直角三角形, 从而c =22a ,所以椭圆离心率为e =c a =22. 9.(2017·贵阳检测)设点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a2+y 2=1(a >1)的左、右焦点,P 为椭圆C 上任意一点,且PF 1→·PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.椭圆的方程及几何性质、直线与椭y ),1-c 2,x ∈[-a ,a ],由题意得,1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx+2m 2-2=0,由直线l 与椭圆C 有且仅有一个公共点知11 Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得:m 2=2k 2+1.设d 1=|F 1M |=|-k +m |k 2+1,d 2=|F 2N |=|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ,则|d 1-d 2|=|MN |·|tan θ|, ∴|MN |=1|k |·|d 1-d 2|,∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2.②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.。

相关文档
最新文档