第三章扭转习题
第三章 扭转
三、切应变 剪切胡克定律 1、切应变 l
a
´
c
´
b
d t
为扭转角 r0 l
r0 即
l
纵轴 T——
T
2r02t
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
横轴
r0
l
47
2、剪切虎克定律
做薄壁圆筒的扭转试验可得
在弹性范围内切应力 与切应变成正比关系。
切应力与扭矩同向的顺流
51
切应变的变化规律:
Me
pq
Me
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
_ 扭转角(rad)
x
d _ dx微段两截面的
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
52
p
q
d
ae
d
c
a ' e′O b
③ 结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 ,仍为直线。
③所有矩形网格均歪斜成同样大小的平行四边形。
40
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
41
2、切应力分布规律假设
Me2
Me1
n
Me3
从动轮
主动轮
从动轮
求: 作用在该轮上的外力偶矩Me。
材料力学第3 章 扭 转习题及答案
第 三 章 扭 转一、判断题1.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
( × ) 2.薄壁圆管和空心圆管的扭转切应力公式完全一样。
( × ) 3.圆杆扭转变形实质上是剪切变形。
( √ ) 4.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
( √ )5.材料相同的圆杆,它们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
( × ) 6.切应力互等定理,仅适用于纯剪切情况。
( × ) 7.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
( √ ) 8.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
( √ ) 9.受扭圆轴的最大切应力只出现在横截面上。
( × ) 10. 因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭矩达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( √ )二、填空题1.一级减速箱中的齿轮直径大小不等,在满足相同的强度条件下,高速齿轮轴的直径要比低速齿轮轴的直径( 小 )。
2. 当实心圆轴的直径增加1培时,其抗扭强度增加到原来的( 8 )倍,抗扭刚度增加到原来的( 16 )倍。
3. 直径D=50mm 的圆轴,受扭矩T=2.15kn.m ,该圆轴横截面上距离圆心10mm 处的剪应力τ=(35.0 MPa ),最大剪应力τmax=(87.6 MPa )。
4. 一根空心轴的内外径分别为d ,D ,当D=2d 时,其抗扭截面模量为(33256153215D d ππ或)。
5. 直径和长度均相等的两根轴,在相同的扭矩作用下,而材料不同,它们的τmax 是( 相 )同的,扭转角φ是( 不 )同的。
6. 等截面圆轴扭转时的单位长度相对扭转角为θ,若圆轴直径增大一倍,则单位长度扭转角将变为(16θ)。
材料力学习题册_参考答案(1-9章)
第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
(仅供参考)第3章扭转作业参考解答
第3章作业参考解答3-1 试作附图中各圆杆的扭矩图。
习题3-1附图解答 各杆的轴力图分别见解答附图(a)、(b)、(c)、(d)。
3-2 一传动轴以每分钟200转的角速度转动,轴上装有4个轮子,如附图,主动轮2输入功率60kW ,从动轮1,3,4依次输出功率15kW ,15kW 和30kW 。
(1)作轴的扭矩图。
(2)将2,3轮的位置对调,扭矩图有何变化? 解答 (1)各轮上作用的力偶矩为m kN T ×=´´´=716.0200260101531pm kN T ×=´´´=865.2200260106032p ,m kN T ×=´´´=716.0200260101533pm kN T ×=´´´=432.1200260103034p扭矩图见附图(a),最大扭矩为m kN M x ×=149.2max 。
(2) 2,3轮的位置对调后扭矩图见附图(b),最大扭矩为m kN M x ×=432.1max 。
(a) M x(c) M x /N ·m(b)M x /kN ·m(d) M x /kN ·m习题3-2附图T 1T 2 T 3 T 4 (a)M x /kN ·m1.432(b) M x /kN ·m3-3 一直径d =60mm 的圆杆,其两端受T =2kN·m 的外力偶矩作用而发生扭转,如附图示。
设轴的切变模量G =80GPa 。
试求横截面上1,2,3点处的切应力和最大切应变,并在此三点处画出切应力的方向。
解答 1,2,3点处的切应力分别为MPaMPa W T p 4.313/22.4716/06.014.320000.031332===´===t t t t 切应力方向见附图(1)。
材料力学扭转练习题
材料力学扭转练习题基本概念题一、选择题1. 图示传动轴,主动轮A的输入功率为PA =0 kW,从动轮B,C,D,E的输出功率分别为PB =0 kW,PC = kW,PD = 10 kW,PE = 1kW。
则轴上最大扭矩T。
A.BA段 B.AC段 C.CD段 D.DE段max出现在题1图2. 图示单元体的应力状态中属正确的纯剪切状态的是。
题2图3. 上题图示单元体的应力状态中属正确的是。
4. 下列关于剪应力互等定理的论述中正确的是。
A.剪应力互等定理是由平衡B.剪应力互等定理仅适用于纯剪切的情况C.剪应力互等定理适用于各种受力杆件D.剪应力互等定理仅适用于弹性范围E.剪应力互等定理与材料的性能无关5. 图示受扭圆轴,其横截面上的剪应力分布图正确的是。
-12-题5图6. 实心圆轴,两端受扭转外力偶作用。
直径为D时,设轴内的最大剪应力为?,若轴的直径改为D2,其它条件不变,则轴内的最大剪应力变为。
A.8? B.?C.16? D.?7. 受扭空心圆轴,在横截面积相等的条件下,下列承载能力最大的轴是。
A.??0 B.??0.5C.??0. D.??0.88. 扭转应力公式T?的适用范围是。
IpA.各种等截面直杆 B.实心或空心圆截面直杆C.矩形截面直杆 D.弹性变形 E.弹性非弹性范围 9. 直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为。
A.2TB.2T C.22TD.4T10. 材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径为D2d2D??。
若两轴横截面上的扭矩T,和最大剪应力?max均相同,则两轴外径之比1 D2D2为。
A.1??B.1?? C.343D.411. 阶梯圆轴及其受力如图所示,其中AB段的最大剪应力?max1与BC段的最大剪应力?max2的关系是。
A.?max1??max2B.?max1?313?max2C.?max1??max2D.?ma x1??max248-13-题12图题13图12. 在图示的圆轴中,AB段的相对扭转角?1和BC段的相对扭转角?2的关系是。
扭转习题
第三章 扭转习题一、单项选择题1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=。
两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxDmaxdττ为A 、2倍,B 、4倍,C 、8倍,D 、16倍。
二、1、扭转变形时,公式pTlGI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。
2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 .3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相同 。
5、剪切虎克定律的表达式 G τγ=,式中的G 表示材料的 模量,式中的γ称为 。
6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。
三、 1、如图所示圆轴,一端固定。
圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN•m,M 2=4kN•m。
试求圆轴横截面上的最大扭矩和最大切应力。
答:圆轴横截面上的最大扭矩为 kN•m;圆轴横截面上的最大切应力为 Mpa 。
2、如图所示阶梯形圆轴,一端固定。
圆轴横截面的直径分别为外力偶矩M C =1200 N•m,M B =1800 N•m。
试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。
答:BC 段横截面上的扭矩为 N•m;该阶梯轴的最大切应力为 Mpa 。
3、如图所示圆轴,一端固定。
圆轴横截面的直径d=100mm ,所受的外力偶矩M 1=7000 N•mM 2=5000 N•m。
试求圆轴横截面上的最大扭矩和最大切应力。
答:最大扭矩为 N •m 。
最大切应力为 Mpa 。
4、某传动轴为实心圆轴,轴内的最大扭矩=1.5kN m T g,许用切应力[]=50MPa τ,试确定该轴的横截面直径。
材料力学_陈振中_习题第三章扭转
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
材料力学复习题第三章 扭 转
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
机械振动 课后习题和答案 第三章 习题和答案
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩ ,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩所以:[][]12212220,0t t t t t k k k I M K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭………… (a)或者采用能量法:系统的动能和势能分别为θθ=+2211221122T E I I θθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--即:224222121()240t t I k I k ωωω=-+=解得:21,222ω==所以:1ω=2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:11212u u =-;12222u u =令21u ,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。
材料力学典型例题及解析 3.扭转典型习题解析
的切向内力所形成的力偶矩将由哪个力偶矩来平衡?
A M
B
A
M
B
C
z
D
A
(a)
C
dρ
ρ
R
(c)
D
题2图
BC Dx
(b)
θ dθ
(d)
解题分析:由切应力互等定理可知截面ABCD上的切向内力分布及其大小。该截面上切向内
力形成一个垂直向上的力偶矩。在图b中,左右两个横截面上的水平切向内力分量形成垂直
于截面ABCD的竖直向下的力偶矩,正好与截面ABCD上切向内力的合力偶矩平衡。
应力相等的条件下,试确定空心轴的外径,并比较实心轴和空心轴的重量。
解题分析:用空心轴代替实心轴,须保证二者强度相同。根据强度条件可求出D值,再用面
积比得出重量比。
解:1、根据两轴切应力相等的条件,确定空心轴外径
Tmax = Tmax = [τ ] WP实 WP空
πd 3 = πD3 (1 − α 4 ) 16 16
解得 D = 107.7 ×10−3 m = 107.7 mm
δ = D − d = 107.7mm −100mm = 3.85 mm
2
2
比较可知,两种设计的结果非常接近。
讨论: 当 δ ≤ R0 /10 时,即认为是薄壁圆管,可以直接使用薄壁管扭转公式。
2 图示受扭圆杆,沿平面ABCD截取下半部分为研究对象,如图b所示。试问截面ABCD上
4
即在强度相同条件下,空心轴可以节约近30%的材料。
讨论:在实际工程中常用空心圆轴代替实心圆轴,在保障安全运行的前提下,可以节约材料。
5 已知钻探机杆的外径D = 60 mm,内径d = 50 mm,功率P = 7.46 kW,转速n =180 r/min, 钻杆入土深度l = 40 m,G = 80 GPa,[τ]= 40 MPa。设土壤对钻杆的阻力是沿长度均匀分布 的,试求:(1) 单位长度上土壤对钻杆的阻力矩M;(2) 作钻杆的扭矩图,并进行强度校核; (3) 求A、B两截面相对扭转角。 解题分析:根据题意,为圆轴扭转问题。土壤对钻杆的阻力形成扭力矩作用在钻杆上,并沿
材料力学第三章扭转复习题
第三章 扭转1.等截面圆轴上装有四个皮带轮,如何安排合理,现有四种答案:(A ) 将C 轮与D 轮对调; (B ) 将B 轮与D 轮对调; (C ) 将B 轮与C 轮对调;(D ) 将B 轮与D 轮对调;然后将B 轮与C 轮对调;正确答案是 a 。
2.薄壁圆管受扭转时的剪应力公式为 ()t R T 22/πτ= ,(R 为圆管的平均半径,t 为壁厚)。
关于下列叙述,(1) 该剪应力公式可根据平衡关系导出;(2) 该剪应力公式可根据平衡、几何、物理三方面条件导出; (3) 该剪应力公式符合“平面假设”;(4) 该剪应力公式仅适用于R t <<的圆管。
现有四种答案: (A ) (1)、(3)对; (B ) (1)、(4)对; (C ) (2)、(3)对; (D ) 全对;正确答案是 b 。
3.建立圆轴的扭转应力公式 p p I T /ρτ=时,“平面假设”起到的作用于有 下列四种答案:(A ) “平面假设”给出了横截面上内力与应力的关系⎰=AdA T τρ;(B ) “平面假设”给出了圆轴扭转时的变形规律;(C ) “平面假设”使物理方程得到简化;(D ) “平面假设”是建立剪应力互等定理的基础。
正确答案是 。
4.满足平衡条件,但剪应力超过比例极限时,有下述四种结论:(A ) (B ) (C ) (D ) 剪应力互等定理: 成立 不成立 不成立 成立 剪切虎克定律 : 成立 不成立 成立 不成立 正确答案是 。
D5.一内、外直径分别为d 、D 的空心圆轴,其抗扭截面系数有四种答案:(A )()()16/16/33d D W t ππ-=;(B )()()32/32/33d DW t ππ-=;(C )()[]()4416/d D D W t-=π; (D )()()32/32/44d D W tππ-=;正确答案是 c 。
6.一内外径之比为D d /=α的空心圆轴, 当两端受扭转力偶矩时,横截面的最大剪应为τ,则内圆周处的剪应力有四种答案: (A )τ; (B )ατ;(C ) ()τα31-; (D )()τα41-正确答案是 b 。
化工设备机械基础课后习题答案(较完整版)第二版赵军张红忱段正红主编来自西大
同理,可以计算横截面2-2上的轴 力FN2,由截面2-2右段图(c)的平 衡方程Fx=0 ∑,得FN2= F(压)
同理,可以计算横截面3-3上的轴力 FN3,由截面3-3左段图(d)的平衡 方程∑Fx=0,得FN3=F(拉)
2-2 试求图2-35所示钢杆各段内横截面上的应 力和杆的总变形。钢的弹性模量E=200GPa。
1-14 求图1-46所示桁架中各杆所受的力
解:以节点A为研究对象,受力如图
X 0
Y 0
P T s i n 4 5 T s i n 4 50 1 2
T c o s 4 5 T c o s 4 5 0 1 2
得
T1 T2
2 P 2
以B节点为研究对象 ,受力如图 同理可得
∑Y=0, YA+SB′×sin45°-2G=0 , YA=2.89kN
1-13如图1-45所示结构,B、E、C处均为铰接。已知 P=1KN,试求的A处反力以及杆EF和杆CG所受的力。
解:取AB为研究对象,受力如图
取AC为研究对象,受力如图
M
Y 0
X 0
FAY+FBY=P FAX+FBX =0 -P· 2000+FBY· 4000=0
3 F 4 1 0 右 3 . 1 8 M P a 右 A 2 4 右 4 1 0 4
2、各段变形的计算左、右两段的轴力为F左 F右 , 横截面面积A左、A右,长度L左,L右均不相同,变 力计算应力分别进行。
3、总变形计算
L L L 右 左
5 . 0 9 5 5 1 00 . 6 3 7 1 0
T3 T4 2 P 2
以C节点为研究对象 ,受力如图
孙训方材料力学第五版答案
=(向下)(向下)为保证,点A移至,由图中几何关系知;返回第三章扭转3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
试作轴的扭矩图。
解:kNkNkNkN返回3-2(3-3)圆轴的直径,转速为。
若该轴横截面上的最大切应力等于,试问所传递的功率为多大?解:故即又故返回3-3(3-5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。
试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向;(3)C点处的切应变。
解:=返回3-4(3-6)图示一等直圆杆,已知,,,。
试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。
解:(1)由已知得扭矩图(a)(2)返回3-5(3-12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。
实心轴直径为d;空心轴外径为D,内径为,且。
试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。
解:重量比=因为即故故刚度比==返回3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。
试确定该轴的直径d。
解:扭矩图如图(a)(1)考虑强度,最大扭矩在BC段,且(1)(2)考虑变形(2)比较式(1)、(2),取返回3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。
外力偶矩,,。
已知:,,。
试校核该轴的强度和刚度。
解:扭矩图如图(a)(1)强度=,BC段强度基本满足=故强度满足。
(2)刚度BC段:BC段刚度基本满足。
AE段:AE段刚度满足,显然EB段刚度也满足。
返回3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力,切变模量,许可单位长度扭转角。
第三章习题
2
[例2]图示阶梯轴。外力偶矩M1=0.8KN· m, M2=2.3KN· m, M3 =1.5KN· m AB段的直径d1=4cm,BC段的直径d2=7cm。已知材料的剪切弹性模量G= 80GPa,试计算φAB和φAC。
M1
d1
M2
d2
M3
A
0.8m
B
1.0m
C
[例3]功率为150kW,转速为15.4转/秒的电动机转子轴如图,
P 150 2 m2 m3 9.55 9.55 4.78 (kN m) n 300 P 200 m4 9.55 4 9.55 6.37 (kN m) n 300
1
[例1]一轴AB传递的功率为Nk=7.5kw,转速=360r/min。如图D=3cm, d=2cm。求AC段横截面边缘处以及CB段横截面外边缘和内边缘处的切应力。
许用切应力 []=30M Pa,试校核其强度。 M M C
D2=75 D1=70
A
B
D3 =135
4
[例4]长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,
若杆的内外径之比为 =0.8 ,G=80GPa ,许用切应力 []=30MPa,试设计杆的外径;若[’]=2º /m ,试校核此杆的 刚度,并求右端面转角。
M2
M1
M3
M4
500
500
500
受扭矩 T 8kN m , 材料的切应力[τ ]=60MPa, 弹 [例6] 一钢制传动轴, 性剪切模量 G=80GPa, 单位长度扭转角[φ ]=1.5 /m;试设计轴 的直径 d 。
0
[例7] 某传动轴设计要求转速n = 500 r / min,输入功率N1 = 500马力, 输出 功率分别 N2 = 200马力及 N3 = 300马力,已知:G=80GPa ,[ ]=70M Pa, [φ ]=1º /m ,试确定:
材料力学第三章答案
材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对 b①③对 c①②对d 全对 7.扭转切应力公式?mnp?i?适用于( d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩 me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若 me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解: me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
习题3扭转
16 2149 2 6.5 10 m=65mm 6 40 10
3
10 55 13
22
10kW
(b )
10
()
()
32 45 10kW
2)由刚度条件求直径d Tmax max 4 180 G d 32 32 2149 180 2 4 d 7.5 10 m=75mm 9 2 8110 0.5 综上述所以取d 75mm
第三章 扭转
一、填空
1.空心圆轴外径为D,内径为d=D/2,两端受扭转力偶 mx max 作用,则其横截面上剪应力呈( )分布, ( ),
min ( )。
答案:线性,
256mx mx 或 5.43 , 1/ 2 max。 3 3 15 D D
2.圆截面杆扭转时,其变形特点是变形过程中横截面始 终保持( ),即符合( )。非圆截面杆扭转时,其 变形特点是变形过程中横截面发生( ),即不符合 ( )。
答案: C
2.图示为两端固定的受扭圆杆,其扭距图为( )。
T
mx mx
T
mx
mx mx (B) mx mx
(D)
l
l
l
x
T
x
(A)
x
T
答案: B
mx (C)
x
x
3.圆轴受扭转如图所示。现取出I-I横截面上点1的纯剪切单元体, 其成对存在的剪应力为( )。
y
I I
(A) ()
I
z
x
(D)
答案: B
5. 如图(a)所示,实心轴和空心轴通过牙式离合器 连接在一起。已知轴的转速n=100r/min,传递的 功率P= 7.5kW,材料的许用切应力 40MPa 。试 选择实心轴的直径d1和内外径比值为0.5的实心轴 的外径D2。
第三章圆轴扭转练习题
第三章 圆轴扭转练习题一.单项选择题1、等截面圆轴上装有四个皮带轮, 如何安排合理,有四种答案( ) A 、 将C 轮与D 轮对调 B 、 将B 轮与D 轮对调 C 、 将B 轮与A 轮对调D 、 将B 轮与D 轮对调,然后再将B 轮与C 轮对调2、空心圆轴受扭转力偶作用,横截面上的扭矩为Tn ,下列四种(横截面上)沿径向的应力分布图中哪个是正确的。
( )3、公式pT I ρρτ=对图示四种截面杆受扭时,适用的截面正确的是 ( )4、一内、外直径分布为d 、D 的空心圆轴,其抗扭截面系数正确的是( )A 、331616t D d W ππ=-; B 、333232t D d W ππ=-C 、()4416t W DdDπ=- ; D 、443232t D d W ππ=-5、实心圆轴①和空心圆轴②,它们的横截面面积均相同,受相同扭矩作用,则其最大切应力正确的是( )A 、max 2max1ττ> B 、 max 2max1ττ< C 、 max 2max1ττ= D 无法比较6 受扭圆轴,当横截面上的扭矩T 不变,而直径减小一半时,该横截面的最大切应力与原来的最大切应力之比正确的是( )A 、 2倍B 、 4倍C 、 6倍D 、 8倍7、车床传动光杠的安全联轴器由销钉和套筒组成(如图所示),轴的直径为D ,传递的力偶的最大力偶矩为m ,这时销钉每个剪切面上的剪力为 ( )。
A 、4m/D ; B 、2m/D ; C 、m/2D ; D 、m/D 。
二、填空题1、当轴传递的功率一定时,轴的转速愈小,则轴受到的外力偶矩愈______,当外力偶矩一定时,传递的功率愈大,则轴的转速愈______。
2、扭转的变形特点是杆件的任意两截面绕轴线产生_____________,但杆的轴线位置和形状保持不变。
3、剪切的受力特点,是作用于构件某一截面两侧的外力大小相等、方向相反、作用线相互________且相距________。
第三章扭转习题
第三章 扭转习题一、单项选择题1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=0.5D 。
两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxDmaxdττ为A 、2倍,B 、4倍,C 、8倍,D 、16倍。
二、1、扭转变形时,公式pTlGI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。
2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 .3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相同 。
5、剪切虎克定律的表达式 G τγ=,式中的G 表示材料的 模量,式中的γ称为 。
6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。
三、 1、如图所示圆轴,一端固定。
圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN•m,M 2=4kN•m 。
试求圆轴横截面上的最大扭矩和最大切应力。
答:圆轴横截面上的最大扭矩为 kN•m ;圆轴横截面上的最大切应力为 Mpa 。
2、如图所示阶梯形圆轴,一端固定。
圆轴横截面的直径分别为50mm 和75mm,所受的外力偶矩M C =1200 N•m ,M B =1800 N•m 。
试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。
答:BC 段横截面上的扭矩为 N•m ;该阶梯轴的最大切应力为 Mpa 。
3、如图所示圆轴,一端固定。
圆轴横截面的直径d=100mm ,所受的外力偶矩M 1=7000 N•m M 2=5000 N•m 。
试求圆轴横截面上的最大扭矩和最大切应力。
答:最大扭矩为 N •m 。
最大切应力为 Mpa 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 扭转习题一、单项选择题1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=。
两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxDmaxdττ为A 、2倍,B 、4倍,C 、8倍,D 、16倍。
二、1、扭转变形时,公式pTlGI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。
2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 .3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相同 。
5、剪切虎克定律的表达式 G τγ=,式中的G 表示材料的 模量,式中的γ称为 。
6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。
三、 1、如图所示圆轴,一端固定。
圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN •m,M 2=4kN •m 。
试求圆轴横截面上的最大扭矩和最大切应力。
答:圆轴横截面上的最大扭矩为 kN •m ;圆轴横截面上的最大切应力为 Mpa 。
2、如图所示阶梯形圆轴,一端固定。
圆轴横截面的直径分别为50mm 和75mm,所受的外力偶矩M C =1200 N •m ,M B =1800 N •m 。
试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。
答:BC 段横截面上的扭矩为 N •m ;该阶梯轴的最大切应力为 Mpa 。
3、如图所示圆轴,一端固定。
圆轴横截面的直径d=100mm ,所受的外力偶矩M 1=7000 N •mM 2=5000 N •m 。
试求圆轴横截面上的最大扭矩和最大切应力。
答:最大扭矩为 N •m 。
最大切应力为 Mpa 。
4、某传动轴为实心圆轴,轴内的最大扭矩=1.5kN m T ,许用切应力[]=50MPa τ,试确定该轴的横截面直径。
5、圆轴AB 传递的功率为P = ,转速n = 360r/min 。
轴的AC 段为实心圆截面,CB 段为空心圆截面,如图所示。
已知D= 30mm 。
试计算AC 段横截面边缘处的切应力。
6、已知解放牌汽车主传动轴传递的最大扭矩T=1650N ⋅m ,传动轴用外径D =90mm ,壁厚t = 2.5mm 的钢管做成。
材料为20钢,其许用切应力 []=70MPa τ。
校核此轴的强度。
图3.3.2图 3.3.3图3.3.57、传动轴上装有四个带轮,其上分别作用主动力偶矩m 1=420⋅N m ,从动力偶矩m 2 =250⋅N m ;m 3 =70⋅N m ;m 4 =100⋅N m ,轴的直径d =40mm 。
轴的材料为45钢,[]=40MPa τ。
试校核轴的强度。
8、某机器的传动轴为钢制实心轴如图所示,轴的转速n = 700r/min ,主动轮的输入功率P A = 400kW ,从动轮B 、C 、D 的输出功率分别为P B = P C =120kW ,P D =160kW 。
其许用扭转切应力[]=40MPa τ。
求:1、画出扭矩图并计算轴内的最大扭矩;2、试设计轴的直径。
9、已知:图示实心轴通过牙嵌离合器把功率传给空心轴,传递的功率N = kW,轴的转速n =100r/min,许用切应力=40MPa 。
求:选择实心轴的直径d 1。
10、传动轴上装有四个带轮,其上分别作用主动力偶矩m 1=120⋅N m ,从动力偶矩m 2 =70⋅N m ;m 3 =20⋅N m ;m 4 =30⋅N m 。
求截面1-1,2-2,3-3上的内力并画扭矩图。
这样把主动轮放在一侧,对提高轴的承载能力有利吗应如何布局合理说明原因。
11、传动轴上装有四个带轮,其上分别作用主动力偶矩m 1=120⋅N m ,从动力偶矩m 2 =70⋅N m ;m 3 =20⋅N m ;m 4 =30⋅N m ,轴的直径d =40mm 。
画出该轴的扭矩图、并求出截面1-1,2-2,3-3上的切应力。
1、C二、 填空题1、扭矩 剪切 极惯性矩 抗扭刚度2、垂直3、愈大 零 最大4、相同 不同5、剪切弹性 剪应变(或切应变)6、大小 符号三、 计算题 1、 4 20 2、 1200 48 3、5000 254、解:实心圆轴的直径为33361616 1.5100.0535m[]5010Td πτπ⨯⨯≥==⨯⨯圆整得54mm d =5、解:(1)计算扭矩轴所受的外力偶矩为7.595509550199N m 360e P M n===⋅由截面法计算各横截面上的扭矩均为199N me T M ==⋅(2)计算极惯性矩AC 段轴横截面的极惯性矩分别为4444444444307.9510mm 3232()(3020) 6.3810mm 3232AC CBp p D I D d I ππππ⨯===⨯--===⨯(3)计算应力 AC 段轴在横截面边缘处的切应力为34199103037.5MPa27.95102ACAC p TDI τ⨯=⋅=⨯=⨯外6、解:20.944d D t D Dα-=== 33443p 90(1)(10.944)29400mm 1616D W ππα⨯=-=-=切应力3maxp 16501056MPa []70MPa 29400T W ττ⨯===<= 故AB 轴的强度足够。
7解123max 420N m 170N m 100N m 420N mT T T T =-⋅=-⋅=-⋅=⋅[]3max34201033.4MPa <40MPa 4016PT W ττπ⨯====⨯ 故该轴强度足够。
8、解:1、(1)计算外力偶矩400954995495457N m 700A A P M n==⨯=⋅ 12095499549=1637N m 700B BC P M M n===⨯⋅16095499549=2183N m 700D D P M n==⨯⋅(2)计算各段轴内的扭矩11637N m B T M =-=-⋅ 23274N m B C T M M =--=-⋅ 32183N m D T M ==⋅ (3)作扭矩图,确定最大扭矩最大扭矩发生在AC 段的各个横截面上,即max3271N m T=⋅2、由强度条件计算轴的直径max max 3[]16pT T d W ττπ==≤ max 33616163280m 75mm []4010T d πτπ⨯≥==⨯⨯轴的直径最小为75mm 。
9 、解: 36110402.71616⨯⨯⨯≥πd m 045.0=mm45=1max t W T =τ312.71616d π⨯=][τ≤1040⨯=2max t W T =τ)1(2.71616432απ-⨯=D 1040⨯=][τ≤m 045989.0=mm 46≈36421040)5.01(2.71616⨯⨯-⨯≥πD n N T 9549=1005.79549=mN 2.716⋅=1max t W T =τ312.71616dπ⨯=1040⨯=][τ≤36110402.71616⨯⨯⨯≥πd m 045.0=mm45=1max t WT =τ312.71616d π⨯=][τ≤1040⨯=2max t W T =τ)1(2.71616432απ-⨯=D 1040⨯=][τ≤m 045989.0=mm46≈36421040)5.01(2.71616⨯⨯-⨯≥πD n N T 9549=1005.79549=N 2.716⋅=1max t W T =τ312.71616d π⨯=61040⨯=][τ≤36110402.71616⨯⨯⨯≥πd m 045.0=mm 45=1max t W T=τ312.71616d π⨯=[τ≤1040⨯=2max t W T =τ)1(2.71616432απ-⨯=D 1040⨯=][τ≤m 045989.0=46≈36421040)5.01(2.71616⨯⨯-⨯≥πD n N T 9549=1005.79549=N 2.716⋅=1m ax t W T =τ312.71616d π⨯=1040⨯=[τ≤故d 1=45mm 10、解:11、 解: 311332233333120109.55MPa 40165010 3.98MPa 40163010 2.39MPa 4016PP PT W T W T W τπτπτπ⨯===⨯⨯===⨯⨯===⨯ (2分)。