课件 中心对称图形1
合集下载
苏科版八年级数学下册中心对称与中心对称图形课件(1)
A
D
.o
O
B
C
问题3:你能说说中心对称与一般的旋转的联系与区分 吗?
中心对称是特殊的旋转
A
D
O
B
C
D
O C
问题4:中心对称它具有哪些性质? A
C
B'
.
o
B
C' A'
中心对称的性质:成中心对称的两个图形,对应点的
连线经过对称中心,且被对称中心平分 。
例题讲授 例1如图,已知△ABC 与△DEF 中心对称,点 A 和点 D 是对称点,画出对称中心 O.
自主总结、反思提升
(3)中心对称和中心对称图形的联系与区分? 若把中心对称图形的两部分分别看作两个图形, 则它们成中心对称,若把中心对称的两个图形看 作一个整体,则成为中心对称图形。
中心对称指的是二个图形, 中心对称图形指的是一个图形。
(4)通过本堂课学习,积累了哪些数学思想?
类比的思想、一般到特殊的思想
判断下面图形是不是中心对称图形。
·
自主总结、反思提升
(1)怎样画一个图形关于一个点的对称图形? 画图的根据是什么? 只要画一个图形的各个顶点关于一个点的对 称点,再顺次连接对称点。中心对称的性质。
(2)轴对称与中心对称在变化方式上有什么不同? 变化前后有什么相同点?
沿着一条直线翻折180º,绕着一个点旋转180º。 两图形全等
∴点O即为所求的点.
例题讲授
例1 如图,已知△ABC 与△DEF 中心对称,点 A和点 D 是对应点,画出对称中心 O.
∴点O即为所求的点.
例题讲授
例2 以点O为对称中心,画点A关于点O的对称点A′ .
AO
A′
九年级数学中心对称图形课件
正方形中心对称图形的面积计算
总结词
正方形中心对称图形的面积计算与矩形类似,也是通过 计算一个正方形面积再除以2得到。
详细描述
正方形作为特殊的矩形,其中心对称图形的面积计算方 法与矩形相同。将正方形分成两个完全相同的部分,然 后计算一个正方形的面积,最后将结果除以2即可得到整 个中心对称图形的面积。假设正方形边长为a,则其面积 为a^2。所以,中心对称图形的面积为(a^2)/2。
THANKS
感谢观看
03
中心对称图形的判定
通过旋转判定中心对称图形
总结词
旋转法是判定中心对称图形的一种常 用方法。
详细描述
将图形绕着某点旋转180度,如果旋 转后的图形与原图形重合,则该图形 是中心对称图形。例如,正方形、圆 、正六边形等都是中心对称图形。
通过反射判定中心对称图形
总结词
反射法是通过图形的对称性来判定中心对称图形的方法。
05
中心对称图形的面积计算
矩形中心对称图形的面积计算
要点一
总结词
要点二
详细描述
矩形中心对称图形的面积计算相对简单,可以通过计算一 个矩形面积再除以2得到。
对于矩形中心对称图形,我们可以将其分成两个完全相同 的矩形,然后计算一个矩形的面积,最后将结果除以2即可 得到整个中心对称图形的面积。假设矩形长为a,宽为b, 则其面积为ab。所以,中心对称图形的面积为(ab)/2。
九年级数学中心对称图形ppt课件
目 录
• 中心对称图形的定义 • 中心对称图形的性质 • 中心对称图形的判定 • 中心对称图形的作图 • 中心对称图形的面积计算
01
中心对称图形的定义
中心对称图形的文字定义
总结词:简明扼要
中心对称图形课件第一课时
圆既是轴对称图形,又是中心对称图形。对称轴 是每一条直径所在直线;对称中心是圆心 。
轴对称图形与中心对称图形的比较
中心对称图形与轴对称图形有 什么区别与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点 2 图形沿轴对折(翻转180° ) 图形绕中心旋转180°
3 翻转前后的图形完全重合 旋转前后的图形完全重合
(1)轴对称图形也是中心对称图形。(× ) (2)旋转对称图形也是中心对称图形。(× )
(3)平行四边形、长方形和正方形都是中心对
称图形,对角线的交点是它们的对称中心。(√ )
(4)角是轴对称图形也是中心对称图形。( × )
(5)在成中心对称的两个图形中,对应线段
平行(或在同一直线上)且相等。
(√ )
26个英文大写正体字母中,哪些是轴对称图 形,哪些是中心对称图形?
ABCDEF GHI JKL M NO P Q R S T U V WX YZ
下面扑克牌中,哪些牌的牌面是中心对称图形?
观察下列标志,它们分别是何种对称图形?
填一填
下面图形中,哪些是中心对称图形?哪些是轴 对称图形?指出它们的对称中心或对称轴?
中心对称图形
随堂练习
1. 选择题: (1)下列图形中即是轴对称图形又是中心对称
图形的是( C ) A. 角 B. 等边三角形 C. 线段 D. 平行四边形
(2)下列多边形中,是中心对称图形而不是 轴对称图形的是( A )
A. 平行四边形 B. 矩形 C. 菱形 D. 正方形
2. 判断下列说法是否正确。
2.中心对称图形只有一个对称中心, 而轴对称可有几条不同的对称轴,
3.如果一个图形既是轴对称图形 , 又是中心对称图形,那么对称中心 一定在对称轴上。
中心对称与中心对称图形课件1
B’
A’ O C’ C B
A
这个点叫作对称中心
2个图形中的对应点叫做对称点
B’
A’ O
思考:
成中心对称的2个 图形有什么性质?
C’
C B
A
对应点的连线都经过对称中心 且被对称中心平分
画一画:
1.试画出点 A关于点O 的对称点A’
A
O
A′
2.画出线段AB关于点O的中心对称线段A′B′
B′ O A′
轴对称 定 1 有一条对称轴—直线 2 图形沿轴对折,(翻转 达180度。) 义 3 翻转后与另一个图形 重合。
性 1 两个图形是全等形。 质 2 对称轴是对称点连线 的垂直平分线。
中心对称 有一个对称中心—点。 图形绕中心旋转180度。 旋转后与另一个图形重合。 两个图形是全等形。
对称点连线都过对称中心, 且被对称中心平分。
P**练习**(写在练习本上)
同学们,你 知道为什么***吗? 答案就在下一节课中。 下一节课上***,请认真预习。
再见!
中心对称与中心对称图形
观察下面的图形,你有什么发现?
观察下面的两个图形你有什么发现?
下面请观看中心对称 变换的分解过程 B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A’ O C’ C B
A
这个点叫作对称中心
2个图形中的对应点叫做对称点
B’
A’ O
思考:
成中心对称的2个 图形有什么性质?
C’
C B
A
对应点的连线都经过对称中心 且被对称中心平分
画一画:
1.试画出点 A关于点O 的对称点A’
A
O
A′
2.画出线段AB关于点O的中心对称线段A′B′
B′ O A′
轴对称 定 1 有一条对称轴—直线 2 图形沿轴对折,(翻转 达180度。) 义 3 翻转后与另一个图形 重合。
性 1 两个图形是全等形。 质 2 对称轴是对称点连线 的垂直平分线。
中心对称 有一个对称中心—点。 图形绕中心旋转180度。 旋转后与另一个图形重合。 两个图形是全等形。
对称点连线都过对称中心, 且被对称中心平分。
P**练习**(写在练习本上)
同学们,你 知道为什么***吗? 答案就在下一节课中。 下一节课上***,请认真预习。
再见!
中心对称与中心对称图形
观察下面的图形,你有什么发现?
观察下面的两个图形你有什么发现?
下面请观看中心对称 变换的分解过程 B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
A
B
B’
A’ O
C’
C
中心对称和中心对称图形(一)课件(湘教版)
知识要点
中心对称的性质
1.成中心对称的两个图形中,对应点的连线经过对称中 心,且被对称中心平分.(即对称点与对称中心三点共 线)
2.中心对称的两个图形是全等形.
三、典例精析 例1 (1)已知A点和O点,画出点A关于点O的对称点A'.
A
O
A'
第一步:连接AO, 第二步:延长AO至A',使OA'=OA, 则A'是所求的点.
中心O.
C A′
B′
B
A C′
解法1:根据视察,B、B′应是对应所求(如图).
C A′
O B′
B
A
C′
解法2:根据视察,B、B′及C、C′应是两组对应点,连 接BB′、CC′,BB′、CC′相交于点O,则点O即为所求 (如图).
C A′
O B′ B A
谢谢观看!
第 2章三角形
2.3中心对称和中心对称图形(一)
教 学 目 标 : 1.了解中心对称、对称中心和对称点的概念。
2.理解中心对称的性质。 3.掌握运用中心对称的性质作图的方法。
一、创设情境,复习导入
成
轴
s.
对
称
这两组图片中的两个图形具有什么共同的特征?
再视察一组图片
不 成 轴 对 称
1.他们还关于某条线成轴对称吗?
text
A
D
C'
O
text
B'
B text
C
D'
Ate'xt
五、课堂小结
概念
1.有一个对称中心——点 2.图形绕中心旋转180°。
中心对称
性质 作图
1.对称中心与两对称点三 点共线;
《中心对称图形》PPT课件
C'
___平__行__或__在__同__一__直__线__上____.
A
(3)对应角的关系是__相__等___.
B
B'
A'
O
C
(4)对应点的连线AA',BB',CC'与对称中心的关系
是_经__过__对__称__中__心__,__并___被_对__称__中__心___平__分____.
知识讲解
结论:
知识讲解
2.成中心对称:如果一个图形绕某一点旋转180°后与另 一个图形重合,那么就把这两个图形叫做成中心对称.这 个点叫做对称中心.
C'
A
O
B
B'
A'
C
知识讲解
思考: 中心对称图形与成中心对称有什么关系?
如果把成中心对称的两个图形看做整体,则 它就是中心对称图形;同样,中心对称图形 也可以看做两个图形成中心对称.
知识讲解
做一做 如图,△ABC和△DEF的顶点A,C,F,D在同一直线上,点O为线段 CF的中点,AC=DF,BC=EF,∠ACB=∠DFE.
将△ABC绕点O旋转180°后,它能与△DEF重合吗? 能
如果能重合,那么线段AB,AC和BC分别与哪些线段重合? AB与DE重合,AC与DF重合,BC与EF 重合
n/ 语文 课件 /kejia
n/yu wen/ 数学 课件
它们都/nk/es不jhia 是轴对称图形,经过旋转后可以与自身重合. uxue /
知识讲解
一、中心对称图形与成中心对称的图形
观察与思考:(1)观察下面几幅图,将它们分别绕着各图中标 注的“中心点”旋转180°后,能不能与它们自身重合?
中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
人教版九年级上册数学中心对称图形优秀ppt课件
中心对称图形形状匀称美观,很多建筑物和工艺品上 常采用这种图形作装饰图案.另外,具有中心对称图形形 状的物体,能够在平面内绕对称中心平稳地旋转,在生 产中旋转的零部件的形状常设计成中心对称图形,如水 泵叶轮等.
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
返回
旋转
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT) 人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
o O
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
中心对称图形
1什么是中心对称?
2中心对称有什么性质?
A
定义: 把一个图形绕着 某一点旋转180 °,如 果它能够与另一个图 形重合,那么就说这 两个图形关于这个点 对称或中心对称,这 个点叫做对称中心, 能够互相重合的一对 点叫做对称点。
C`
B`
O
B
C
A`
性质: ①两个图形全等;
②对应点所连线段都经过对称中 心,并且被对称中心平分
中心对称与中心对称图形有什么区别与联系?
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
返回
旋转
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT) 人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
o O
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
中心对称图形
1什么是中心对称?
2中心对称有什么性质?
A
定义: 把一个图形绕着 某一点旋转180 °,如 果它能够与另一个图 形重合,那么就说这 两个图形关于这个点 对称或中心对称,这 个点叫做对称中心, 能够互相重合的一对 点叫做对称点。
C`
B`
O
B
C
A`
性质: ①两个图形全等;
②对应点所连线段都经过对称中 心,并且被对称中心平分
中心对称与中心对称图形有什么区别与联系?
16.4 中心对称图形课件(共17张PPT)
A
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、通过本课的学习,你有什么收获?
课后作业
1、0~9这10个数字和A~Z这26个大写英文字母中,属
于中心对称图形的有哪些?请把它们找出来;汉字中也有
属于中心对称图形的吗?请找出5个,与同学交流. 2、利用中心对称图形的有关知识设计一个美丽的图案, 附上设计意图,在班上展示交流.
f、矩形
g、菱形
h、太极图
练习2
下图是以O为对称中心的多边形的一部分,请作出 这个多边形。
A B O C
小结
1、什么叫中心对称图形和它的对称中心? 在平面内,一个图形绕某个点旋转180°,如果旋转 前后的图形互相重合,那么这个图形叫做中心对称图形,
这个点叫做它的对称中心。
2、中心对称图形有什么性质? 中心对称图形上每一对对应点所连成的 线段都被对称中心平分。
做一做
(1)平行四边形是中心对称 图形吗?如果是,请找出它的对 称中心,并设法验证你的结论. 平行四边形是中心对称图形, 对称中心是其对角线交点.
A D O
B
C
(2)根据上面的过程,你能够验证平行四边形的哪些性质?平分.
猜一猜
魔术师把5张扑克牌放在桌子上,然后蒙住眼睛,请一位观众 上台,把某两张牌旋转180°。
魔术师解除蒙具后,看到扑克牌如下图:
魔术师很快确定了哪两张牌被旋转过,你知道是哪两张吗?
练习1
下列图形中,属于中心对称图形的有 a、b、f、g、h ; 属于轴对称图形的有 a、b、c、d、e、f、g ; a、b、f、g
既是中心对称图形又是轴对称图形的有
.
a、线段
b、圆
c、等腰梯形
d、等边三角形
e、五角星
F
如图,正六边形是中心对称图形, A 它的对称中心是点O。图中有哪 几对标有字母的对应点? 答: 图中有3对对应点: 点A和点D、点B和点E、点C和点F.
E
O
B
D C
探索中心对称图形的性质
问题1、正六边形的每对对 应点所连成的线段与对称中心 有什么关系? OA=OD,OB=OE,OC=OF
B E C F' A' D G C' E' B' O G' D' A F
中心对称图形
星云1
星云2
星云3
地毯
地毯
地毯
地毯
汉代铜镜
请分析上面的第一个图形中的旋转现象.你能 将它绕图上的一点旋转180°,使旋转前后的图形 完全重合吗?其他图形呢?
中心对称图形
定义:在平面内,一个图形绕某个点旋转180°,如 果旋转前后的图形互相重合,那么这个图形叫做中心对 称图形,这个点叫做它的对称中心。 在中心对称图形上,旋转180度前后能够重合的两个 点称为对应点.
F A E B O D C
问题2、左图是移动通信公 司标志的简图,请指出它的对 称中心和三对对应点。对应点 所连成的线段与对称中心有什 么关系? 性质:中心对称图形上每 一对对应点所连成的线段都被 对称中心平分。
例题
例、下面图形是中心对称图形吗?
(1)
(2)
(3)
答: (1)和(3)是中心对称 图形,(2)不是中心对称图形.