北师大版八年级数学下册几何综合练习题(有答案)

合集下载

2020-2021学年北师大版八年级数学下期末复习几何综合含答案

2020-2021学年北师大版八年级数学下期末复习几何综合含答案

期末复习专项训练:几何综合1.如图,△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F,若S△ABC=1,则PE+PF=.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是.3.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.4.如图,在△ABC中,∠A=90°,∠B=60°,AB=1,若D是BC边上的动点,则2AD+DC 的最小值为.5.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若CD=3,BD=5,则BE的长为.6.如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.7.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为18cm,则四边形ABFD的周长为.8.如图,已知线段AB=6,O为AB的中点,P是平面内的一个动点,在运动过程中保持OP=1不变,连结BP,将PB绕点P逆时针旋转90°到PC,连结BC、AC,则线段AC 的取值范围是.9.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.10.如图,在▱ABCD中,BC=13,过点A作AE⊥DC于点E,AE=12,EC=10,则AB=.11.如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.12.如图,过正六边形ABCDEF的顶点B作一条射线,与其内角∠BAF的平分线相交于点P,且∠APB=40°,则∠CBP=度.13.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是AD,OD 的中点,若EF=2,则AC的长是.14.如图,四边形ABCD中,∠A=90°,AB=4,AD=3,点M,N分别为线段BC,AB上的动点(点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.15.将一张长方形纸片ABCD(长方形的四个内角都是直角)按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M的度数等于.16.在平行四边形ABCD中,点E为AD的中点,连接CE,CE⊥AD,点F在AB上,连接EF,EF=CE,若BC=6,CD=5,则线段BF的长为.17.如图,在平行四边形ABCD中,∠ABC=45°,AB=6,CB=14.点M,N分别是边AB,AD的中点,连接CM,BN,并取CM,BN的中点,分别记为点E,F,连接EF,则EF的长为.18.如图所示的网格是正方形网格,A,B,C是网格线的交点,D,E是AC,BC分别与网格线的交点,若小正方形的边长为1,则DE的长为.19.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.20.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=20,BD=12,E,F分别是线段OD,OA的中点,则EF的长为.参考答案1.解:如图所示,连接AP,则S△ABC=S△ACP+S△ABP,∵PE⊥AB于点E,PF⊥AC于点F,∴S△ACP=AC×PF,S△ABP=AB×PE,又∵S△ABC=1,AB=AC=2,∴1=AC×PF+AB×PE,即1=×2×PF+×2×PE,∴PE+PF=1,故答案为:1.2.解:如图所示,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4,即点P到BC的距离是4.故答案为:4.3.解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC﹣CD=4﹣1.6=2.4.故答案为:2.44.解:作∠BCE=30°,过A作AE⊥CE交BC于D,在Rt△CED中,∠BCE=30°,∴DE=,∴AD+=AD+DE,∴当A、D、E三点共线时,AD+DE最小,在△ABC中,∠A=90°,∵∠B=60°,AB=1,∴AC=tan60°×1=,在Rr△ACE中,∠ACE=60°,∴AE=sin60°×=,∴AD+最小值为,∴2AD+DC的最小值为3.故答案为:3.5.解:∵AD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴DE=DC=3,∵BD=5,∴BE===4,故答案为4.6.解:以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,如图:在Rt△ACB中,∠ACB=90°,∠B=60°,AC=4,∴BC===4,∵∠DAE=∠FAC=60°,∴∠FAD=∠CAE,∵正△AFC,等边三角形ADE,∴AD=AE,AF=AC,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴当FD⊥BD时,FD最小,此时∠FDC=∠DCH=∠CHF=90°,∴四边形FDCH是矩形,∴FD=CH=AC=2,∴CE的最小值是2.故答案为:4,2.7.解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=18+2+2=22cm.故答案为:22cm.8.解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=6,O为AB的中点,∴A(﹣3,0),B(3,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB(AAS).∴EC=PF=y,FB=EP=3﹣x.∴C(x+y,y+3﹣x).∵AB=6,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴2≤AC≤4.故答案为:2≤AC≤4.9.解:由旋转的性质可得AB=AD=4,∵∠B=60°,∴△ABD为等边三角形,∴BD=AD=4,∴CD=BC﹣BD=7﹣4=3,故答案为:3.10.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=13∵过点A作AE⊥DC于点E,AE=12,EC=10,在Rt△ADE中,AE=,∵DC=DE+CE=5+10=15.∴AB=15.11.解:∵点D,E,F分别是△ABC的AB,BC,CA边的中点,∴EF、DE、DF为△ABC的中位线,∴EF=AB,DF=BC,DE=AC,∴AB=2EF,BC=2DF,AC=2DE,∵△DEF的周长为10,∴EF+DE+DF=10,∴2EF+2DE+2DF=20,∴AB+BC+AC=20,∴△ABC的周长为20.故答案为:20.12.解:∵多边形ABCDEF是正六边形,∴∠FAB=∠ABC==120°,∵AP是∠BAF的角平分线,∴∠PAB=∠BAF=60°,∵∠APB=40°,∴∠ABP=180°﹣∠PAB﹣∠ABP=80°,∴∠CBP=∠ABC﹣∠ABP=40°.故答案为:40.13.解:∵点E,F分别是AD,OD的中点,EF=2,∴OA=4,∵四边形ABCD是平行四边形,∴AC=2OA=8,故答案为:8.14.解:连接DN、DB,在Rt△DAB中,∠A=90°,AB=4,AD=3,,∴BD===5,∵点E,F分别为DM,MN的中点,∴EF=DN,由题意得,当点N与点B重合是DN最大,最大值为5,∴EF长度的最大值为2.5,故答案为:2.5.15.解:∵矩形ABCD,将DA沿DP向内折叠,再将DP沿DA1向内继续折叠,P1M⊥AB,∴∠P1MA=90°,∴∠DMP1=∠DMA=45°,在△ADM中,∵∠A=90°,∴∠ADM=90°﹣∠DMA=45°,∵矩形ABCD,将DA沿DP向内折叠,再将DP沿DA1向内继续折叠,∴∠ADP=∠PDM=∠MDP1=∠ADM=22.5°,在△MDP1中,∠DP1M=180°﹣∠DMP1﹣∠MDP1=180°﹣45°﹣22.5°=112.5°,故答案为:112.5°.16.解:延长FE交CD的延长线于点M,连接CF,∵四边形ABCD为平行四边形,∴AB∥CD,BC=AD=6,∴∠AFE=∠EMD,∵E为AD的中点,∴AE=DE=3,在△AEF和△DEM中,,∴△AEF≌△DEM(AAS),∴AF=DM,EF=EM,又∵EF=CE,∴EF=CE=EM,∴∠FCM=90°,∵CE⊥AD,∴∠CED=90°,∴CE===4,∴FM=2CE=8,∵AB∥CD,∴∠BFC=∠DCF=90°,设BF=x,则AF=DM=5﹣x,∴CM=10﹣x,∵CF2+CM2=FM2,∵62﹣x2+(10﹣x)2=82,∴x=,∴BF=.故答案为.17.解:如图,连接BE交CD于点G,连接GN,过点G作GH⊥DN于点H,∵四边形ABCD是平行四边形,∴AD=CB=14,CD=AB=6,∵点M,N分别是边AB,AD的中点,∴AN=DN=AD=7,BM=AB=3,∵AB∥CD,∴∠BME=∠GCE,∠MBE=∠CGE,∵点E是CM的中点,∴ME=CE,在△MEB和△CEG中,,∴△MEB≌△CEG(AAS),∴BE=GE,BM=GC=3,∴DG=CD﹣GC=3,∵∠D=∠ABC=45°,GH⊥DN,∴DH=GH=DG=3,∴NH=DN﹣DH=7﹣3=4,∴GN==5,∵BF=FN,BE=EG,∴EF是△BGN的中位线,∴EF=GN=.故答案为:.18.解:由网格可知AD=CD,BE=CE,AB=4,∴DE=AB=2,故答案为:2.19.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.20.解:∵在平行四边形ABCD中,∠ODA=90°,AC=20,BD=12,∴AO=CO=10,BO=DO=6,故AD===8,∵E、F分别是线段OD、OA的中点,∴EF是△ADO的中位线,∴EF∥AD,EF=AD,则EF的长为:4.故答案为:4.。

北师大版八年级下册数学第一章《三角形的证明》练习题精选汇编(含答案)

北师大版八年级下册数学第一章《三角形的证明》练习题精选汇编(含答案)

北师大版八年级下册数学第一章《三角形的证明》练习题精选汇编一、单选题1.若一个等腰三角形的两条边长分别为2和4,则该三角形的周长为( )A .8B .10C .12D .8或102.在ABC 中,若3,5,AB BC AC === )A .ABC 是锐角三角形B .ABC 是直角三角形且90C ∠=︒ C .ABC 是钝角三角形D .ABC 是直角三角形且90B ∠=︒3.如图,用尺规作()Rt ABC AB AC >斜边BC 的垂直平分线,其中A Rt ∠=∠,现有以下结论: ①CD AD AB +=;①ADC EDC ≌;①ACD DBC ∠=∠;①290BCD ACD ∠+∠=︒.其中正确的是( )A .①①B .①①①C .①①①D .①①4.如图所示,O 为直线AB 上一点,OC 平分①AOE ,①DOE =90°,则①①AOD 与①BOE 互为余角;①OD 平分①COA ;①若①BOE =56°40',则①COE =61°40';①①BOE =2①COD .结论正确的个数为( )A .4B .3C .2D .15.如图,ABC 中4AB cm =,5AC cm =,6BC cm =,ABC ∠与ACB ∠的平分线交于点D ,//DE AB ,C ().DF AC,则DEF//A.9cm B.6cm C.5cm D.4cm6.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A.在AC、BC 两边高线的交点处B.在AC、BC 两边垂直平分线的交点处C.在AC、BC 两边中线的交点处D.在①A、①B两内角平分线的交点处7.如图,①ABC中,AB、AC的垂直平分线分别交BC于D、E,且①DAE=20°,则①BAC=()A.100°B.120°C.150°D.160°8.如图,在①ABC中,AB=AC,①BAC=60°,BC=2,AD①BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A .1BC .2D 9.如图,在等腰Rt①ABC ,90ABC ∠=︒,O 是ABC 内一点,10OA =,OB =6OC =,O '为ABC 外一点,且CBO ABO '≅△△,则四边形AO BO '的面积为( )A .10B .16C .40D .8010.如图,在①ABC 中,AC=BC ,①ACB=90°,AD 平分①BAC ,BE 平分①ABC ,且AD ,BE 交于点O ,延长AC 至点P ,使CP=CD ,连接BP ,OP ;延长AD 交BP 于点F .则下列结论:①BP=AD :①BF=CP :①AC+CD=AB :①PO①BE ;①BP=2PF .其中正确的是( )A .①①①B .①①①①C .①①①①D .①①①①①二、填空题 11.若一个等腰三角形的两边长分别为4cm 和9cm ,则这个等腰三角形的周长是______cm .12.如图,在①ABC中,①C=90°,AD是①BAC的角平分线,若BC=8cm,BD=5cm,AB=10cm,则S①ABD=______.13.如图,等腰①ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E,BD的垂直平分线交AB于点F,并且恰好经过点C,则①A=_____°.14.如图,在①ABC中,ED//BC,①ABC和①ACB的平分线分别交ED于点G、F,若BE=5,DC=7,DE=16,则FG=_____.15.如图,已知OC是①AOB的平分线,P是OC上一点,PD①OA于点D,PD=2,则点P到OB 的距离为_____.16.如图,直线3y x =-分别交x 轴、y 轴于A 、B 两点,点()0,1C 在y 轴上,点P 在x 轴上运动,PB +的最小值为_________.三、解答题17.如图:线段AD 与BC 相交于点O ,且AC=BD ,AD=BC .求证:OA=OB .18.如图,①A =①B ,AE =BE ,点 D 在 AC 边上,①1=①2,AE 和 BD 相交于点 O .(1)求证:①AEC①①BED;(2)若①1=36°,求①BDE 的度数.19.如图,为了丰富群众的娱乐活动,某镇准备新建一个文化娱乐站,要求娱乐站到三个村A、B、C的距离相等,请你用尺规作图的方法确定娱乐站的位置(不写作法,保留作图痕迹)20.如图,①ABC中,①ACB=90°,AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.求证:(1)DE=DF;(2)①EDF=90°.21.如图,在①ABC中,AB=AC,①B=40°,点D在线段BC(不含端点B、C上运动),连接AD,作①ADE=40°,DE与线段AC相交于点E.(1)当①BDA=120°时,求①DEC的度数;(2)当CD=BA时,说明①ABD①①DCE;(3)在运动变化过程中,是否存在点D,使①ADE是等腰三角形,若存在,请求出①BDA的度数;若不存在,说明理由.22.如图1,平面直角坐标系中,直线34y x m =-+交x 轴于点(4,0)A ,交y 轴正半轴于点B ,直线AC 交y 轴负半轴于点C ,且BC AB =.(1)求ABC 的面积.(2)P 为线段..AB (不含A ,B 两点)上一动点.①如图2,过点P 作y 轴的平行线交线段AC 于点Q ,记四边形APOQ 的面积为S ,点P 的横坐标为t ,当152S =时,求t 的值. ①M 为线段BA 延长线上一点,且AM BP =,在直线AC 上是否存在点N ,使得PMN 是以PM 为直角边的等腰直角三角形?若存在,直接..写出点N 的坐标;若不存在,请说明理由. 23.已知:直线//m n ,点A ,B 分别是直线m ,n 上任意两点,在直线m 上取一点C ,使AC AB =,连接BC ,在直线BC 上任取一点E ,作AEF BAC ∠=∠,EF 交直线n 于点F .(1)如图,当点E 在线段BC 上,目20BFE ∠=︒时,求BAE ∠的度数.(2)若点E 是线段BC 上任意一点,求证:EF AE =.(3)如图,当点E 在线段BC 的延长线上时,若90BAC ∠=︒,请判断线段EF 与AE 的数量关系,并说明理由.参考答案1.B解:当腰为4时,周长=4+4+2=10;当腰长为2时,根据三角形三边关系可知此情况不成立; ①这个三角形的周长是 10.2.D①22223534AB BC +=+=,2234AC ==,①222AB BC AC +=,①①ABC 是直角三角形,且①B=90︒.3.D①MN 是BC 的垂直平分线,①BD=CD①BD+AD=AB①CD+AD=AB故①正确;①在三角形ADC 与三角形EDC 中,已知:CD=CD ,A EDC ∠=∠,条件不足,无法证明全等, 故①错误;①①中无法证明全等,①ACD DBC ∠≠∠故①错误,①90B ACB ∠+∠=︒,BD=CD①B DCB ∠=∠①290BCD ACD ∠+∠=︒故①正确,4.B解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠, 90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠, 故①不正确,①正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故①正确;∴①①①正确.5.B//DE AB ,//DF AC ,ABD BDE ∴∠=∠,ACD CDF ∠=∠,BD ∴平分ABC ∠,CD 平分ACB ∠,ABD DBE ∴∠=∠,ACD DCF ∠=∠,BDE DBE ∴∠=∠,CDF DCF ∠=∠,BE DE ∴=,CF DF =,DEF C DE EF DF =++BE EF CF =++BC =6cm =.6.B解:根据线段垂直平分线上的点到线段两个端点的距离相等, 可知超市应建在AC 、BC 两边垂直平分线的交点处,故选:B .7.A解:①DM 是线段AB 的垂直平分线,①DA =DB ,①①B =①DAB ,同理①C =①EAC ,①①B +①DAB +①C +①EAC +①DAE =180°,①①DAB +①EAC =80°,①①BAC =100°,故选:A.8.B解:连接CE,①在①ABC中,AB=AC,①BAC=60°,①①ABC为等边三角形,①AB=BC=2,①AD①BC,①AD垂直平分BC,①CE=BE,根据两点之间线段最短,BE+EF=CE+EF的最小值为CF,连接CF,①点F是AB的中点,①CF①AB,BF=AF=1,在Rt①CFB中,由勾股定理得:CF==即BE+EF,故选:B..9.C解:如图,连结OO′.①①CBO①①ABO′, ①OB=O′B=42,OC=O′A=10,①OBC=①O′BA ,①①OBC+①OBA=①O′BA+①OBA ,①①O′BO=90°,①O′O 2=OB 2+O′B 2=32+32=64,①O′O=8.在①AOO′中,①OA=6,O′O=8,O′A=10,①OA 2+O′O 2=O′A 2,①①AOO′=90°,①S 四边形AO′BO =S ①AOO′+S ①OBO′=12×6×8+12×42×42=24+16=40. 10.C①AC=BC ,①ACB=①PCD=90°,CP=CD ,①()PBC DAC SAS ≅,则BP=AD ,故①正确;由PBC DAC ≅得①PBC=①DAC ,则90BFA BCP PFA ∠=∠=∠=︒, ①AD 平分①BAC ,①①BAF=①PAF ,BAF PBC ∠=∠∴,假设BF CP =,在BPC △和ABF 中,PBC BAFBCP AFB CP BF∠=∠⎧⎪∠=∠⎨⎪=⎩,()BPC ABF AAS ∴≅,BC AF ∴=,AC BC =,AC AF ∴=,在Rt ACD △中,AD AC >,又AF AD DF AD =+>,AF AD AC ∴>>,与AC AF =相矛盾,则假设不成立,①错误;在APF 与ABF 中,PFA BFAAF AF PAF BAF∠=∠⎧⎪=⎨⎪∠=∠⎩,①()APF ABF ASA ≅,AB AP AC CP AC CD ∴==+=+,即AC CD AB +=,故①正确;由APF ABF ≅得BF=PF ,则2BP BF PF PF =+=,故①正确;BF PF =,AD 平分①BAC ,∴AF 为BP 的垂直平分线,∴OB=OP ,OBP ∴△为等腰三角形,,90AC BC ACB =∠=︒,45BAC ABC ∴∠=∠=︒, 又AD 平分①BAC ,BE 平分①ABC ,22.5OBC OAC ∴∠=∠=︒,22.5PBC OAC ∴∠=∠=︒,①45PBO PBC CBO ∠=∠+∠=︒,OBP ∴△为等腰直角三角形,且90POB ∠=︒,即PO BE ⊥,故①正确;综上,①①①①正确,11.22解:当4cm 为腰长时,三角形三边为4cm 、4cm 和9cm , ①4+4<9,所以不构成三角形,舍去;当9cm 为腰长时,三角形三边为9cm 、9cm 和4cm , ①9+4>9,所以可以构成三角形,周长为9+9+4=22cm,故答案为:22.12.15cm2解:过点D作DE①AB于E,①AD是①BAC的角平分线,①C=90°,DE①AB ①DE=DC,①BC=8cm,BD=5cm,①DE=DC=3cm,①S①ABD=12·AB·DE=12×10×3=15(cm2),故答案为:15cm2.13.36解:连接CD,①DE和CF分别是AC和BD的垂直平分线,①DA=DC=BC,①①DCA=①A,①CDB=①B,①①CDB=①DCA+①A=2①A,①①B=2①A,①AB=AC,①①ACB=①B=2①A,①①A+①B+①ACB=180°,①①A+2①A+2①A=180°①①A=36°,故答案为:36.14.4解:①ED①BC,①①EGB=①GBC,①DFC=①FCB,①①GBC=①GBE,①FCB=①FCD,①①EGB=①EBG,①DCF=①DFC,①BE=EG,CD=DF,①BE=5,DC=7,DE=16,①FG=DE﹣EG﹣DF=DE﹣BE﹣CD=16﹣5﹣7=4,15.2解:作PE①OB于E,①OC 是①AOB 的平分线,PD ①OA ,PE ①OB ,①PE =PD =2,16.4解:过点P 作PD AB ⊥于D ,①直线3y x =-与x 轴交于点B ,与y 轴交于点A , ①()0,3A -,()3,0B ,①3OA OB ==,90AOB ∠=︒AOB ∴是等腰直角三角形①45OAB OBA ∠=∠=︒,①PD AB ⊥,①45DPB ∠=︒,BDP ∴是等腰直角三角形①2DP DB PB ==,2PB PC PB ⎫+=+⎪⎪⎭)PC PD =+≥,当且仅当C ,P ,D PB +取得最小值,此时CD AB ⊥,PC PD +的值最小,最小值等于垂线段CD 的长,此时ACD △是等腰直角三角形, ①()0,1C ,①1OC =,①4AC OA OC =+=,在Rt ACD △中,=2CD AC ∴=①PC PD +的最小值为)PC PD +4=,PB +的最小值为4,故答案为:4.17解:在①ADC 和①BCD 中AC BDAD BC CD DC=⎧⎪=⎨⎪=⎩,①①ADC①①BCD ,①①ADC=①BCD ,①CO=DO ,①AD=BC ,①AD -DO=BC -CO ,①OA=OB .18.解:证明:(1)①AE 和BD 相交于点O , ①①AOD=①BOE .又在①AOD 和①BOE 中,①A=①B , ①①BEO=①2.又①①1=①2,①①1=①BEO ,①①AEC=①BED .在①AEC 和①BED 中,A BAE AE BEC BED∠=∠∠=∠⎧⎪=⎨⎪⎩①①AEC①①BED (ASA ).(2)①①AEC①①BED ,①EC=ED,①C=①BDE.在①EDC中,①EC=ED,①1=36°,①①C=①EDC=72°,①①BDE=①C=72°.19.解:如图所示,点P为娱乐站所在的位置.【点睛】本题考查了基本作图,关键是掌握线段垂直平分线上的点到线段两端点的距离相等.20.证明:(1)①BC=AC,①BCA=90°,①①ABC是等腰直角三角形,①D为AB中点,①BD=CD,CD平分①BCA,CD①AB.①①A+①ACD=①ACD+①FCD=90°,①①A=①FCD,在①ADE和①CFD中,AE CF A FCD AD CD =⎧⎪∠=∠⎨⎪=⎩,①①ADE①①CFD (SAS ),①DE =DF(2)由(1)知,①ADE①①CFD (SAS ),①①ADE =①CDF .①①ADE +①EDC =90°,①①CDF +①EDC =①EDF =90°,即①EDF=90°.21.(1)①①B=40°,①ADB=120°,①①BAD=180°-①B -①ADB=180°-120°-40°=20°,①AB=AC ,①①C=①B=40°,①①EDC=180°-①ADB -①ADE=20°,①①DEC=180°-①EDC -①C=120°;(2)①①EDC+①EDA+①ADB=180°,①DAB+①B+①ADB=180°,①B=①EDA=40°, ①①EDC=①DAB .①①B=①C ,DC=AB ,①①ABD①①DCE (ASA );(3)存在,当①BDA=110°或80°时,①ADE 是等腰三角形.①AB=AC ,①①B=①C=40°,①当AD=AE 时,①ADE=①AED=40°,①①AED >①C ,①此时不符合;①当DA=DE 时,即①DAE=①DEA=12(180°-40°)=70°, ①①BAC=180°-40°-40°=100°,①①BAD=100°-70°=30°;①①BDA=180°-30°-40°=110°;①当EA=ED 时,①ADE=①DAE=40°,①①BAD=100°-40°=60°,①①BDA=180°-60°-40°=80°;综合上述可得:当①BDA=110°或80°时,①ADE 是等腰三角形. 22.(1)把()4,0A 代入34y x m =-+得:3m =, 一次函数解析式为334y x =-+,令0x =,得3y =,①()0,3B ,在Rt AOB 中,222AB OA OB =+,①5AB =,①5BC AB ==,①(0,2)C -, ①11541022ABC S BC OA =⋅=⨯⨯=△. (2)①设3,34P t t ⎛⎫-+ ⎪⎝⎭, ①P 在线段AB 上,①04t <<,设直线AC 的解析式为y kx b =+,代入()4,0A ,()0,2C -得 042k b b =+⎧⎨-=⎩, ①122k b ⎧=⎪⎨⎪=-⎩, ①122y x =-, 又①PQ x 轴,则1,22Q t t ⎛⎫- ⎪⎝⎭, ①315325424PQ t t t ⎛⎫=-+--=- ⎪⎝⎭, 1122AOP AOQ p Q APOQ S S S AO y AO y ∴=+=⋅+⋅△△四边形 12AO PQ =⋅ 154524t ⎛⎫=⨯⨯- ⎪⎝⎭5102t =-, 又①152S =, ①5151022t -=得1t =. ①如图所示,当N 点在x 轴下方时,①BP AM =,①BP AP AM AP AB +=+=,①5PM AB ==,①PMN 是以PM 为直角边的等腰直角三角形,当90NPM ∠=︒时,5PN PM ==,MN ==, 设1,22N a a ⎛⎫- ⎪⎝⎭, 过P 点作直线M N ''∥x 轴,作MM M N '''⊥,NN M N '''⊥, ①MM OB '∥,①ABO PMM '∠=∠,在AOB 与PM M '△中90AOB PM M ABO PMM AB PM ''∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ① () AOB PM M AAS '△≌△,①3MM OB '==,4PM OA '==,①90NPN MPM ''∠+∠=︒,90NPN N NP ''∠+∠=︒, ①MPM N NP ''∠=∠,在PNN '△与MPM '△中,90N NP MPM PN N MM P PN PM '∠=∠'⎧⎪∠=∠==''︒⎨⎪⎩,①()PNN MPM AAS ''△≌△,①3PN MM ''==,4NN PM ''==,①7M N ''=,作MH NN '⊥,则1NH =, ①1,22N a a ⎛⎫- ⎪⎝⎭, ①17,12M a a ⎛⎫+- ⎪⎝⎭, ①M 在直线AB 上, ①131(7)324a a -=-++ 121313244a a -=--+ 5544a =- 1a =-, ①15222a -=-, ①51,2N ⎛⎫-- ⎪⎝⎭. 当N 点在x 轴上方时,点N '与51,2N ⎛⎫-- ⎪⎝⎭关于(4,0)A 对称, 则524(1),02N ⎛⎫⎛⎫'⨯---- ⎪ ⎪⎝⎭⎝⎭,即59,2N ⎛⎫' ⎪⎝⎭,综上:存在一点51,2N⎛⎫--⎪⎝⎭或59,2⎛⎫⎪⎝⎭使PMN是以MN为直角边的等腰直角三角形..23.(1)设AB与EF交于点O.∵//m n,①BAC ABF∠=∠,①AEF BAC∠=∠,①AEF ABF∠=∠.①AOE BOF∠=∠,180180OAE AEF AOE BFE ABF BOF∠=︒-∠-∠∠=︒-∠-∠,,①20BAE BFE∠=∠=︒.(2)以E为圆心,BE为半径画弧交直线n于点M,连接EM,①EM EB =,①EMB EBM ∠=∠, ①//m n ,①ACB EBM ∠=∠. ①AC AB =,①∠=∠ACB ABC , ①EMF ABC ∠=∠, 由(1)可知,EAB EFM ∠=∠,在EMF △和EBA △中,EMF EBA EFM EAB EM EB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①EMF EBA AAS ≌(), ①EF AE =.(3)在BF 上截取BN AB =,连接EN ,①AB AC =,①∠=∠ACB ABC ,①//m n ,①ACB NBC ∠=∠, ①ABC NBC ∠=∠,在ABE △和NBE 中,AB NB ABE NBE BE BE =⎧⎪∠=∠⎨⎪=⎩①ABE NBE SAS ≌(), ①AE EN EAB ENB =∠=∠,, ①90AEF BAC ∠=∠=︒,90BAC ABF ∠=∠=︒, ①180EAB EFB ∠+∠=︒, ①180ENB ENF ∠+∠=︒, ①EFB ENF ∠=∠, ①EF EN =,①EF AE =.。

新版北师大版八年级数学下册练习题 附解析答案 26页

新版北师大版八年级数学下册练习题 附解析答案 26页

一.选择题(共10小题)1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°2.将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.3603.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.34.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.16.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°9.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是910.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)二.填空题(共9小题)11.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16.分解因式:x3y﹣2x2y+xy=.17.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为.18.若x2﹣9=(x﹣3)(x+a),则a=.19.分解因式:9a2﹣30a+25=.三.解答题(共11小题)20.如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:AD⊥EF.21.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:24.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.25.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.26.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.27.如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.28.分解因式:(x﹣1)(x﹣2)+.29.分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)30.已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.03月23日neg123的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2014秋•南平期末)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.60°B.30°C.90°D.150°考点:旋转的性质.分析:如图,证明CA=CA′,∠A=∠CA′A;求出∠A=60°,得到∠A′CA=60°,即可解决问题.解答:解:如图,由题意得:CA=CA′,∴∠A=∠CA′A;∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠A′CA=180°﹣2×60°=60°,故选A.点评:该题主要考查了旋转变换的性质及其应用问题;解题的关键是抓住旋转变换过程中的不变量,灵活运用全等三角形的性质来分析、解答.2.(2014秋•南昌期末)将等边△ABC绕自身的内心O,顺时针至少旋转n°,就能与自身重合,则n等于()A.60 B.120 C.180 D.360考点:旋转对称图形.分析:等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,计算旋转角即可.解答:解:因为等边三角形的外心到三个顶点的距离相等,相邻顶点与外心连线的夹角相等,所以,360°÷3=120°,即每次至少旋转120°.故选:B.点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.4.(2014•大庆)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.5.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.6.(2014•资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°考点:旋转的性质.分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解答:解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.7.(2014•北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED 的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8.(2014•桂林)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°考点:旋转的性质.分析:根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.解答:解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.9.(2014•随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9考点:旋转的性质;平行线的判定;等边三角形的性质.专题:几何图形问题.分析:首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.解答:解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选:B.点评:本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.10.(2014•阜新)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2)C.(﹣2,﹣3)D.(﹣2,﹣4)考点:关于原点对称的点的坐标.专题:几何图形问题.分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.解答:解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.点评:此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.二.填空题(共9小题)11.(2014•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.12.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.13.(2014•汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.(2014•黑龙江)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.15.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.解答:解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE≌△EAF′是解题关键.16.(2015•河南模拟)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(2015•永州模拟)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2010的值为2011.考点:因式分解的应用.分析:首先将所给的代数式恒等变形,借助已知条件得到x2﹣x=1,即可解决问题.解答:解:﹣x3+2x2+2010=﹣x(x2﹣x﹣1)+x2﹣x+2010;∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2010=2011.故答案为2011.点评:该题主要考查了因式分解及其应用问题;解题的关键是牢固把握代数式的结构特点,灵活运用因式分解法来分析、判断、推理活解答.18.(2014•益阳)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.19.(2014•呼伦贝尔)分解因式:9a2﹣30a+25=(3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.三.解答题(共11小题)20.(2014秋•莘县期末)如图,在△ABC中,AD平分∠BAC中,AD平分∠BAC,DE⊥AB 于点E,DF⊥AC于点F,求证:AD⊥EF.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:易证△AED≌△AFD,得AE=AF,利用等腰三角形三线合一可得证结论.解答:证明:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD.在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF.点评:本题主要考查全等三角形的判定和性质及等腰三角形的判定和性质,掌握全等三角形的对应边相等及等腰三角形“三线合一”的性质是解题的关键.21.(2014秋•越秀区期末)如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C 的度数.考点:等腰三角形的性质.分析:设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.解答:解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.点评:本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.22.(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F 为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形.专题:几何综合题.分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.23.(2013•泉州模拟)如图,请在下列四个等式中,选出两个作为条件,推出△AED是等腰三角形,并予以证明.(写出一种即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:求证:△AED是等腰三角形.证明:考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题;开放型.分析:根据等腰三角形的判定方法,即在一三角形中等边对等角或等角对等边,可选①③来证明△ABE≌△DCE,从而得到AE=DE,即△AED是等腰三角形.(或①④,或②③,或②④.)解答:解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中∵∴△ABE≌△DCE;∴AE=DE;△AED是等腰三角形.点评:此题考查学生对等腰三角形的判定方法及全等三角形的判定的掌握情况;发现并利用全等三角形是正确解答本题的关键.24.(2013秋•长丰县期末)如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、BC于点E、F.且FG⊥AB,垂足为G,求证:CE=FG.考点:角平分线的性质;等腰三角形的判定与性质.专题:证明题.分析:先根据角平分线的性质得出CF=FG,由HL定理得出△ACF≌△AGF,故可得出∠AFC=∠AFG,再由平行线的性质得出∠AFG=∠AED,由对顶角相等可知∠AED=∠CEF,故可得出∠CEF=∠AFC,那么CE=CF,由此可得出结论.解答:证明:∵AF是∠BAC的平分线,∠ACB=90°,FG⊥AB,∴CF=FG.在Rt△ACF与Rt△AGF中,,∴△ACF≌△AGF(HL),∴∠AFC=∠AFG.∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠AFG=∠AED.∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,∴∠CEF=∠AFC,∴CE=CF,∴CE=FG.点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.(2014•江西模拟)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.26.(2014•兰州一模)如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.27.(2014•开封一模)如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)利用等边三角形的判定与性质得出∠DAB=∠ABC,进而得出答案;(2)首先利用旋转的性质以及全等三角形的判定方法得出△DBG≌△ABF(SAS),进而得出△BGF为等边三角形,求出DF=DG+FG=AF+AF=2AF.解答:(1)证明:由旋转的性质可知:∠DBE=∠ABC=60°,BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC;(2)猜想:DF=2AF,证明如下:如图,在DF上截取DG=AF,连接BG,由旋转的性质可知,DB=AB,∠BDG=∠BAF,在△DBG和△ABF中,,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF,∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又∵BF=AF,∴FG=AF,∴DF=DG+FG=AF+AF=2AF.点评:此题主要考查了全等三角形的判定与性质以及旋转的性质和等边三角形的判定与性质等知识,熟练掌握等边三角形的判定方法是解题关键.28.(2014秋•栖霞市期末)分解因式:(x﹣1)(x﹣2)+.考点:因式分解-运用公式法.分析:首先去括号,进而利用完全平方公式分解因式得出即可.解答:解:(x﹣1)(x﹣2)+=x2﹣3x+2+=x2﹣3x+=(x﹣)2.点评:此题主要考查了公式法分解因式,正确运用公式法分解因式是解题关键.29.(2014秋•青神县期末)分解因式:(1)4m2﹣12mn+9n2(2)(a2﹣4b2)+(a2+2ab)考点:提公因式法与公式法的综合运用.分析:(1)利用完全平方公式分解因式即可;(2)先整理,然后提取公因式2,再利用十字相乘法分解因式即可.解答:解:(1)4m2﹣12mn+9n2=(2m﹣3n)2;(2)(a2﹣4b2)+(a2+2ab)=a2﹣4b2+a2+2ab=2a2+2ab﹣4b2=2(a2+ab﹣2b2)=2(a﹣b)(a+2b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.30.(2014秋•宜城市期末)已知a,b,c为△ABC的三边长,且满足++=++,试判断△ABC的形状,并说明理由.考点:因式分解的应用.专题:常规题型.分析:先去分母得到a2+b2+c2=ab+ac+bc,再利用配方法得到(a﹣b)2+(b﹣c)2+(a﹣c)2=0,则根据非负数的性质有a﹣b=0,b﹣c=0,a﹣c=0,所以a=b=c,于是可判断△ABC是等边三角形.解答:解:△ABC是等边三角形.理由如下:∵++=++,∴a2+b2+c2=ab+ac+bc,∴2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,∴a2﹣2ab+b2+b2﹣2bc+c2+a2﹣2ac+c2=0,∴(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a﹣b=0,b﹣c=0,a﹣c=0,∴a=b=c,∴△ABC是等边三角形.点评:本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了等边三角形的定义.。

北师大版八年级数学下册几何综合复习练习题(有答案)

北师大版八年级数学下册几何综合复习练习题(有答案)

几何练习题一.选择题1.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC 的长等于()A.12B.10C.8D.62.下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形3.已知A(a,1)与B(5,b)关于原点对称,则a b的值为()A.B.C.﹣5D.54.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.46.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8二.填空题7.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)8.如图,等腰△ABC中,AB=AC=10,∠B=15°,则S△ABC=.9.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP为直角三角形.10.如图,AB=AC,AC的垂直平分线MN交AB于点D交AC于点E,若AE=5,△BCD的周长为17,则△ABC的周长为.11.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.12.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.13.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCEF的周长为.14.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EF A.其中正确结论的序号是.15.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.16.如图,已知在等边△ABC中,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题17.已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EH∥BC,分别交AC、CF于点G、H.求证:GE=GH.18.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.19.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.20.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.23.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.24.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.25.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.26.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.27.已知:如图是某城市部分街道示意图,AF∥BC,且AF⊥CE,AB=DC,AB∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?说明理由.28.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,BE=CF.(1)求证:四边形DEFC是平行四边形;(2)若∠ABC=60°,BD=4,求四边形DEFC的面积.29.如图,已知在等边△ABC中,AD,CF分别为边CB,BA上的中线,以AD为边作等边△ADE.求证:(1)四边形CDEF是平行四边形;(2)EF平分∠AED.30.如图,在△ABC中,D,E,F分别为边BC,AB,AC上的点,ED∥AF且ED=AF,延长FD到点G,使DG=FD,求证:ED,AG互相平分.答案一.选择题1.B.2.A.3.B.4.C.5.C.6.B.二.填空题7.①②③.8.25.9.50°或90°.10.27.11.32.12.等边三角形.13.9cm.14.①②③④.15.6.16.240°.三.解答题7.解:∵EH∥BC,∴∠BCE=∠GEC,∠GHC=∠DCH,∵∠GCE=∠BCE,∠GCH=∠DCH,∴∠GEC=∠GCE,∠GCH=∠GHC,∴EG=GC=GH,∴GE=GH.18.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.19.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.20.解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.21.解:如图,点P为所作.22.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.23.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.24.解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.25.证明:∵E,F,G分别是AB,CD,AC的中点,∴FG=AD,EG=BC,∵AD=BC,∴FG=GE,∵H是EF的中点,∴GH⊥EF.26.证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.解:同时到达,理由如下:连接AC,如图,∵AF∥BC,AB=CD,∴四边形ABCD为等腰梯形,∴AC=BD,∵AB∥DE,BD∥AE,∴四边形ABDE为平行四边形,∴AE=BD=AC,AB=DE,∵AF⊥CE,∴AF为线段CE的垂直平分线,∴CF=EF,∴甲乘1路车,路程=BA+AE+EF=CD+BD+CF,乙乘2路车,路程=BD+DC+CF,∴两人同时到达.28.解:(1)∵ED∥BC,∴∠BDE=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠BDE=∠ABD,∴BE=DE.∵BE=CF,∴DE=CF.又∵ED∥BC,∴四边形DEFC是平行四边形;(2)如图所示:过点B作BG⊥DE,垂足为G.由(1)可知∠EDB=∠ABC.∵∠ABC=60°.∴∠EDB=30°.又∵∠G=90°.∴BG=BD=2.∵ED∥FC,∴∠AED=∠ABC=60°.∴∠GEB=60°.∴ED=BE=BG÷=.∴平行四边形EDCF的面积=ED•BG=.29.证明:(1)∵△ABC是等边三角形,AD,CF分别为边CB,BA上的中线,∴AD=CF,AD⊥BC,∠BCF=30°,∵△ADE是等边三角形,∴DE=AD,∠ADE=60°,∴∠BDE=90°﹣60°=30°=∠BCF,∴DE=CF,DE∥CF,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形,∴EF∥CD,∴∠FED=∠BCF=30°,∵△ADE是等边三角形,∴∠AED=60°,∴∠AEF=30°=∠DEF,∴EF平分∠AED.30.证明:连接EG、AD,如图所示:∵ED∥AF,且ED=AF,∴四边形AEDF是平行四边形,∴AE=DF,又DG=DF,∴AE=DG,∴四边形AEGD是平行四边形,∴ED,AG互相平分.。

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。

2022年北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析)

2022年北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析)

北师大版八年级数学下册第六章平行四边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF =130°,则∠PEF的度数为()A.25°B.30°C.35°D.50°2、如图,桐桐从A点出发,前进3m到点B处后向右转20°,再前进3m到点C处后又向右转20°,…,这样一直走下去,她第一次回到出发点A时,一共走了()A.100m B.90m C.54m D.60m3、若一个多边形的外角和是它内角和的23,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形4、如图,已知四边形ABCD和四边形BCEF均为平行四边形,∠D=60°,连接AF,并延长交BE于点P,若AP⊥BE,AB=3,BC=2,AF=1,则BE的长为()A.5 B.C.D.5、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.246、一个正多边形的每个外角都等于45°,则这个多边形的边数和对角线的条数分别是()A.8,20 B.10,35 C.6,9 D.5,57、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.108、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4 B.6 C.8 D.109、如图,在△ABC 中,∠ABC =90°,AC =18,BC =14,D ,E 分别是AB ,AC 的中点,连接DE ,BE ,点M 在CB 的延长线上,连接DM ,若∠MDB =∠A ,则四边形DMBE 的周长为( )A .16B .24C .32D .4010、如果一个多边形的每个内角都是144°,那么这个多边形的边数是( )A .5B .6C .10D .12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一个正八边形与一个正六边形如图放置,顶点A 、B 、C 、D 四点共线,E 为公共顶点.则∠FEG =_____.2、如图,平行四边形ABCD ,AD =5,AB =8,点A 的坐标为(-3,0)点C 的坐标为______.3、如图,直线MN 过ABCD 的中心点O ,交AD 于点M ,交BC 于点N ,己知4ABCD S ,则S 阴影=______.4、如图,在平面直角坐标系中,等边△ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M.当边AB恰平分线段ON时,则ANAM=___.5、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图.在ABC中,AB BC=.(1)按要求画图.尺规作图作出ABC∠的角平分线(射线)BD.交AC于点E;(2)在(1)的结果下.画图并计算:点F 为BC 的中点.连接EF ,若2BE AC ==,求CEF △的周长.2、如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长少6cm ,AB 与AC 的和为18cm ,求AC 的长3、如图,△ABC 为等边三角形,点D 为线段BC 上一点,将线段AD 以点A 为旋转中心顺时针旋转60°得到线段AE ,连接BE ,点D 关于直线BE 的对称点为F ,BE 与DF 交于点G ,连接DE ,EF .(1)求证:∠BDF =30°(2)若∠EFD =45°,AC ,求BD 的长;(3)如图2,在(2)条件下,以点D 为顶点作等腰直角△DMN ,其中DN =MN FM ,点O 为FM 的中点,当△DMN 绕点D 旋转时,求证:EO 的最大值等于BC .4、一个多边形的每个外角为60°,求这个多边形的内角和.5、(2)将图1中的CDE △绕点C 逆时针旋转()090αα︒<<︒,如图若F 是BD 的中点,判断2AE CF =是否仍然成立.如果成立,请证明;如果不成立,请说明理由.2.角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.小强证明该定理的步骤如下:已知:如图1,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,且PD PE =.求证:OC 是AOB ∠的平分线.证明:通过测量可得23AOC ∠=︒,23BOC ∠=︒.∴AOC BOC ∠=∠.∴OC 是AOB ∠的平分线.(1)关于定理的证明,下面说法正确的是( )A .小强用到了从特殊到一般的方法证明该定理.B .只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理.C .不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整.D .小强的方法可以用作猜想,但不属于严谨的推理证明.(2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形ABCDE 中,BC CD DE ==,80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,在五边形ABCDE 内有一点F ,使得BCF CDF DEF S S S ==.直接写出CFD ∠的度数.-参考答案-一、单选题1、A【分析】 根据三角形的中位线定理,可得11,22PE AD PF BC == ,从而PE =PF ,则有∠PEF =∠PFE ,再根据三角形的内角和定理,即可求解.【详解】解:∵点P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点, ∴11,22PE AD PF BC == , ∵AD =BC ,∴PE =PF ,∴∠PEF =∠PFE ,∵∠EPF =130°, ∴()1180252PEF EPF ∠=︒-∠=︒ . 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键.2、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可.【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360°,且每一个外角为20°,360°÷20°=18,所以它是一个正18边形,因此所走的路程为18×3=54(m),故选:C.【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=360°.3、C【分析】根据多边形的内角和的计算公式与外角和是360°列出方程,解方程即可.【详解】解:设这个多边形边数是n,则(n−2)×180°×23=360°,解得n=5.故选:C.【点睛】本题考查的是多边形的内角与外角,掌握n边形的内角和为(n−2)•180°、外角和是360°是解题的关键.4、D【分析】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,先证∠DHC =90º,再证四边形ADEF 是平行四边形,最后利用勾股定理得出结果.【详解】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,∵四边形ABCD 是平行四边形,AB =3,∠ADC =60º,∴CD =AB =3,∠DCH =∠ABC =∠ADC =60º,∵DH ⊥BC ,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=,∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.5、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.6、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45°,求出这个多边形的边数,再根据一个多边形有()32n n-条对角线,即可算出有多少条对角线.【详解】解:∵正多边形的每个外角都等于45°,∴360÷45=8,∴这个正多边形是正8边形,∴()8832⨯-=20(条),∴这个正多边形的对角线是20条.故选:A.【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360°,和边数无关.正多边形的每个外角都相等.任何多边形的对角线条数为()32n n-条.7、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.8、C【分析】先证明AE=EC,再求解AD+DC=8,再利用三角形的周长公式进行计算即可.【详解】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8,故选:C.【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AE=EC是解本题关键.9、C【分析】BC,根据平行线的性由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=12质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.10、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于360︒,计算即可.【详解】解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选:C.【点睛】本题考查了多边形的外角和,熟知多边形外角和等于360︒是解本题的关键.二、填空题1、30°【分析】根据多边形的内角和,分别得出∠ABE=∠BEF=135°,∠DCE=∠CEG=120°,再根据三角形的内角和算出∠BEC,得出∠FEG=360°-∠BEF-∠CEG-∠BEC即可.【详解】解:由多边形的内角和可得,∠ABE=∠BEF=()821808-⨯︒=135°,∴∠EBC=180°-∠ABE=180°-135°=45°,∵∠DCE=∠CEG=()621806-⨯︒=120°,∴∠BCE=180°-∠DCE=60°,由三角形的内角和得:∠BEC=180°-∠EBC-∠BCE=180°-45°-60°=75°,∴∠FEG=360°-∠BEF-∠CEG-∠BEC=360°-135°-120°-75°=30°.故答案为:30°.【点睛】本题考查了多边形的内角和定理,熟记各图形的性质并准确识图是解题的关键.2、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.【详解】解:∵点A的坐标为(-3,0),在Rt△ADO中,AD=5,AO=3,90=,∠︒AOD∴OD4,∴D(0,4),∵平行四边形ABCD,∴AB=CD=8,AB∥CD,∵AB在x轴上,∴CD∥x轴,∴C、D两点的纵坐标相同,∴C(8,4) .故答案为(8,4).【点睛】本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x 轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.3、1【分析】证明△MOD≌△NOB,得到S △MOD=S△NOB,利用平行四边形的性质得到S阴影=14ABCDS,由此求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠MDO=∠NBO,∵∠MOD=∠NOB,∴△MOD≌△NOB,∴S△MOD=S△NOB,∴S 阴影=114AOM BON AOD ABCDS S S S+===,故答案为:1.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,熟记全等三角形的判定是解题的关键.4、2 3【分析】过点N作NE AB∥交BC于点E,可得BM为ONE的中位线,NE为ABC的中位线,利用三角形中位线定理和等边三角形的性质得到:14BM AB=,1AN AB2=,即可求解.【详解】解:过点N作NE AB∥交BC于点E,如下图:∵B 、C 的坐标分别为(2,0),(6,0)∴2OB =,4BC =∵边AB 恰平分线段ON∴点M 是ON 的中点∴2OB BE ==,12BM EN = ∴12BE BC =∴EN 是ABC 的中位线 ∴12EN AB =,12AN AC = 又∵ABC 为等边三角形∴AB AC = ∴34AM AB =,1AN AB 2= ∴122334AB AN AM AB == 故答案为23【点睛】本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形的性质,解题的关键是正确作出辅助线,构造出三角形的中位线.5、80°【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.三、解答题1、(1)见解析;(2)1【分析】(1)根据角平分线的尺规作图方式进行解答即可;(2)根据等腰三角形三线合一以及三角形中位线的知识进行解答即可.【详解】解:(1)如图即为所作:;(2)∵AB BC =,BE 平分ABC ∠,∴,BE AC AE CE ⊥=, ∴112EC AC ==, 在Rt BEC △中,BC∵E 是AC 的中点,F 为BC 的中点,∴EF 为CAB △的中位线,∴1122EF AB BC ==,12FC BC =∴CEF △的周长=11CE EF CF ++= 【点睛】本题考查了尺规作图-角平分线,等腰三角形三线合一的性质,以及三角形中位线的性质,熟练掌握以上性质是解本题的关键.2、6AC =【分析】根据中线的定义知CD BD =,结合三角形周长公式知6AB AC -=;因为AB 与AC 的和为18cm ,则可求出AC 的长度.【详解】解:∵AD 是BC 边上的中线,∴D 是BC 的中点,CD BD =,∵△ADC 的周长比△ABD 的周长少6cm ,即:()6AB BD AD AC AD DC ++-++=cm ,∴6AB AC -=①,∵AB 与AC 的和为18cm ,即:18AB AC +=②,②-①得:6AC =cm .【点睛】本题考查了三角形的角平分线、中线和高,三角形一边的中点与此边所对顶点的连线叫做三角形中线.3、(1)见解析;(2)2;(3)见解析【分析】(1)由△ABC 是等边三角形,可得∠ABC =60°,由D 、F 关于直线BE 对称,得到BF =BD ,则∠BFD =∠BDF ,由三角形外角的性质得到∠BFD +∠BDF =∠ABD ,则∠BDF =∠BFD =30°;(2)设BG x =,由D 、F 关于直线BE 对称,得到∠BGD =∠BGF =90°,EF =ED ,EG =DG ,由含30度角的直角三角形的性质和勾股定理得2BD x =,DG =,证明△EAB ≌△DAC 得到CD BE EG BG GD BG x ==-=-=-,再由1BC AC ==,得到21BD CD x x +=+-=,由此求解即可;(3)连接OG ,先求出2MD =,证明OG 是三角形DMF 的中位线,得到112OG DM ==,再根据两点之间线段最短可知1OE EG OG ≤+=OE 的最大值等于BC .【详解】解:(1)∵△ABC 是等边三角形,∴∠ABC=60°,∵D、F关于直线BE对称,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;=,(2)设BG x∵D、F关于直线BE对称,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴22==,BD BG x∴DG=,由旋转的性质可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴CD BE EG BG GD BG x==-=-=-,∵1==,BC AC∴21+=-=,BD CD x x∴22BD x ==;(3)如图所示,连接OG ,∵在等腰直角三角形DMN 中,DN MN ==∴2MD ==,∵D 、F 关于直线BE 对称,∴G 为DF 的中点,又∵O 为FM 的中点,∴OG 是三角形DMF 的中位线, ∴112OG DM ==,由(2)可得EG =根据两点之间线段最短可知1OE EG OG ≤+=∴OE 的最大值等于BC .【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质.【分析】先根据外角和为360°求得多边形的边数,进而根据外角和内角互补即可求得每一个内角的度数,进而求得内角和.【详解】一个多边形的每个外角为60°,∴这个多边形的边数为360606︒÷︒=,这个多边形的每一个内角为18060=︒-︒120︒∴这个多边形的内角和为6120720⨯︒=︒.【点睛】本题考查了多边形的内角和,多边形的外角和,求得多边形的边数是解题的关键.5、(1)D ;(2)证明见详解;(3)55CFD ∠=︒.【分析】(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,即可得出选项;(2)根据直角三角形全等的特殊方法(直角边,斜边)得出Rt POD Rt POE ∆≅∆,然后由全等三角形的性质得出AOC BOC ∠=∠,即可证明角平分线;(3)过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,根据题意可得FG FH FK ==,运用角平分线的逆定理可得FC 平分BCD ∠,FD 平分CDE ∠,再由五边形内角和及题中已知条件可得250BCD CDE ∠+∠=︒,运用各角之间的数量关系可得125FCD FDC ∠+∠=︒,再由三角形内角和定理即可得出结果.【详解】解:(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,故选:D ;(2)在Rt POD ∆与Rt POE ∆中,PD PE OP OP=⎧⎨=⎩, ∴Rt POD Rt POE ∆≅∆,∴AOC BOC ∠=∠,∴OC 是AOB ∠的平分线;(3)如图所示,过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,∵BC CD DE ==,且FBC FCD FDE S S S ∆∆∆==,∴FG FH FK ==,∴FC 平分BCD ∠,FD 平分CDE ∠, ∴12BCF FCD BCD ∠=∠=∠,12FDC FDE CDE ∠=∠=∠ ∵80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,五边形内角和为:()52180540-⨯︒=︒,∴250BCD CDE ∠+∠=︒, ∴()111125222FCD FDC BCD CDE BCD CDE ∠+∠=∠+∠=∠+∠=︒, ∴()18055CFD FCD FDC ∠=︒-∠+∠=︒,故55CFD ∠=︒.【点睛】题目主要考查角平分线的判定和性质,三角形内角和定理,全等三角形的判定和性质,多边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.。

北师大版八年级下册数学期末几何压轴题专练(含答案)

北师大版八年级下册数学期末几何压轴题专练(含答案)

八下数学期末复习专题几何压轴题专练1.如图1,在△ABC中,AB=AC,点D是直线BC上一点(不与点BC重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,△DAE=△BAC,连接CE.设△BAC=α,△DCE=β.(1)求证:△DAB△△EAC.(2)当点D在线段BC上运动时,①α=50°,则β=°.②猜想α与β之间的数量关系,并对你的结论进行证明.(3)如图2,当点D在线段BC的反向延长线上运动时,猜想α与β之间的数量关系,并对你的结论给出证明.2.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当△DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长. 3.如图(1)如图1,在□ABCD中,AE平分△BAD交CD边于点E,已知AB=5cm,AD=3cm,则EC等于cm。

(2)如图2,在□ABCD中,若AE,BE分别是△DAB,△CBA的平分线,点E在DC边上,且AB=4,则▱ABCD的周长为。

(3)如图3,已知四边形ABCD是平行四边形,AD=BC,若AF,BE分别是△DAB,△CBA的平分线。

求证:DF=EC(4)在(3)的条件下,如果AD=3,AB=5,则EF的长为。

4.已知,在▱ABCD中, AB⊥BD, AB=BD, E为射线BC上一点,连接AE交BD 于点F.(1)如图1,若点E与点C重合,且AF=√5,求AB的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证: AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G, M为AG 的中点,点N在BC边上且BN=1,已知AB=5√2,请直接写出MN的最小值.5.如图,在△ABC中,△ACB=90°,AC=a,BC=b,a>b,点P是边AB上一点,连接CP,将△ACP沿CP翻折得到△QCP.(1)若PQ△AB,由折叠性质可得△BPC=°;(2)若a=8,b=6,且PQ△AB,求C到AB的距离及BP的长;(3)连接BQ,若四边形BCPQ是平行四边形,直接写出a与b之间的关系式.6.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC 绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,写出线段AF与EC的数量关系,并证明;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并说明理由;(3)若AB=1,BC=√5,求当α等于多少度时,BF=DF?7.在Rt△ABC中,∠ABC=90°,BA=BC=4,将△ABC绕点C顺时针旋转得到△A1B1C,其中点A,B的对应点分别为点A1,B1.连接AA1,BB1交于点D.(1)如图1,当点A1落在BC的延长线上时,求线段AB1的长;(2)如图2,当△ABC旋转到任意位置时,求证:点D为线段AA1中点;(3)若△A1B1C从图1的位置绕点C继续顺时针旋转α(0°<α≤90°),当直线AB与直线A1B1相交构成的4个角中最小角为30°时,求α的值.8.如图①,在平行四边形ABCD中,AD=BD=2,BD△AD,点E为对角线AC上一动点,连接DE,将DE绕点D逆时针旋转90°得到DF,连接BF.(1)求证BF=AE;(2)如图②,若F点恰好落在AC,求OF的长;(3)如图③,当点F落在△OBC的外部,构成四边形DEMF时,求四边形DEMF 的面积.9.如图(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,证明线段BC,DC,EC之间满足的等量关系;(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,探索线段AD,BD,CD之间满足的等量关系,并证明结论;(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°若BD=12,CD=4,求AD的长.10.把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求△ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分△BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出△F的度数(用含α的式子表示).11.如图1,在平面直角坐标系中.直线y=−12x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90∘得到CD,此时点D 恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC△ △CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.12.在等边三角形ABC中,AD⊥BC于D,AB=2.(1)如图①,点E为AD的中点,则点E到AB的距离为;(2)如图②,点M为AD上一动点,求12AM+MC的最小值.(3)(问题解决)如图③,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在使AM=(千米)处.13.已知Rt△ABC中,△BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE△AE,过点B作BD△AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求△EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG△FH,交FH的延长线于点G,若GH:FH=6:5,△FHM 的面积为30,△EHB=△BHG,求线段EH的长.14.阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求△APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′△△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出△APB =;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题:已知如图②,△ABC中,△CAB=90°,AB=AC,E、F为BC上的点且△EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,△C=90°,AC=1,△ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且△AOC=△COB=△BOA=120°,求OA+OB+OC的值.15.在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=4,CD=3,求DE的长;(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD⊥BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN;(3)如图3,若AD=AB,△ADE绕着点A旋转,取DE中点M,连接BM,取BM中点N,连接AN,点F为BC中点,连接DN,若DN恰好经过点F,请直接写出DF:DN:AN的值.16.如图1,△ABC是直角三角形,△ACB=90°,点D在AC上,DE△AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.17.我们定义:如图1、图2、图3,在ΔABC中,把AB绕点A顺时针旋转α(0∘<α<180∘)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180∘时,我们称ΔAB′C′是ΔABC的“旋补三角形”,ΔAB′C′边B′C′上的中线AD叫做ΔABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的ΔAB′C′均是ΔABC的“旋补三角形”.(1)①如图2,当ΔABC为等边三角形时,“旋补中线” AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90∘,BC=8时,则“旋补中线” AD长为.(2)在图1中,当ΔABC为任意三角形时,猜想“旋补中线” AD与BC的数量关系,并给予证明.18.在平行四边形ABCD中,∠BAD的角平分线交直线BC于点E,交直线DC于点F.(1)在(图25-1)中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图25-2),求∠BDG的度数;(3)若∠ABC=120°,FG//CE,FG=CE,分别连接BD、DG(如图25--3),直接写出∠BDG的度数.19.在△ABCD中,对角线AC、BD交于点O,将过点A的直线l绕点A旋转,交射线CD于点E,BF△l于点F,DG△l于点G,连接OF,OG.(1)如图①当点E与点C重合时,请直接写出线段OF,OG的数量关系;(2)如图②,当点E在线段CD上时,OF与OG有什么数量关系?请证明你的结论;(3)如图③,当点E在线段CD的延长线上时,上述的结论是否仍成立?请说明理由.20.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=√5,且BF=DF,求旋转角度α的大小.21.如图1,在Rt△ABC中,△A=90°,AB=AC,点D,E分别在边AB,AC上,AD =AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.22.如图,已知函数y=﹣12x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.(1)求点A的坐标;(2)在x轴上有一动点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣12x+b和y=x的图象于点C、D.①若OB=2CD,求a的值;②是否存在这样的点P,使以B、O、C、D为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.答案与解析1.【答案】(1)证明:∵△DAE=△BAC,∴△CAD﹣△DAE=△CAD﹣△BAC,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAF AD=AE∴△DAB△△EAC(SAS)(2)解:①130;②α+β=180°,理由:由(1)知,△DAB△△EAC,∴△ABC=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴β=△ACB+△ACE=△ACB+△ABC=90°﹣12α+90°﹣12α=180°﹣α,∴α+β=180°(3)解:β=α;理由:∵△DAE=△BAC,∴△DAE﹣△BAE=△BAC﹣△BAE,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAB AD=AE∴△DAB△△EAC(SAS),∴△ABD=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴△ACE=△ABD=180°﹣△ABC=180°﹣(90°﹣12α)=90°+12α,∴β=△ACE﹣△ACB=90°+ 12α﹣(90°﹣12α)=α.2.【答案】(1)解:∵四边形ABCD是矩形,∴△BAD=90°,∵△DAG =30°,∴△BAG =60°由折叠知,△BAE =12△BAG =30°, 在Rt△BAE 中,△BAE =30°,AB =3,∴BE =√3(2)解:如图4,连接GE ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴△C =90°,∴△EFG =90°,∵在Rt△GFE 和Rt△GCE 中,{EG =EG EF =EC∴Rt△GFE△Rt△GCE (HL ),∴GF =GC ;设GC =x ,则AG =3+x ,DG =3﹣x ,在Rt△ADG 中,42+(3﹣x )2=(3+x )2,解得x =43. (3)解:BE =323.【答案】(1)2(2)12(3)证明:∵在▱ABCD 中,CD△AB ,∴△DFA=△FAB.又∵AF是△DAB的平分线∴△DAF=△FAB,∴△DAF=△DFA,∴AD=DF,同理可得EC=BC.∵AD=BC,∴DF=EC(4)14.【答案】(1)解:如图1中,∵AB⊥BD,∴∠ABD=90°,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∵四边形ABCD是平行四边形,∴E、C重合时BF=12BD=12AB,在RtΔABF中,∵AF2=AB2+BF2,∴(√5)2=(2BF)2+BF2,∴BF=1, AB=2,∴AB=2;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵AB⊥BD, DG⊥AE,∴∠ABF=∠FGD=90°,∵∠AFD=∠ABF+∠2=∠FGD+∠3, ∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和ΔDBH中, {AB=BD ∠2=∠3 AK=HD,∴ΔABK≅ΔDBH,∴BK=BH, ∠6=∠1,∵四边形ABCD是平行四边形,∴AD//BC,∴∠4=∠1,由(1)知∠4=45°,∴∠l=∠6=45°,∴∠5=∠ABD−∠6=45°,∠5=∠1,在ΔFBK和ΔFBH中, {BF=BF ∠5=∠1 BK=BH,∴ΔFBK≅ΔFBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:MN的最小值为√149−52.5.【答案】(1)45(2)解:如图,作CH△AB于H由翻折的性质可知:△APC=△QPC∵CH△AB,△BPC=45°∴CH=PH在Rt△ABC中,AB=√AC2+BC2=√82+62=10∵12⋅AB ⋅CH =12⋅AC ⋅BC ,即 5CH =24 ∴CH= 245; (3)解:如图:连接BQ由翻折的性质可得:PA=PQ ,△QPC=△APC∵四边形BCPQ 是平行四边形∴PQ=BC=PA=b ,PQ//BC ,∴△QPC+△PCB=180°∵△BPC+△APC=180°∴△PCB=△BPC∴PB=BC=b∴AP=PB=b ,AB=2b ,在Rt△ABC 中,则有(2b )2=a 2+b 2∴a 2=3b 2∵a>0.b>0,∴a= √3b .6.【答案】(1)解:AF=CE.理由如下:∵四边形ABCD 为平行四边形,∴AD // CB ,OA=OC.∴△FAO=△ECO.在 △AOF 和 △COE 中,∵{∠AOF =∠COE,OA =OC,∠FAO =∠ECO,∴△AOF ≌△COE(ASA) .∴AF=CE.(2)解:当旋转至90°时,四边形ABEF为平行四边形.理由如下:∵△AOF= 90°,△BAC= 90°,∴AB //EF.又∵四边形ABCD是平行四边形,∴AD//BC,即AF//BE.∴四边形ABEF为平行四边形(3)解:当α等于45度时,BF=DF.理由如下:∵AB=1,BC= √5,AB△AC,∴AC= √BC2−AB2=√(√5)2−12=2.∵四边形ABCD为平行四边形,∴OA=12AC=12×2=1,BO=DO.∴OA=AB=1.点O在线段BD的垂直平分线上.∴△ABO为等腰直角三角形.∴△AOB= 45°.当F在线段BD的垂直平分线上时,BF=DF,∴FO垂直平分BD.∴△BOF=90°.∴∠AOF=∠BOF−∠AOB=90°−45°=45°,即α=45°.∴当α等于45度时,BF=DF.7.【答案】(1)解:∵Rt△ABC中,∠ABC=90°,BA=BC=4,∴∠ACB=45°,AC=√AB2+BC2=√42+42=4√2.∵△ABC绕点C顺时针旋转得到△A1B1C,∴∠A1CB1=45°,B1C=BC=4.∴∠ACB1=180°−∠ACB−∠A1CB1=90°.∴AB1=√AC2+B1C2=√(4√2)2+42=4√3(2)证明:过点A1作A1E//AB交BB1的延长线于点E,∴∠ABD=∠DEA1.∵B1C=BC,∴∠CBB1=∠CB1B.∵∠ABC=∠A1B1C=90°,∴∠ABD+∠CBB1=∠CB1B+∠A1B1E=90°.∴∠A1B1E=∠ABD=∠DEA1.∴A1B1=A1E.∵AB=A1B1,∴AB=A1E.∵∠ADB=∠A1DE,∴△ADB≅△A1DE.∴AD=∠A1D.∴点D为线段AA1中点(3)解:如图3,当直线AB与直线A1B1相交于点A上方,延长BC交A1B1于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠CA1B1=45°,∴∠A1CE=∠PEB−∠CA1E=15°.如图4,当直线AB与直线A1B1相交于点A下方,延长BC交A1B1的延长线于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠A1B1C=90°,∴∠B1CE=∠A1B1C−∠PEB=30°.∴∠A1CE=∠B1CE+∠A1CB=75°.∴当直线AB与直线A1B1相交构成的4个角中最小角为30°时,α的值为15°或75°.8.【答案】(1)证明:根据旋转的性质可得,DE=DF,△EDF=90°∵BD△AD∴△ADB=90°∴△ADE=△BDF∵AD=BD∴△ADE△△BDF∴BF=AE(2)过点D 作DG△AC 于点G ,∵DE=DF ,△EDF=90°∴△DEF=△DFE=45°,△DEA=135°根据(1)可得,△ADE△△BDF∴△BFD=△DEA=135°,AE=BF∴△BFO=90°∵四边形ABCD 为平行四边形∴OB=OD∴△DGO△△BFO∴DG=BF ,OF=OG∴DG=EG=AE=BF设DG=a (a >0),则AG=2a在直角三角形ADG 中,∵AG 2+DG 2=AD 2∴(2a )2+a 2=22解得a=2√55 ∴OF=OG=12×2√55=√55(3)过点D 作DN△AC 于点N ,将△DEN 绕点D 逆时针旋转90°得到△DFH ,∴DH=DN ,△DNE=△DH=90°,△DEN=△DFG∵△DEF=△FME=90°∴△DEM+△DFM=180°∴△DFH+△DFM=180°∴点H ,点F ,点M 三点共线∵△DHF=△DNM=△FMN=90°∴四边形DNMG 为矩形∵DN=DH∴四边形DNMH 为正方形∴S 四边形DEMF=S 四边形DNMH=(2√55)2=459.【答案】(1)解:∵线段AD绕点A逆时针旋转90°得到AE∵Rt△ABC中AB=AC∴∠BAD=∠CAE∴△ABD≌△ACE(SAS)∴DB=EC∴BC=DC+DB=DC+EC(2)解:连结CE∵Rt△ABC与Rt△ADE中AB=AC,AD=AE∴∠B=∠ACE=45°,DE2=AD2+AE2=2AD2,∵由(1)同理可得△ABD≌△ACE∴DB=EC,∠ABD=∠ACE=45°∴∠ECD=90°∴Rt△ECD中,DE2=EC2+CD2=BD2+CD2∴2AD2=BD2+CD2(3)解:过点A作AE⊥AD,且AE=AD,连结DE,CE∵∠ABC=∠ACB=45°∴AB⊥AC,AB=AC∵AE⊥AD,AE=AD∴由(1)同理可得△ABD≌△ACE∴DB=EC=12∵∠ADC=45°∴∠EDC=∠ADC+∠ADE=90°∴DE=√CE2−CD2=√122−42=8√2∴等腰直角△ADE中AD=810.【答案】(1)解:∵α=60°,△ABC△△ADE,∴ AD=AB,△ABC=△ADE.∴ △ABD=△DAB=60°.∴ △ABC=△ADE=△DAB+△ABD=120°.(2)解:∵ AC=AE,△EAC= α,∴ △E=△ACE.∵ △ABC△△ADE,∴ △ACB=△E.∴ △ACB=△ACE.∴ CA平分△BCE.(3)解:△F= 90°−α.如下图:延长AD交EF于点G,则根据图形旋转的性质得,△GAF=α,∵△ABC△△ADE∴AC=AE,∴△AEC为等腰三角形,在△AED和△ACD中,{AE=AC DE=CD AD=AD,∴ △AED △ △ACD(SSS),∴ △DAE=△DAC,∴ AD平分△EAC,∵△AEC为等腰三角形,∴AG△EF,即△AGF=90°,∴∠EAF=3∠CAF=32α,∴∠F=180°−∠GAF−∠AGF=90°−α.11.【答案】(1)证明:∵∠BOC=∠BCD=∠CED=90∘,∴∠OCB+∠DCE=90∘,∠DCE+∠CDE=90∘,∴∠BCO=∠CDE,∵BC=CD,∴△BOC△ △CED.(2)解:∵△BOC△ △CED,∴OC=DE=m,BO=CE=3,∴D(m+3,m),把D(m+3,m)代入y=−12x+3得到,m=−12(m+3)+3,∴2m=−m−3+6,∴m=1,∴D(4,1),∵B(0,3),C(1,0),∴直线BC的解析式为y=−3x+3,设直线B′C′的解析式为y=−3x+b,把D(4,1)代入得到b=13,∴直线B′C′的解析式为y=−3x+13,∴C′(133,0),∴CC′=103,∴△BCD平移的距离是103个单位.(3)点Q的坐标为(3,32)或(5,12)或(−3,92).12.【答案】(1)√34(2)解:如图,作CN⊥AB,垂足为N,此时12AM+MC最小,最小值等于CN,∵在正三角形ABC中,AB=BC=AC=2,∠ANC=90°,∴AN=1,由勾股定理得,CN=√3由(1)知,MN=12AM∴MN+CM=12AM+MC=CN=√3,即12AM+MC的最小值为√3(3)( 480−120√3 )13.【答案】(1)证明:∵CE△AE,BD△AE,∴△AEC=△ADB=90°,∵△BAC=90°,∴△ACE+CAE=△CAE+△BAD=90°,∴△ACE=△BAD,在△CAE与△ABD中{∠ACE=∠BAD ∠AEC=∠ADB AC=AB∴△CAE△△ABD(AAS),∴AE=BD;(2)解:连接AH∵AB=AC,BH=CH,∴△BAH=12∠BAC=12×90°=45°,△AHB=90°,∴△ABH=△BAH=45°,∴AH=BH,∵△EAH=△BAH﹣△BAD=45°﹣△BAD,△DBH=180°﹣△ADB﹣△BAD﹣△ABH=45°﹣△BAD,∴△EAH=△DBH,在△AEH与△BDH中{AE=BD∠EAH=∠DBH AH=BH∴△AEH△△BDH(SAS),∴EH=DH,△AHE=△BHD,∴△AHE+△EHB=△BHD+△EHB=90°即△EHD=90°,∴△EDH =△DEH = 180°−90°2=45° ;(3)解:过点M 作MS△FH 于点S ,过点E 作ER△FH ,交HF 的延长线于点R ,过点E 作ET△BC ,交HR 的延长线于点T .∵DG△FH ,ER△FH ,∴△DGH =△ERH =90°,∴△HDG+△DHG =90°∵△DHE =90°,∴△EHR+△DHG =90°,∴△HDG =△HER在△DHG 与△HER 中{∠HDG =∠HER ∠DGH =∠ERH DH =EH∴△DHG△△HER (AAS ),∴HG =ER ,∵ET△BC ,∴△ETF =△BHG ,△EHB =△HET ,△ETF =△FHM ,∵△EHB =△BHG ,∴△HET =△ETF ,∴HE =HT ,在△EFT 与△MFH 中{∠ETF =∠FHM ∠EFT =∠MFH EF =FM,∴△EFT△△MFH (AAS ),∴HF =FT ,∴HF·MS 2=FT·ER 2, ∴ER =MS ,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,HF·MS 2=5k·6k2=30,k=√2,∴FH=5 √2,∴HE=HT=2HF=10 √2.14.【答案】(1)150°(2)解:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,△CAE′=△BAE,△ACE′=△B,△EAE′=90°,∵△EAF=45°,∴△E′AF=△EAE′-△EAF=45°,∴△EAF=△E′AF,在△EAF和△E′AF中,{AE=AE′∠EAF=∠E′AFAF=AF∴△EAF△△E′AF(SAS),∴E′F=EF,∵△CAB=90°,AB=AC,∴△B=△ACB=45°,∴△E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)解:如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,△ACB=90°,AC=1,△ABC=30°,∴AB=2,∴BC=√AB2−AC2=√3,∵△AOB绕点B顺时针方向旋转60°,△ABC=30°,∴△A′BC=△ABC+60°=30°+60°=90°,∵△C=90°,AC=1,△ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,△BOO′=△BO′O=60°,∵△AOC=△COB=△BOA=120°,∴△COB+△BOO′=△BO′A′+△BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=√BC2+A′B2=√(√3)2+22=√7,∴OA+OB+OC=A′O′+OO′+OC=A′C=√7.15.【答案】(1)解:连接EC,又AB=AC,AD=AE,∴BD=CE=4,∠ACE=∠ABC,∵∠ABC+∠ACB=90°∴∠ACE+∠ACB=90°∴△ACE是直角三角形,∴DE=√CD2+CE2=√32+42=5;(2)解:∵∠BAD+∠DAC=90°,∠EAC+∠DAC=90°∴∠BAD=∠EAC∵{AB=AC∠BAD=∠EACAD=AE∴△BAD≅△CAE(SAS)∴∠ABD=∠ACE∵AD⊥BD∴∠BAD=90°−∠ABD∵∠BAC=90°∴∠DAC=90°−∠BAD∴∠DAC=∠ABD∴∠ACF=∠DAC∴AD//CF过点A作AP//BC交FC于点P,∴四边形ANCP是平行四边形∴AN=CP,NC=AP∵AP//BC∴∠FAP=∠ABC=45°{PA=NC∠PAF=∠NCM AF=CN∴△PAF≅△NCM(SAS)∴MN=PF∴AN+MN=CP+FP=CF;(3)DF:DN:AN=1:2:216.【答案】(1)EF=CF(2)EF=CF(3)解:猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF△AD,MF=12AD,∵AN=ND,∴MF=AN,MF△AN,∴四边形MFNA是平行四边形,∴NF=AM,△FMA=△ANF,在Rt△ADE中,∵AN=ND,△AED=90°,∴EN=12AD=AN=ND,同理CM=12AB=AM=MB,在△AEN和△ACM中,△AEN=△EAN,△MCA=△MAC,∵△MAC=△EAN,∴△AMC=△ANE,又∵△FMA=△ANF,∴△ENF=△FMC,∵AM=FN,AM=CM,∴CM=NF,在△MFC和△NEF中,{MF=EN∠FMC=∠ENFMC=NF,∴△MFC△△NEF(SAS),∴FE=FC.17.【答案】(1)12;4(2)解:结论:AD=12BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M,∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180∘,∠B′AC′+∠AB′M=180∘,∴∠BAC=∠MB′A,∵AB=AB′,∴ΔBAC≅ΔAB′M,∴BC=AM,∴AD=12BC.18.【答案】(1)证明:在平行四边形ABCD中,AB△CD,AD△BC∴△BAF=△F,△DAF=△CEF又∵AE平分△BAD∴△BAF=△DAF∴△F=△CEF∴CE=CF(2)如图,连接CG、BG.∵ABCD是平行四边形,△ABC=90°∴平行四边形ABCD是矩形∴AB=DC,AB△DC,AD△BC,△BAD=△ADC=△BCD=△ECF=90° ∴△F=△BAE,△DBC=△ADB∵△BAD=90° ,△BAE=12△BAD=45°∴AB=BE,△F=△BAE=45°∴CE=CF∴BC=BE+EC=AB+CF=CD+CF=DF又∵G 是EF 的中点,△ECF =90° ,CE=CF∴CG=FG=12EF,△ECG=12△ECF=45° ∴△ECG=△F∴△DFG△△BCG∴△FDG =△CBG ,DG=BG∴△DBG=△BDG∵△DBC=△ADB,△FDG =△CBG∴△DBC+△CBG=△ADB+△FDG即△DBG=△ADB+△FDG∴△BDG=△ADB+△FDG又∵△BDG+(△ADB+△FDG )=90°∴△BDG=12△ADC=45° (3)如图,连接GB 、GE 、GC 。

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

第一章三角形的证明综合测试卷一、选择题。

01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。

北师大版八年级数学下册几何综合练习一

北师大版八年级数学下册几何综合练习一

八下几何综合练习一1.将两个等腰直角三角形ABC和DPE如图1摆放,点P是边AC的中点,点B在DP上,已知∠ABC=∠DPE=90°,BA=BC,PD=PE,连接BE、CD.(1)线段BE、CD之间存在什么关系?请给出证明;(2)将△PDE绕点P逆时旋转45°,得到△PD1E1,如图2所示,连接BE1、CD1.此时线BE1、CD1之间存在什么关系?请给出证明;(3)如图1,若AB=AE=4,连接AD,将△DPE绕点P逆时针旋转180°,请直接写出旋转过程中AD2的最大值和最小值.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm,把△DEC绕点C顺时针旋转15°得到△D1E1C(如图乙),这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数.(2)求线段AD1的长.(3)若把△D1E1C绕点C顺时针旋转30°得到△D2E2C,这时点B在△D2E2C的内部,外部,还是边上?证明你的判断.3.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角是度;②线段OD的长为;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,∠A0B=135︒,OA=1,0B=2,求OC的长.小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.5. 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.6.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.7.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图(1),若三角板两条直角边的外沿分别交正方形的边AB,BC于点M,N,则①OM+ON=MB+NB;②AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.如图(2),若以A为顶点的45°角的两边分别交正方形的边BC、CD于点M,N.交对角线BD于点E、F,我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图2中画出图形并写出小化所说的具体的旋转方式:.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图(3),设顶点为E的45°角位于正方形的边AD上方,这个角的两边分别经过点B、C,连接EA,ED,那么线段EB,EC,ED也存在确定的数量关系:(EB+ED)2=2EC2,请你证明这个结论.8.如图1,在Rt△ABC中,AB=AC,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.9.如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P与点A重合时停止运动,运动时间为t秒.(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;(2)连接PC、PD,求△CPD的面积S关于t的函数表达式;(3)点P在运动过程中,是否存在某个位置使得△CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.10.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.11.如图①,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A,以线段AC为边在直线l1的下方作正方形ACDE,此时点D恰好落在x轴上.(1)求出A,B,C三点的坐标.(2)求直线CD的函数表达式.12. 如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.13. 如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)*若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.14.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.15.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.16.【观察发现】(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)【深入探究】(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.【拓展应用】(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.17.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?(1)问题的转化:把△APC绕点A逆时针旋转60°得到△AP′C′,连接PP′,这样就把确定PA+PB+PC 的最小值的问题转化成确定BP+PP′+P′C的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C;(2)问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,求∠APB和∠APC的度数;(3)问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.18.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由19.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.20.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)。

压轴题01:三角形的证明综合专练20题(解析版)- 八年级数学下学期期末精选题汇编(北师大版)

压轴题01:三角形的证明综合专练20题(解析版)- 八年级数学下学期期末精选题汇编(北师大版)

压轴题01:三角形的证明综合专练20题(解析版)一、单选题1.如图所示,直线l 是一条河的河岸,P ,Q 是河同侧的水产的生产基地,现从河岸某点M 处分别派出两辆水产车运送水产如下有四种运输方案,则运输路程合理且最短的是( )A .B .C .D .【答案】B【分析】根据“将军饮马”模型求最短路线题型,作点P 关于直线l 的对称点P ',连接Q P '交直线l 于点M ,作图即可.【详解】根据“将军饮马”模型求最短路线题型,作点P 关于直线l 的对称点P ',连接Q P '交直线l 于点M ,利用两点之间线段最短和线段垂直平分线的性质作图即可,故选:B .【点睛】本题考查了“将军饮马”模型求最短路线题型,掌握两点之间线段最短和线段垂直平分线的性质作图方法. 2.如图,在ABC 中,AB AC =,54BAC ∠=︒,BAC ∠平分线与AB 的垂直平分线交于点O ,将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,有如下五个结论:①AO BC ⊥;①OD OE =;①OEF 是等边三角形;①OEF CEF ≌;①54OEF ∠=︒.则上列说法中正确的个数是( )A.2B.3C.4D.5【答案】B【分析】利用三线合一可判断①;由折叠的性质可判断①;根据垂直平分线的性质得到OA=OB,从而计算出①ACB=①EOF=63°,可判断①;证明①OAB①①OAC,得到OA=OB=OC,从而推出①OEF=54°,可判断①;而题中条件无法得出OD=OE,可判断①.【详解】解:如图,连接OB,OC,①AB=AC,OA平分①BAC,①BAC=54°,①AO①BC(三线合一),故①正确;①BAO=①CAO=12①BAC=12×54°=27°,①ABC=①ACB=12×(180°-①BAC)=12×126°=63°,①DO是AB的垂直平分线,①OA=OB,即①OAB=①OBA=27°,则①OBC=①ABC-①OBA=63°-27°=36°≠①OBA,由折叠可知:①OEF①①CEF,故①正确;即①ACB=①EOF=63°≠60°,OE=CE,①OEF=①CEF,①①OEF不是等边三角形,故①错误;在①OAB和①OAC中,AB AC OAB OAC OA OA =⎧⎪∠=∠⎨⎪=⎩,①①OAB ①①OAC (SAS ),①OB =OC ,又OB =OA ,①OA =OB =OC ,①OCB =①OBC =36°,又OE =CE ,①①OCB =①EOC =36°,①①OEC =180°-(①OCB +①EOC )=180°-72°=108°,又①OEC =①OEF +①CEF①OEF =108°÷2=54°,故①正确;而题中条件无法得出OD =OE ,故①错误;①正确的结论为①①①共3个,故选B .【点睛】本题考查了折叠的性质,线段垂直平分线的性质,等腰三角形三线合一的性质,等边对等角的性质,以及全等三角形的判定和性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键. 3.如图,已知AOP α∠=,线段4OA =,点B 为射线OP 上一点,则下列结论正确的是( ) ①当30α=︒,2AB =时,可得到形状唯一确定的AOB ;①当45α=︒,3AB =时,可得到形状唯一确定的AOB ;①当30α=︒时,在射线OP 上存在三个点B 使得AOB 为等腰三角形;①当45α=︒时,在射线OP 上存在三个点B 使得AOB 为等腰直角三角形.A .①①B .①①C .①①①D .①①①【答案】A【分析】 过A 作AH ①OP 于点H ,求出AH 的长,分别根据①α的度数画出相应图形,利用直角三角形的性质和等腰三角形的性质判断各结论.【详解】解:如图①所示:过A作AH①OP于点H,①OA=4,①α=30°,①AH=12OA=12×4=2,又AH①OP,AH=AB,①B与H重合,则①AOB形状唯一确定,故①正确;如图①所示,过点A作AH①OP于点H,①OA=4,①α=45°,AH①OP,①AH=OH,222OA AH OH=+,即AH=,①AB>AH,①当B在图①中B1,B2位置时,都能使得AB=3,则①AOB不唯一,有2个,故①错误;如图①所示,有3个B点使得①AOB为等腰三角形,即AB1=AO=4,OB2=OA=4,B3A=B3O,故①正确;如图①所示,AB①OA于点A时,①AOB1为等腰直角三角形,AB2①OP于点B2时,①AOB2为等腰直角三角形,OP上有2个点B使得①AOB为等腰直角三角形,故①错误;即正确的结论为:①①,故选A.【点睛】本题考查了等腰三角形的性质,等腰直角三角形的性质,直角三角形的性质,确定三角形的条件,解题的关键是根据各种情况画出图形,结合图形的性质解答.4.如图,Rt①ACB中,①ACB=90°,①ACB的角平分线AD,BE相交于点P,过P作PF①AD交BC的延长线于点F,交AC于点H,则下列结论:①①APB=135°;①AD=PF+PH;①DH平分①CDE;①S四边形ABDE=74S△ABP;①S△APH=S△ADE,其中正确的结论有()个A.2B.3C.4D.5【答案】B【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.①正确.证明①ABP①①FBP,推出P A=PF,再证明①APH①①FPD,推出PH=PD即可解决问题.①错误.利用反证法,假设成立,推出矛盾即可.①错误,可以证明S四边形ABDE=2S△ABP.①正确.由DH ①PE ,利用等高模型解决问题即可.【详解】解:在①ABC 中,A D 、BE 分别平分①BA C 、①ABC①①ACB =90°①①A +①B =90°又①A D 、BE 分别平分①BA C 、①ABC①①BAD +①ABE =12(①A +①B )=45°①①APB =135°,故①正确①①BPD =45°又①PF ①AD①①FPB =90°+45°=135°①①APB =①FPB又①①ABP =①FBPBP =BP①①ABP ①①FBP (ASA )①①BAP =①BFP ,AB =FB ,P A =PF在①APH 和①FPD 中 APH FPD PA PFPAH PFD ∠=∠⎧⎪=⎨⎪∠=∠⎩①①APH ①①FPD (ASA )①PH =PD①AD =AP +PD =PF +PH .故①正确①①ABP ①①FBP ,①APH ①①FPD①S △APB =S △FPB ,S △APH =S △FPD ,PH =PD①①HPD =90°①①HDP =①DHP =45°=①BPD①HD ①EP①S △EPH =S △EPD①S △APH =S △AED ,故①正确①S 四边形ABDE =S △ABP +S △AEP +S △EPD +S △PBD=S △ABP +(S △AEP +S △EPH )+S △PBD=S △ABP +S △APH +S △PBD=S △ABP +S △FPD +S △PBD=S △ABP +S △FBP=2S △ABP ,故①不正确若DH 平分①CDE ,则①CDH =①EDH①DH ①BE①①CDH =①CBE =①ABE①①CDE =①ABC①DE ①AB ,这个显然与条件矛盾,故①错误故选B .【点睛】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.如图,在①ABC 中,点M ,N 分别是AC ,BC 上一点,AM =BN ,①C =60°,若AB =9,BM =7,则MN 的长度可以是( )A .2B .7C .16D .17【答案】B【分析】 通过构造等边ABQ △和等边MBP ,得到QBP ABM ≅(SAS ),再证明QMP NMB ≅(SAS ),即可将线段AB 、BM 和MN 集中到①QMB 中,根据三角形三边关系即可判断MN 的长度取值范围.【详解】解:如图,作等边ABQ △和等边MBP ,连接QP 、QM ,在等边ABQ △和等边MBP 中,60QBA PBM ∠=∠=︒,①60QBP QBM QBM ABM ∠+∠=∠+∠=︒,①QBP ABM ∠=∠,又①9QB AB ==,7PB MB ==,①QBP ABM ≅(SAS ),①BQP BAM ∠=∠,PQ AM =,①AM =BN ,①PQ BN =在ABC 中,180ACB CAB CBA ∠+∠+∠=︒,60ACB ∠=︒,①18060120MBC MAB ABM MAB ABM ∠=︒-︒-∠-∠=︒-∠-∠,在QBP △中,180QPB BQP QBP ∠+∠+∠=︒,60MPB ∠=︒,①18060120MPQ BQP QBP MAB ABM ∠=︒-︒-∠-∠=︒-∠-∠,①MBN MPQ ∠=∠,在QMP △和NMB △中,PB MB MBN MPQ PQ BN =⎧⎪∠=∠⎨⎪=⎩,①QMP NMB ≅(SAS )①MQ MN =,在QMB 中,QB MB QM QB MB -<<+,①AB MB MN AB MB -<<+,①216MN <<,①选项B ,MN =7符合题意,故选B .【点睛】本题主要考查了全等三角形性质和判定的综合应用,解题关键是线段AB 、BM 和MN 通过旋转全等集中到同一个三角形中,再根据三角形三边关系即可判断MN 的长度取值范围.6.如图,①ABC 是等腰三角形,AB =AC ,①BAC =45°,过点A 作AD ①BC 于点D ,过点B 作BE ①AC 于点E ,AD ,BE 交于点F ,H 为AB 的中点,连接EH ,CH ,FH ,则下列说法正确的个数为( ) ①①BAD =①CBE ;①EH ①AB ;①CE =12AF ;①AE =CE +CF ;①S △EFH =S △EHC .A .2个B .3个C .4个D .5个【答案】C【分析】 先根据等腰三角形的性质可得22.5,67.5BAD CAD ABC ACB ∠=∠=︒∠=∠=︒,再根据直角三角形的性质可得22.5CBE ∠=︒,由此可判断①;先判断出Rt ABE △是等腰直角三角形,再根据等腰三角形的三线合一即可判断①;先根据三角形全等的判定定理证出BCE AFE ≅,根据全等三角形的性质可得BC AF =,在AE 上截取GE CE =,连接BG ,从而可得BG BC =,再根据等腰三角形的性质可得67.5,45BGC CBG ∠=︒∠=︒,从而可得12<CE BC ,据此可判断①;先根据等腰三角形的三线合一可得AD 垂直平分BC ,从而可得BF CF =,再证出Rt CEF 是等腰直角三角形,从而可得CE EF =,然后根据线段和差可得AE BE CE CF ==+,即可判断①;过点H 作HM AC ⊥于点M ,作HN BE ⊥于点N ,先根据等腰三角形的三线合一可得EH 平分AEB ∠,再根据角平分线的性质可得HM HN =,然后根据三角形的面积公式即可判断①.【详解】解:,45,AB AC BAC AD BC =∠=︒⊥,122.5,67.52BAD CAD BAC ABC ACB ∴∠=∠=∠=︒∠=∠=︒, BE AC ⊥, 9022.5CBE ACB ∴∠=︒-∠=︒,BAD CBE ∴∠=∠,说法①正确;,45BE AC BAC ⊥∠=︒,Rt ABE ∴是等腰直角三角形,AE BE =, H 为AB 的中点,EH AB ∴⊥(等腰三角形的三线合一),说法①正确; 在BCE 和AFE △中,22.590CBE FAE BE AE CEB FEA ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩,()BCE AFE ASA ∴≅,BC AF ∴=,如图,在AE 上截取GE CE =,连接BG ,则BE 垂直平分CG ,BG BC ∴=,67.5,18045BGC BCG CBG BGC BCG ∴∠=∠=︒∠=︒-∠-∠=︒, BGC CBG ∴∠>∠,2BC CG CE ∴>=,即12<CE BC ,12CE AF ∴<,说法①错误; ,AB AC AD BC =⊥,AD ∴垂直平分BC ,BF CF ∴=,22.5BCF CBF ∴∠=∠=︒,45EFC BCF CBF ∴∠=∠+∠=︒,Rt CEF ∴是等腰直角三角形,CE EF =,BE EF BF CE CF ∴=+=+,又AE BE =,AE CE CF ∴=+,说法①正确;如图,过点H 作HM AC ⊥于点M ,作HN BE ⊥于点N ,Rt ABE 是等腰直角三角形,EH 是AB 边上的中线,EH ∴平分AEB ∠(等腰三角形的三线合一), HM HN ∴=, 1122EFH EHC S S EF HN CE HM ∴=⋅=⋅=,说法①正确;综上,说法正确的个数为4个,故选:C .【点睛】本题考查了等腰三角形的判定与性质、三角形全等的判定定理与性质、线段垂直平分线的判定与性质、角平分线的性质等知识点,熟练掌握各判定定理与性质是解题关键,较难的是①,通过作辅助线,利用到角平分线的性质定理.7.如图,在①ABC 中,AB =AC ,①BAC =90°,直角①EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,连接EF 交AP 于点G ,以下五个结论:①①B =①C =45°;①AP =EF ;①①AFP 和①AEP 互补;①①EPF 是等腰直角三角形;①四边形AEPF 的面积是①ABC 面积的34,其中正确的结论是( )A .①①①B .①①①①C .①①①①D .①①①【答案】D【分析】根据等腰三角形的性质求出①B =①C ,即可判断①;根据四边形内角和是360°可判断①,根据等腰直角三角形求出AP ①BC ,AP =12BC =PC ,①BAP =①CAP =45°=①C ,求出①FPC =①EP A ,根据ASA 推出①APE ①①CPF ,推出AE =CF ,PE =PF ,S △APE =S △CPF ,再逐个判断①①①即可.【详解】解:①AB =AC ,①BAC =90°,直角①EPF 的顶点P 是BC 的中点,①①B =①C =12×(180°-90°)=45°,AP ①BC ,AP =12BC =PC ,①BAP =①CAP =45°=①C ,①①APF +①FPC =90°,①APF +①APE =90°,①①FPC =①EP A ,在①APE 和①CPF 中, EAP C AP CPEPA FPC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①APE ①①CPF (ASA ),①AE =CF ,EP =PF ,①①EPF 是等腰直角三角形,故①①正确;根据等腰直角三角形的性质,EF,所以,EF 随着点E 、F 的变化而变化,只有当点E 为AB 的中点时,EF=AP ,在其它位置时EF ≠AP ,故①错误;在四边形AEPF 中,①BAC =90°,①EPF =90°,①①AFP +①AEP =360°-(①BAC +①EPF )=180°,即①AFP 和①AEP 互补,故①正确;①①APE ①①CPF ,①S △APE =S △CPF ,①BP =CP ,①S △APC =12S △ABC ,①四边形AEPF 的面积=S △APE +S △APF=S △CPF +S △APF=S △APC=12S △ABC ,故①错误,故选D .【点睛】本题考查了全等三角形的性质和判定,直角三角形的性质,等腰三角形的性质的应用,能求出①APE ①①CPF 是解此题的关键.8.如图,ABC 中,,AB AC BAC α=∠=,点D 在ABC 内部,且使得302ABD BAD α=∠-∠=︒.则ACD ∠的度数为( )A .30α-︒B .60α-︒C .30D .不能确定【答案】C【分析】 如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,证明ABD ACE ≅,得到ACE 为等腰三角形,再证明ADE 为等边三角形,推出DCE 为等腰三角形,由三角形外角的性质得出12ACD AED ∠=∠即可. 【详解】如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,在ABD △和ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,(),ABD ACE SAS ∴≅ABD BAD∠=∠,∴ABD△为等腰三角形,∴ACE为等腰三角形,CAE BAD∠=∠,BACα∠=,302BADα-∠=︒,30302260,DAE BAC BAD CAEααα∴∠=∠-∠-∠⎛⎫⎛⎫=--︒--︒⎪ ⎪⎝⎭⎝⎭=︒ADE∴为等边三角形,,DE AE CE∴==∴DCE为等腰三角形,延长CE交AD于F点,(),,2222,116030,22AEF EAC ECADEF ECD EDCAED AEF DEFACE DCEACE DCEACDACD AED∠=∠+∠∠=∠+∠∴∠=∠+∠=∠+∠=∠+∠=∠∴∠=∠=⨯︒=︒故选:C.【点睛】本题主要考查了三角形的综合问题,涉及等腰三角形的等边三角形的判定和性质,全等三角形的判定和性质,三角形外角的性质,有一定难度,根据题意做出适当的辅助线是解题的关键.二、填空题9.如图,在AOB和COD△中,,()OA OB OC OD OA OC==<,AOB CODα∠=∠=,直线,AC BD交于点M,连接OM.以下结论:①AC BD=;①OAC OBD∠=∠;①CMDα∠=;①OM平分BOC∠.其中正确的是___________(填序号).【答案】①①①【分析】由SAS证明①AOC①①BOD得出①OAC=①OBD,AC=BD,①①正确;由全等三角形的性质得出①OAC=①OBD,由三角形的外角性质得:①AMB+①OBD=①OAC+①AOB,得出①AMB=①AOB=α,可得①正确;作OG①AM于G,OH①DM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得①AMO=①DMO,假设OM平分①BOC,则可求出①AOM=①DOM,由全等三角形的判定定理可得①AMO①①DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故①错误;即可得出结论.【详解】解:①①AOB=①COD=α,①①AOB+①BOC=①COD+①BOC,即①AOC=①BOD,在①AOC和①BOD中,OA OBAOC BOD OC OD,①①AOC①①BOD(SAS),①①OAC=①OBD,AC=BD,故①①正确;由三角形的内角和定理得:①AMB+①OBD=①OAC+①AOB,①①OAC=①OBD,①①AMB=①AOB=α,CMD,故①正确;作OG①AM于G,OH①DM于H,如图所示,①AOC①①BOD,①结合全等三角形的对应高可得:OG=OH,①MO平分①AMD,①①AMO=①DMO,假设OM平分①BOC,则①BOM=①COM,①①AOB=①COD,①①AOB+①BOM=①COD+①COM,即①AOM=①DOM,在①AMO与①DMO中,AOM DOM OM OMAMO DMO,①①AMO①①DMO(ASA),①OA=OD,①OC=OD,①OA=OC,而OA<OC,故①错误;正确的个数有3个;故答案为:①①①.【点睛】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键.10.如图,①ABC中,AB=AC=5,在BA延长线上取一点D,使AD=7,连结CD,点E为AC边上一点,当①AEB=①D时,①BCD的面积是①BCE的面积的6倍,则AE=___,①BCD的面积为___.【答案】3【分析】过点B作BH①CA交CA的延长线于点H,过点C作CG①AD于点G,在线段DG上截取GF=GA,连接CF,则CG是AF的垂直平分线,证明①CFD①①BAE,可得FD=AE,根据①BCD的面积是①BCE的面积的6倍,可得CG=S△BCE,AE=32CE,进而可得AE的长;再利用勾股定理求出CG,进而可得①BCD的面积.【详解】解:如图,过点B作BH①CA交CA的延长线于点H,过点C作CG①AD于点G,在线段DG上截取GF =GA,连接CF,则CG是AF的垂直平分线,①CA=CF,①①CAF=①CF A,①180°﹣①CAF=180°﹣①CF A,①①CAB=①CFD,①AB=AC=5,①CF =AB =AC =5,在①CFD 和①BAE 中,CFD BAE FDC AEB CF BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①CFD ①①BAE (AAS ),①FD =AE ,①AB =5,AD =7,①BD =AB +AD =12,①S △BCD =12⨯BD •CG =12⨯12CG =6CG , ①S △BCD =6S △BCE ,①6CG =6S △BCE ,①CG =S △BCE ,①S △ABC =12BA •CG =12⨯5CG =52CG , ①S △ABC =52S △BCE , ①S △ABE =S △ABC ﹣S △BCE =52S △BCE ﹣S △BCE =32S △BCE , ①S △ABE =12⨯AE •BH ,S △BCE =12⨯CE •BH , ①12⨯AE •BH =32×12⨯CE •BH , ①AE =32CE , ①AE CE =32, ①AE =35AC =35×5=3, ①FD =AE =3,①AF =AD ﹣FD =7﹣3=4,①AG =FG =12AF =2,①CG ①AG ,①①AGC =90°,在Rt①ACG 中,①AGC =90°,AC =5,AG =2,①CG=①BD =12,①S△BCD =12⨯BD •CG =12⨯ 综上所述:AE =3,①BCD 的面积为.故答案为:3;【点睛】本题属于三角形的综合题,是中考填空题的压轴题,考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,勾股定理,三角形面积公式,解决本题的关键是掌握全等三角形的判定与性质.11.如图,ABC 是边长为5的等边三角形,BD CD =,120BDC ∠=︒.E 、F 分别在AB 、AC 上,且60EDF ∠=︒,则三角形AEF 的周长为______.【答案】10【分析】延长AB 到N ,使BN =CF ,连接DN ,求出①FCD =①EBD =①NBD =90°,根据SAS 证①NBD ①①FCD ,推出DN =DF ,①NDB =①FDC ,求出①EDF =①EDN ,根据SAS 证①EDF ①①EDN ,推出EF =EN ,易得①AEF 的周长等于AB +AC .【详解】解:延长AB 到N ,使BN =CF ,连接DN ,①①ABC 是等边三角形,①①ABC =①ACB =60°,①BD =CD ,①BDC =120°,①①DBC =①DCB =30°,①①ACD =①ABD =30°+60°=90°=①NBD ,①在①NBD 和①FCD 中,BD DC NBD FCD BN CF =⎧⎪∠=∠⎨⎪=⎩,①①NBD ①①FCD (SAS ),①DN =DF ,①NDB =①FDC ,①①BDC =120°,①EDF =60°,①①EDB +①FDC =60°,①①EDB +①BDN =60°,即①EDF =①EDN ,在①EDN 和①EDF 中,DE DE EDF EDN DN DF =⎧⎪∠=∠⎨⎪=⎩,①①EDN ①①EDF (SAS ),①EF =EN =BE +BN =BE +CF ,即BE +CF =EF .①①ABC 是边长为5的等边三角形,①AB =AC =5,①BE +CF =EF ,①①AEF 的周长为:AE +EF +AF =AE +EB +FC +AF =AB +AC =10,故答案为:10.【点睛】本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用.注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.如图,在△ABC 中,AD ⊥BC ,点E 在线段AD 上,∠ACE =45°,∠ABC =2∠ECB ,若BD ﹣CD =2,AE =6,则AB =_____.【答案】8【分析】延长BC至F,使DF=DB,延长AD至G,使AG=AB,连接AF,CG.设①ECB=α,则①B=2α,根据题意可求出①DEC=90°-α.根据作图结合线段垂直平分线的性质可证明AB=AF,①BAD=①F AD,①B=①F=2α.由三角形外角性质可求出①DAC=45°-α.由①DAF=90°-2α,从而得出①CAF=45°-α,即证明①DAC=①F AC,从而易证△GAC①①F AC(SAS),得出①G=①F=2α,GC=CF=2.再根据①GCE=180°-①G-①DEC,即可求出①GCE=90°-α,即得出①GCE=①GEC,从而得出GC=GE=2,即可求出AG=AB =8.【详解】解:延长BC至F,使DF=DB,延长AD至G,使AG=AB,连接AF,CG.设①ECB=α,则①B=2α,①AD①BC,①①DEC=90°-α,①BD=DF,①AB=AF,①BAD=①F AD,①①B=①F=2α,①①DEC=90°-α,①ACE=45°,①①DAC=90°-α-45°=45°-α,①①DAF=90°-①F=90°-2α,①①CAF =90°-2α-(45°-α)=45°-α,①①DAC =①F AC ,在△△GAC 和△F AC 中,AC AC GAC FAC AG AF =⎧⎪∠=∠⎨⎪=⎩,①①GAC ①①F AC (SAS ),①①G =①F =2α,GC =CF =DF -CD =BD -CD =2,①①GCE =180°-①G -①DEC =180°-2α- (90°-α)=90°-α,①①GCE =①GEC ,①GC =GE =2,①AG =AF=AB =2+6=8.故答案为:8.【点睛】本题考查线段垂直平分线的性质,三角形外角性质,等腰三角形的判定和性质,三角形内角和定理以及三角形全等的判定和性质.正确的作出辅助线是解题的关键.13.如图,在△ABC 中,∠C =45°,AD ⊥BC 于D ,F 为AC 上一点,连接BF 交AD 于E ,过F 作MN ⊥FB 交BA 延长线于M ,交BC 于N ,若点M 恰在BN 的垂直平分线上,且DE :BN =1:7,S △ABD =15,则S △ABE =_____.【答案】252【分析】过点F 作FG ①BN 于点G ,根据已知条件证明①ABD ①①BFG ,可得BD =FG ,AD =BG ,再证明①BDE ①①FGN 可得DE =GN ,根据DE :BN =1:7,可得GN :BN =1:7,设ED =x ,DE :BG =1:6,可得AD =BG =6x , AE =5x ,然后根据S △ABD =15,进而可得S △ABE .【详解】解:如图,过点F 作FG ①BN 于点G,①AD①BC,①①ADC=90°,①①C=45°,①①DAC=45°,①MN①FB,①①FBN+①FNB=90°,①点M恰在BN的垂直平分线上,①MB=MN,①①ABN=①FNB,①①ABN+①BAD=90°,①①BAD=①FBN,①①AFB=①FBC+①C=①BAD+①DAC=①BAF,①BA=BF,在①ABD和①BFG中,ADB BGFBAD FBG,AB BF①①ABD①①BFG(AAS),①BD=FG,AD=BG,①①BED+①EBD=90°,①BAD+①ABD=90°,①①BED=①ABD=①BFG=①FNG,在①BDE和①FGN中,BDE FGNBED FNG,BD FG①①BDE①①FGN(AAS),①DE =GN ,①DE :BN =1:7,①GN :BN =1:7,设ED =x ,①DE :BG =1:6,①AD =BG =6x ,①AE =AD ﹣ED =6x ﹣x =5x ,①S △ABD =15,①S △ABE =551566ABD S =⨯△=252. 故答案为:252. 【点睛】本题是三角形的综合题,属于中考题中填空题压轴题,考查全等三角形的判定与性质,线段垂直平分线的性质,三角形的面积等知识,解决本题的关键是综合运用以上知识.14.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,9BD =,11.5AC =,则边BC 的长为______.【答案】【分析】延长BD 到F ,使得DF =BD ,从而得BC =CF ,过点C 作CH ①AB ,交BF 于点H ,根据等腰三角形的性质与判定,可得EH =CE ,从而得AC =BH ,再证明CH =HF ,结合勾股定理即可求出答案.【详解】解:延长BD 到F ,使得DF =BD ,①CD ①BF ,①CD 垂直平分BF ,①BC =CF ,①F=①CBE ,过点C 作CH ①AB ,交BF 于点H ,①CH ①AB ,①①ABE =①CHE ,①BAE =①ECH ,①EA =EB ,①①ABE =①BAE ,①①CHE =①ECH ,①EH =CE ,①AC =BH ,①2A CBE ∠=∠,①①CHE =①ECH =2①CBE ,①①CHE =2①F ,①①F =①HCF ,①HC =HF ,①9BD =,11.5AC =,①DH =BH −BD =AC −BD =2.5,①HF =HC =9−2.5=6.5,①在Rt ①CDH ,CD 6,①在Rt ①BCD 中,BC故答案是:【点睛】本题考查勾股定理,等腰三角形的判定和性质,平行线的性质,添加辅助线构造等腰三角形和直角三角形是解题的关键,本题属于中等题型.15.如图,在锐角①ABC 中,点D 在线段CA 的延长线上,BC 边的垂直平分线分别交AB 边于点E ,交①BAC 的平分线于点M ,交①BAD 的平分线于点N ,过点C 作AM 的垂线分别交AM 于点F ,交MN 于点O ,过点O 作OG ①AB 于点G ,点G 恰为AB 边的中点,过点A 作AI ①BC 于点I ,交OC 于点H ,连接OA 、OB ,则下列结论中,(1)①MAN =90°;(2)①AOB =2①ACB ;(3)OH =2OG ;(4)①AFO ①①AFH ;(5)AE +AC =2AG .正确的是________.(填序号)【答案】(1)(2)(4)(5)【分析】(1)使用角平分线的性质即可;(2)根据AB 和BC 的垂直平分线OG 和MN 可以得到OA =OB =OC ,进而得到三组相等的角,再进行等量代换即可;(4)在AFO 和AFH 中,易得AFO AFH ∠=∠和公共边AH ,再通过角度的计算和等量代换可以得到COM BAC AHF AOC ∠=∠=∠=∠,即可证明AFO AFH △≌△;(5)根据垂直平分线的性质和(4)中的全等三角形可得BO =AH ,通过角度的计算和等量代换可以证明EBO CAH ∠=∠和BOE AHC ∠=∠,进而可通过证明BOE AHC △≌△得到BE =AC ,再进行等量代换即可;(3)易得OH =2OF ,根据分析无法证明OF =OG ,故可判断该项不符合题意.【详解】解:(1)①AM 平分BAC ∠,AN 平分BAD ∠,①12BAM BAC ∠=∠,12BAN BAD ∠=∠. ①()111222MAN BAM BAN BAC BAD BAC BAD ∠=∠+∠=∠+∠=∠+∠. 又①根据图示可得180BAC BAD ∠+∠=︒, ①()111809022MAN BAC BAD ∠=∠+∠=⨯︒=︒. 故(1)符合题意.(2)①G 为AB 中点,且OG AB ⊥,MN 垂直平分BC ,①OA =OB =OC ,90AOG OAB ∠+∠=︒.①OAB OBA ∠=∠,OBC OCB ∠=∠,OAC OCA ∠=∠,AOG BOG ∠=∠.①ACB OCA OCB OAC OBC ∠=∠+∠=∠+∠,2AOB AOG ∠=∠.又①180ACB ABC BAC ∠+∠+∠=︒,①180ACB OBA OBC OAB OAC ∠+∠+∠+∠+∠=︒.①()2180ACB OAC OBC OAB ∠+∠+∠+∠=︒.①22180ACB OAB ∠+∠=︒.①90ACB OAB ∠+∠=︒.①ACB AOG ∠=∠.①22AOB AOG ACB ∠=∠=∠.故(2)符合题意.(4)如图所示,延长CO 交AB 于点J .①OB =OC ,MN 垂直平分BC ,①BOM COM ∠=∠,90OCB COM ∠+∠=︒.又①OAB OBA ∠=∠,OBC OCB ∠=∠,OAC OCA ∠=∠,①BAC OAB OAC OBA OCA ∠=∠+∠=∠+∠.①180ACB ABC BAC ∠+∠+∠=︒,①180OCA OCB OBA OBC BAC ∠+∠+∠+∠+∠=︒.①()2180OCA OBA OCB BAC ∠+∠+∠+∠=︒.①22180OCB BAC ∠+∠=︒.①90OCB BAC ∠+∠=︒.①COM BAC ∠=∠.又①MN BC ⊥,AI BC ⊥,①//MN AI .①COM AHF ∠=∠.①BAC AHF ∠=∠.①AM 平分BAC ∠,CO AM ⊥,①JAF CAF ∠=∠,90AFO AFH ∠=∠=︒.又①180JAF AFJ AJF ∠+∠+∠=︒,180CAF AFC ACF ∠+∠+∠=︒,①AJC ACJ ∠=∠.①1801802BAC AJC ACJ ACJ ∠=︒-∠-∠=︒-∠.又①OAC OCA ∠=∠,①1801802AOC OAC OCA OCA ∠=︒-∠-∠=︒-.①BAC AOC ∠=∠.①AOC AHF ∠=∠.在AFO 和AFH 中,①,,,AFO AFH AOF AHF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AFO AFH AAS △≌△.故(4)符合题意.(5)①22AOB AOG ACB ∠=∠=∠,AOG BOG ∠=∠,①BOG ACB ∠=∠.又①OG AB ⊥,AI BC ⊥,①90OGB ∠=︒,90AIC ∠=︒.①90BOG EBO ∠+∠=︒,90ACB CAH ∠+∠=︒.①EBO CAH ∠=∠.①AFO AFH △≌△,①OA =HA .又①OA =OB ,①BO =AH .①BOM COM ∠=∠,180BOE BOM ∠=︒-∠,180COE COM ∠=︒-∠,①BOE COE ∠=∠.又①//MN AI ,①AHC COE ∠=∠.①BOE AHC ∠=∠.在BOE △和AHC 中,①,,,EBO CAH BO AH BOE AHC ∠=∠⎧⎪=⎨⎪∠=∠⎩①()BOE AHC ASA △≌△.①BE =AC .①AE +AC =AE +BE =AB .①G 为AB 中点,①AB =2AG .①AE +AC =2AG .故(5)符合题意.(3)①AFO AFH △≌△,①FO =FH .①OH =2OF .①OG AB ⊥,CO AM ⊥,①90AGO AFO ∠=∠=︒.①无法证明AF =AG 和AOG AOF ∠=∠和OAG OAF ∠=∠,①无法证明AFO AGO △≌△.①OF 和OG 可能相等,也可能不相等.①OH 与2OG 不一定相等.故(3)不符合题意.故答案为:(1)(2)(4)(5).【点睛】本题考查角平分线的性质,垂直平分线的性质,等腰三角形的性质,三角形的内角和以及全等三角形的性质和判定,熟练掌握以上知识点是解题关键,特别注意等量代换的使用.三、解答题16.如图(1),ABC 中,90ABC ∠=︒,AB BC =,点D 是AC 的中点,点E 在CD 上(点E 不与点D 和点C 重合),AG BE ⊥于点G ,交BD 于点F ,连接DG .(1)求证:ADF BDE △≌△;(2)设GF a =,GE b =,GD c =,证明:a b +=;(3)如图(2),延长AG 交BC 于点M ,若点M 是BC 中点,点N 是AB 的中点,请证明点N 、F 、C 三点共线.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等腰直角三角形的性质得到①ADF =①BDE =90°,①BAC =①BCA =45°,AD =BD ,AF ①BE 得①1+①2=90°,由①BDE =90°得①3+①2=90°,则①1=①3,根据ASA 即可得到结论;(2)过点D 作DH ①DG 交AF 点H ,证明①DHF ①①DGE (ASA ),根据全等三角形的性质得DH =DG ,GE =HF,则①DHG 是等腰直角三角形,根据等腰直角三角形的性质可得FH +FG ,则FG +GE =DG 即a +b ;(3)连接NF ,CF ,如图,根据中点的定义得BN =12AB ,BM =12BC ,由AB =BC 得BN =BM,证明①BFN ①①BFM (SAS ),可得①BFN =①BFM ,再证①ADF ①①CDF (SSS ),可得①AFD =①CFD ,由对顶角①BFM =①AFD 得①BFM =①AFD =①CFD ,则①NFM =①AFC ,由①AFC +①CFM =180°得①NFM +①CFM =180°,即N 、F 、C 三点共线.(1)证明:如图所示:①AB BC =,点D 是AC 的中点①==90ADF BDE ∠∠︒ ,45ABD CBD ∠=∠=︒①90ABC ∠=︒,AB BC =①45BAC BCA ∠=∠=︒①BAC ABD ∠=∠①AD BD =①AF BE ⊥① 1290∠+∠=︒①90BDE ∠=︒①3290∠+∠=︒①12∠=∠又①==90ADF BDE ∠∠︒ ,AD BD =①ADF BDE △≌△.(2)证明:(法一)过点D 作DH DG ⊥交AF 点H , 如图所示:5+=90BDG ∠∠︒ ,①6+=90BDG ∠∠︒①56∠=∠①ADF BDE △≌△①42∠=∠,DF DE =①≌DHF DGE①DH DG =, GE HF =又①DH DG ⊥① DHG △是等腰直角三角形①+FH FG①+FG GE 即a b +=(法二)过点D 作DH DG ⊥交BE 的延长线于点H ,如图所示:则6+=90EDH ∠∠︒①=FDG EDH∠∠①ADF BDE△≌△①42∠=∠,DF DE=,①=DFG DEH∠∠①≌FDG EDH①DH DG=,GF EH=① DHG△是等腰直角三角形①+H GEE①GF EH=①+FG GE即a b+=(3)证明:方法一(定义法):连接NF,CF,如图所示:①点N是AB的中点,点M是BC的中点①12BN AB=,12BM BC=①AB BC=①BN BM=①AB BC=,点D是AC的中点①ABD CBD∠=∠又①BF BF=① ≌BFN BFM①BD 垂直平分AC①AF CF =又①==AD CD ,DF DF①ADF CDF △≌△①=AFD CFD ∠∠①=BFM AFD ∠∠①===BFM AFD AFD CFD ∠∠∠∠①=NFM AFC ∠∠①+=180AFC CFM ∠∠︒①+=180NFM CFM ∠∠︒①N 、F 、C 三点共线方法二(同一法):连接CN ,设CN 交BD 于点O ,如图所示:①点N 是AB 的中点,点M 是BC 的中点 ①12BN AB =,12BM BC = ①AB BC =①BN BM =①AB BC =,点D 是AC 的中点①ABD CBD ∠=∠①AB BC =,==90ABM CBN ∠∠︒ , BM BN =①ABM CBN △≌△①=BMF BNO ∠∠①BM BN=,ABD CBD∠=∠①≌BMF BNO①BO BF=①点O与点F重合①N、F、C三点共线.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质,证明三角形全等是解题的关键.17.在边长为10的等边①ABC中,点P从点B出发沿射线BA移动,同时点Q从点C出发沿线段AC的延长线移动,点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,①求证:PD=QD;①求CD的长;(2)如图①,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,试确定BE、CD的数量关系,并说明理由.【答案】(1)①见解析;①5 2(2)BE+CD=5或BE﹣CD=5,见解析【分析】(1)①如图①,过点P作PF AC交BC于点E,只要证明△PFD≌△QCF即可.②由△PFD≌△QCD,可推出DF=DC=12CF=52即可.(2)分两种情况:如图①,当点P在线段BA上时,BE+CD=12BC=5;如图①﹣1中,当点P在线段BA的延长线上时,BE﹣CD=12BC=5.如图①,过点P作PF AC交BC于点E.∴∠FPD=∠Q,∠PFB=∠ACB=60°,∴△PBF是等边三角形,∴PB=PF,∵P、Q的运动速度相同,∴PB=QC,∴PF=CQ,∴△PFD≌△QCF,∴PD=QD.②∵P是AB中点,∴BP=BF=102=5,∴CF=10﹣BF=5,∵△PFD≌△QCD,∴DF=DC=12CF=52.(2)①如图①,当点P在线段BA上时,BE+CD=12BC=5,由(1)可知:△PFD≌△QCD,∴DF=DC,∵PE⊥BF,∴BE=EF,∵BF+CF=BC,∴2BE+2CD=BC,BC=5.∴BE+CD=12①如图①﹣1中,当点P在线段BA的延长线上时,BE﹣CD=1BC=5.2理由:作PG AC交BC的延长线于G.同理可证:△PGD≌△QCD,BE=EG,∴DC=DG,∵BG﹣CG=BC,∴2BE﹣2CD=BC,BC=5.即BE﹣CD=12【点睛】本题考查三角形的综合、等边三角形的性质和判定、平行线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.18.实践与探究:在等边①ABC的两边AB、AC所在直线上分别有M、N两点,点D为①ABC外一点,且①MDN=60°,①BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.(1)智慧小组的同学们按照特殊到一般的思路入手,他们先画出了如图1的特殊情况,当点M、N在边时.他们发现这两副图形虽然不同,但是线段BM、NCMN之间的数量关系始终不变,请你直接写出线段BM、NC、MN之间的数量关系_____.(2)创新小组的同学们画出了如图3的情况,当M、N分别在边AB、CA的延长线上时,探索BM=2,NC=10时,则①AMN的周长是______.【答案】(1)MN=BM+CN;(2)20【分析】(1)如图2,作辅助线,构建三角形全等,证明△DBM①①DCE(SAS),得DM=DE,①BDM=①CDE,再证明△MDN①①EDN(SAS),得MN=NE,可得结论:MN=BM+CN;(2)如图3,作辅助线,构建三角形全等,证明△DBM①①DCF(SAS),得①BDM=①CDF,DM=DF,再证明△MDN①①FDN(SAS),得MN=NF,可得结论:CN=MN+BM;即可求出①AMN的周长.【详解】解:(1)MN=BM+CN,如图2,延长AC到E,使CE=BM,连接DE,①①ABC是等边三角形,①①ABC=①ACB=60°,①BD=CD,①BDC=120°,①①DBC=①DCB=30°,①①ABC+①DBC=①ACB+①DCB,①①DCE =180°-①ACD =180°-90°=90°,在Rt △DBM 和Rt △DCE 中,①90BD CD ABD DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,①①DBM ①①DCE (SAS ),①DM =DE ,①BDM =①CDE ,①①BDC =120°,①MDN =60°,①①BDM +①CDN =120°-60°=60°,即①CDE +①CDN =60°,①①NDE =60°,在△MDN 和△EDN 中,①60DM DE MDN EDN DN DN =⎧⎪∠=∠=︒⎨⎪=⎩,①①MDN ①①EDN (SAS ),①MN =NE ,①NE =CN +CE ,CE =BM ,①MN =BM +CN ;故答案为:MN =BM +CN ;(2)CN =BM +MN ;在NC 上截取CF =BM ,连接DF ,由(1)知:①ABD =①ACD =90°,①①MBD =180°-90°=90°,在△DBM 和△DCF 中,①BD CD BDM DCF BM CF =⎧⎪∠=∠⎨⎪=⎩,①①DBM ①①DCF (SAS ),①①BDM =①CDF ,DM =DF ,①①MDN =①BDM +①BDN =①CDF +①BDN =60°①①BDC =120°,①①NDF =60°,在△MDN 和△FDN 中,①60MD FD MDN FDN DN DN =⎧⎪∠=∠=︒⎨⎪=⎩,①①MDN ①①FDN (SAS ),①MN =NF ,①CN =NF +CF ,CF =BM ,①CN =MN +BM ;①BM =2,NC =10,①MN =8,①AB =AC ,①①AMN 的周长为:周长MN AM AN =++MN BM AB AN =+++MN BM AC AN =+++MN BM NC =++821020=++=;故答案为:20.【点睛】此题是三角形的综合题,考查了等边三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度适中,解题的关键是注意数形结合思想的应用与辅助线的作法.19.已知点D 在△ABC 外,90BAC ∠=︒,AB AC =,射线BD 与△ABC 的边AC 交于点H ,AE BD ⊥,(1)如图1,求证:2DE DC BD +=;(2)如图2,已知25ABE ∠=︒,4BE =,点F 在线段BC ,且BE BF =,点M ,N 分别是射线BC 、BD 上的动点.在点M ,N 运动的过程中,请判断式子EM MN NF ++的值是否存在最小值,若存在,请直接写出这个最小值;若不存在,写出你的理由.【答案】(1)证明见解析(2)存在,最小值为4【分析】(1)在BD 上取BG =CD ,连接AG ,AD .由题意易证()ABG ACD SAS ≅,即得出AG AD =.再根据等腰三角形“三线合一”的性质即可得出GE DE =,从而可得出结论;(2)作点E 关于BC 的对称点E ',点F 关于BD 的对称点F '.连接E F '',交BD 于点N ',BC 于点M ',连接BF BE '',.根据轴对称的性质即可知EM MN NF E M MN NF E F ''''++=++≥,即EM MN NF ++存在最小值,取最小值时N 与N '重合,M 与M '重合,最小值为E F ''的长.根据轴对称的性质结合题意可求出60F BE ''∠=︒,4BE BF ''==,即证明BE F ''△为边长为4的等边三角形,即可求出4E F ''=,从而即得出答案.(1)如图,在BD 上取BG =CD ,连接AG ,AD .①在ABG 和ACD △中,AB AC ABD ACD BG CD =⎧⎪∠=∠⎨⎪=⎩,①()ABG ACD SAS ≅,①AG AD =.又①AE BD ⊥,①E 为DG 中点,即GE DE =,①2BD BG GE DE CD DE =++=+,①2DE DC BD +=;(2)如图,作点E 关于BC 的对称点E ',点F 关于BD 的对称点F '.连接E F '',交BD 于点N ',BC 于点M ',连接BF BE '',.由作图可知EM E M NF NF BE BE BF BF ''''====,,,,F BD FBD '∠=∠,EBC E BC '∠=∠. ①EM MN NF E M MN NF ''++=++,①E M MN NF E F ''''++≥,即EM MN NF ++存在最小值,即取最小值时N 与N '重合,M 与M '重合,最小值为E F ''的长.①452520F BD FBD ABC ABD '∠=∠=∠-∠=︒-︒=︒,①20EBC E BC '∠=∠=︒,①60F BE F BD FBD EBC E BC ''''∠=∠+∠+∠+∠=︒.①4BE BF ==,BE BE BF BF ''==,,①4BE BF ''==,①BE F ''△为边长为4的等边三角形,①4E F ''=,①EM MN NF ++的最小值为4.【点睛】本题考查三角形全等的判定和性质,等腰三角形的性质,轴对称的性质以及等边三角形的判定和性质.正确的作出辅助线是解题关键.。

北师大版八年级数学下册几何综合练习题(有答案)

北师大版八年级数学下册几何综合练习题(有答案)

北师大版八年级数学下册几何综合练习题(有答案)1.在△ABC中,AB=AC,DE∥BC。

正确的结论是()。

A。

AD=AE B。

DE=EC C。

∠ADE=∠C D。

DB=EC2.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线交AC于点E,垂足为点D,连接BE。

求∠XXX的度数。

A。

30° B。

45° C。

60° D。

75°3.在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE。

若△XXX的周长为24,则BC的长为。

A。

18 B。

14 C。

12 D。

64.等边△ABO在平面直角坐标系内的位置如图所示,已知△ABO的边长为6,则点A的坐标为。

A。

(-3,3) B。

(3,-3) C。

(-3,3) D。

(-3,-3)5.在Rt△ABC中,∠C=90°,∠A-∠B=70°。

求∠A的度数。

A。

80° B。

70° C。

60° D。

50°6.在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD。

求∠A的度数。

A。

30° B。

36° C。

45° D。

70°7.将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C。

若∠ACB=∠A'C'B'=90°,AC=BC=3,则B'C的长为。

A。

3 B。

6 C。

3 D。

88.已知等腰三角形腰长是10,底边长是16.求这个等腰三角形的面积。

9.在等边△ABC中,点D为BC边上的点,DE⊥XXX于E,DF⊥XXX于F。

求∠EDF的度数。

10.在等边三角形ABC中,BD平分∠XXX于点D,过点D作DE⊥BC于E,且EC=1.求BC的长。

11.有一个内角为60°的等腰三角形,腰长为6cm。

北师大版八年级下册《第一章三角形的证明》单元练习(含答案)

北师大版八年级下册《第一章三角形的证明》单元练习(含答案)

北师大版八年级下册数学第一章三角形的证明单元练习一、单选题1.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点2.如图,在△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )A. 8B. 9C. 10D. 113.在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长为()A. 6B. 5C. 4D. 34.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC 的()A. 垂心B. 重心C. 内心D. 外心5.如图,C、D是线段AB上两点,分别以点A和点B为圆心,AD、BC长为半径作弧,两弧相交于点M,连接AM、BM,测量∠AMB的度数,结果为()A. 100°B. 110°C. 120°D. 130°6.如图,C、D是线段AB上两点,分别以点A和点B为圆心,AD、BC长为半径作弧,两弧相交于点M,连接AM、BM,测量∠AMB的度数,结果为()A. 100°B. 110°C. 120°D. 130°7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )A. 4cmB. 3cmC. 2cmD. 1cm8.如图,已知在中,是边上的高线,平分,交于点,,,则的面积等于().A. B. C. D.9.如图,等腰△ABC的周长为19,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A. 9B. 10C. 11D. 1210.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB=DC11.如图,在△BAC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC交AB于点D,交AC于点E,若BD=5,CE=4,则线段DE的长为()A. 9B. 6C. 5D. 412.在联欢晚会上,有A,B,C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的( )A. 三边中线的交点B. 三边中垂线的交点C. 三边上高的交点D. 三条角平分线的交点13.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A. 75°B. 60°C. 45°D. 30°二、填空题14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .15.如图,在Rt△ABC中,AB=AC,∠CBD=∠ABD,DE⊥BC,BC=10,则△DEC的周长=________ .16.如图,已知四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,那么Rt△ABC≌Rt△ADC,根据是 ________17.一个等腰三角形的一个角为80°,则它的顶角的度数是________.18.下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有 ________个.三、解答题19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?20.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AB于E,求EB:EA的值.四、综合题21.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.(1)已知:如图,∠AOC=∠BOC,点P在OC上,________求证:________.请你补全已知和求证(2)并写出证明过程.22.如图,中,,垂直平分,交于点,交于点.(1)若,,求的周长;(2)若,求的度数.答案解析部分一、单选题1.【答案】D【解析】【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故答案为:D.【分析】点P到角的两边的距离相等知点P在∠AOB平分线上,由点P在CD上,故点P 在CD与∠AOB的平分线的交点。

北师大版数学八年级下册:1.2 直角三角形 同步练习(附答案)

北师大版数学八年级下册:1.2 直角三角形  同步练习(附答案)

2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.44.如图,数轴上点A表示的实数是.5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是()A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.9.下列定理中,没有逆定理的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是()A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为.12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有()A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是()A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为.17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是()A.HL B.ASAC.AAS D.SAS第1题图第2题图2.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°第3题图第4题图4.如图,点D,A,E在直线l上,AB=AC,BD⊥l于点D,CE⊥l于点E,且BD=AE.若BD=3,CE=5,则DE=8.5.如图,AC⊥BC,BD⊥AD,AC=BD.求证:∠ABC=∠BAD.6.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是()11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有()A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB的长为.第12题图第13题图13.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.14.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.15.如图1,E,F分别为线段AC上的两个动点,且DE⊥AC于点E,BF⊥AC于点F.若AB=CD,BF=DE,BD交AC于点M.(1)求证:AE=CF,MD=MB;(2)当E,F两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.参考答案:2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D)A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为(B)A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为(D)A.1 B.2 C.3 D.44.如图,数轴上点A5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°.∴∠ACD=∠B.(2)∵AF平分∠CAB,∴∠CAF=∠DAE.又∵在Rt△AFC中,∠CFA=90°-∠CAF,在Rt△AED中,∠AED=90°-∠DAE,∴∠AED=∠CFE.又∵∠CEF=∠AED,∴∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是(C)A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是(D)A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.解:在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB=AC2+BC2=5.在△ABD中,∵AD=13,BD=12,AB=5,∴AB2+BD2=AD2.∴△ABD是直角三角形,∠ABD=90°.∴S阴影=S△ABD-S△ABC=12AB·BD-12BC·AC=30-6=24.9.下列定理中,没有逆定理的是(C)A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是(B)A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有(A)A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB 于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x.由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,∴152-x2=132-(14-x)2.解得x=9.∴AD=AB2-BD2=152-92=12.∴S△ABC=12BC·AD=12×14×12=84.19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.解:(1)当a=19时,设b=k,则c=k+1,观察有如下规律:192+k2=(k+1)2.解得k=180.∴b=180,c=181.(2)当a=2n+1时,设b=k,则c=k+1,根据勾股定理a2+b2=c2得(2n+1)2+k2=(k +1)2,解得k=2n(n+1).∴b=2n(n+1),c=2n(n+1)+1.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是(A)A .HLB .ASAC .AASD .SAS第1题图 第2题图2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(A) A .AB =AC B .∠BAC =90° C .BD =ACD .∠B =45°3.如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2=(B) A .40° B .50° C .60°D .75°第3题图 第4题图4.如图,点D ,A ,E 在直线l 上,AB =AC ,BD ⊥l 于点D ,CE ⊥l 于点E ,且BD =AE.若BD =3,CE =5,则DE =8.5.如图,AC ⊥BC ,BD ⊥AD ,AC =BD.求证:∠ABC =∠BAD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠ACB =∠BDA =90°. 在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AC =BD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL). ∴∠ABC =∠BAD.6.下列条件中不能判定两个直角三角形全等的是(A)A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是①②③.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.证明:∵EF⊥AC,∴∠F+∠C=90°.∵∠ABC=90°,∴∠A+∠C=90°.∴∠A=∠F.又∵DB=BC,∠FBD=∠ABC=90°,∴△FBD≌△ABC(AAS).∴AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?解:∵DA⊥AB,EB⊥AB,∴△ADC和△BEC为直角三角形.∵点C是路段AB的中点,∴AC=BC.∵小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,∴CD=CE.∴Rt△ADC≌Rt△BEC(HL).∴BE=AD=50米.答:小红到路段AB的距离是50米.10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是(A)11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D)A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB第12题图 第13题图13.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =5,线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =5或10时,△ABC 和△PQA 全等.14.如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30°,求∠ACF 的度数.解:(1)证明:∵∠ABC =90°, ∴∠CBF =∠ABE =90°. 在Rt △ABE 和Rt △CBF 中,⎩⎨⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF(HL). (2)∵AB =CB ,∠ABC =90°, ∴∠CAB =∠ACB =45°.∴∠BAE =∠CAB -∠CAE =45°-30°=15°. 由(1)知Rt △ABE ≌Rt △CBF , ∴∠BCF =∠BAE =15°.∴∠ACF =∠BCF +∠ACB =15°+45°=60°.15.如图1,E ,F 分别为线段AC 上的两个动点,且DE ⊥AC 于点E ,BF ⊥AC 于点F.若AB =CD ,BF =DE ,BD 交AC 于点M.(1)求证:AE =CF ,MD =MB ;(2)当E ,F 两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.解:(1)证明:在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF -EF =CE -EF ,即AE =CF. ∵DE ⊥AC ,BF ⊥AC , ∴∠DEM =∠BFM =90°.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.(2)AE =CF ,MD =MB 仍然成立.证明: 在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF +EF =CE +EF ,即AE =CF.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.。

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

北师大版下册第一章《三角形的证明》之直角三角形综合练(一)1.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.2.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE ∥DF.3.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE 与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程:6.如图在正方形ABCD中,E,F,G,H分别是AD,BC,AB,CD上的点,连接EF,GH.①若EF⊥GH,则必有EF=GH.②若EF=GH,则必有EF⊥GH.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.7.在△AOB中,∠AOB=90°,点C为直线AO上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求∠BEC的度数;(2)当点C在直线AO上运动时,∠BEC的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出∠BEC的度数.8.已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.9.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.10.锐角三角形ABC中,AC>BC,点D是边AC的中点,点E在边AB上.①如果DE∥BC,那么DE=BC②如果DE=BC,那么DE∥BC.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.11.如图,在△ABC中,AC=CB,∠ACB=90°,在AB上取点F,过A作AB的垂线,使得AD=BF,连接BD,CD、CF,CE是∠ACB的角平分线,交BD于点M,交AB于点E.(1)若AC=6,AF=4.求BD的长:(2)求证:2CM=AF12.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC=60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.13.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?参考答案1.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.2.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE3.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∴∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.4.解:(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.5.解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.6.解:①成立,②不成立;理由如下:①作GM⊥CD于M,FN⊥AD于N,如图1所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∴∠OGQ+∠OQG=90°,∵EF⊥GH,∴∠PFQ+∠PQF=90°,∵∠OQG=∠PQF,∴∠OGQ=∠PFQ,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在△EFN和△HGM中,,∴△EFN≌△HGM(ASA),∴EF=GH;②作GM⊥CD于M,FN⊥AD于N,如图2所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在Rt△EFN和Rt△HGM中,,∴Rt△EFN≌Rt△HGM(HL),∴∠OGQ=∠PFQ,∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,∴∠PQF+∠PFQ=90°,∴∠FPQ=90°,∴EF⊥GH;作GH关于GM的对称线段GH',则GH'=GH=EF,显然EF与GH'不垂直;综上所述,若EF=GH,则必有EF⊥GH.不成立.7.解:(1)①图形如图所示.②设∠EBO=∠EBC=x,∠OCE=∠ECK=y.则有:,可得∠E=×90°=45°.(2)如图,当点C在OA的延长线上时,结论∠BEC=135°.理由:∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵∠EBC=∠OBC,∠ECB=∠OCB,∴∠EBC+∠ECB=×90°=45°,∴∠BEC=180°﹣45°=135°.如图当点C在AO的延长线上时,同法可证:∠BEC=135°.8.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∴∠BFD=180°﹣45°=135°,∴∠G=180°﹣20°﹣135°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,设∠ABG=x,∠CDF=y,∵∠ACB=∠DCF,∴∠A+∠ABC=∠CDF+∠CFD,即∠A+2x=2y,∴y=,同理得∠A+∠ABG=∠G+∠CDF,∴∠A+x=∠G+y,即∠A+x=∠G++x,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,△FBG中,∠G+∠FBG+∠BFG=180°,∠BFG+∠DFC=180°,∴∠DFC=∠G+∠FBG,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.9.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.10.解:①∵锐角三角形ABC中,AC>BC,点D是边AC的中点,DE∥BC,∴AE=EB,即DE是△ABC的中位线,∴DE=BC故①正确;②令E为AB中点,可以在AB上取到一点F,使DF=DE,但DF与BC不平行.故②错误.11.解:(1)∵AC=CB=6,∠ACB=90°,∴AB=12∵AF=4,∴BF=AB﹣AF=12﹣4=8,∴AD=BF=8,在Rt△ADB中,BD==4;(2)∵AC=CB,∠ACB=90°,CE平分∠ACB,∴AE=BE=CE=AB,CE⊥AB,∵∠DAB=∠MEB=90°,∠DBA=∠MBE,∴△MBE∽△DBA,∴==,∴ME=AD,∴ME=BF,∵CE=AB,∴CM+ME=(BF+AF),∴CM+BF=BF+AF,∴CM=AF,即AF=2CM.12.解:(1)∵CE⊥BE,∴∠E=90°,∵∠ECD=15°,∴∠ADB=∠CDE=90°﹣15°=75°故答案为75°.(2)证明:∵BD平分∠ABC,∠ABC=60°,∴∠ABD=∠DBC=30°,∵∠ADB=75°,∴∠A=75°,∴∠A=∠ADB,∴AB=DB.(3)过点D作DF⊥BC,交BC于F点.∵DF⊥BC,∴∠DFB=∠DFC=90°,∵∠DBF=30°,∴DF=BD,∵BD=AB=2,∴DF=1,∴FB=,∵CE⊥BE,∴∠E=90°,∵∠DBC=30°,∴∠ECB=60°,∵∠ECD=15°,∴∠DCB=45°,∴∠DCF=∠FDC=45°,∴FD=FC=1,∴BC=.13.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=10;②当P运动到与C点重合时,AP=AC,不合题意.综上所述,当点P运动到距离点A为10时,△ABC与△APQ全等.。

北师大版八年级数学下册几何综合练习题(有答案)

北师大版八年级数学下册几何综合练习题(有答案)

八年级下册几何综合练习AB=AC, DE//BC,则下列结论中,不正确的是(AB = AC, ZA=30° , AB 的垂直平分线交 AC 于点E,垂足为点 D,连接BE,则AB=AC=15, AD 平分/ BAC,点E 为AC 的中点,连接 DE,若△ CDE 的周长为24,A . 18B. 14C. 12D. 64 .等边△ ABO 在平面直角坐标系内的位置如图所示,已知△A. (- 3, 3)B. (3, - 373)C. (- 3,炳)D. (- 3, - 3/3)5 .在 RtAABC 中,/ C=90°,/ A — / B = 70° ,则/ A 的度数为() 6 .如图,△ ABC 中,AB=AC,点D 在AC 边上,且 BD = BC=AD,则/A 的度数为() 三角形的证明 则BC 的长为(1.如图,在^ ABC 中, B. DE = —EC 2 C. / ADE = Z C D. DB = EC2.如图,在^ ABC 中,/ EBC 的度数是( B. 45 C. 60° D. 75 3.如图,△ ABC 中,ABO 的边长为6,则点A 的坐标为( B. 70°C. 60°D. 50°B. 36C. 45D. 70°A . AD= AEA . 30° A .30°7 .如图,将两个大小、形状完全相同的^ ABC 和AA' B' C'拼在一起,其中点 A'与点A 重合,点C落在边 AB 上,连接 B' C.若/ ACB=Z AC' B8 .已知等腰三角形腰长是 10,底边长是16,则这个等腰三角形的面积为 .9 .如图,在等边△ ABC 中,点D 为BC 边上的点,DELBC 交AB 于E, DFXACT F,则/ EDF 的度数10 .如图,在等边三角形 ABC 中,BD 平分/ ABC 交AC 于点D,过点D 作DELBC 于E,且EC=1,则11 .有一个内角为 60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册几何综合练习三角形的证明1.如图,在△ABC中,AB=AC,DE∥BC,则下列结论中,不正确的是()A.AD=AE B.DE=EC C.∠ADE=∠C D.DB=EC2.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数是()A.30°B.45°C.60°D.75°3.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18B.14C.12D.64.等边△ABO在平面直角坐标系内的位置如图所示,已知△ABO的边长为6,则点A的坐标为()A.(﹣3,3)B.(3,﹣3)C.(﹣3,3)D.(﹣3,﹣3)5.在Rt△ABC中,∠C=90°,∠A﹣∠B=70°,则∠A的度数为()A.80°B.70°C.60°D.50°6.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°7.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6C.3D.8.已知等腰三角形腰长是10,底边长是16,则这个等腰三角形的面积为.9.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为.10.如图,在等边三角形ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于E,且EC=1,则BC的长.11.有一个内角为60°的等腰三角形,腰长为6cm,那么这个三角形的周长为cm.12.如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=.13.如图,在△ABC中,∠C=90°,AB=5,AD是△ABC的角平分线,若CD=,则△ABD的面积为.14.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.平行四边形15.在▱ABCD中,若∠A:∠B=5:4,则∠C的度数为()A.80°B.120°C.100°D.110°16.如图,已知平行四边形ABCD中,AB=3,AD=2,∠B=150°,则平行四边形ABCD的面积为()A.2B.3C.D.617.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°18.若平行四边形的周长是100cm,且一组邻边的差是30cm,则较短的边长是cm;若平行四边形的周长为56cm,两条邻边的比是4:3,则较长边是cm.19.如图,在▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD的度数为.20.如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是.21.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形.(2)连结BE,若BE=EF,求证:AE=AD.22.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.23.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.24.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?25.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.图形的平移与旋转26.下列图形中,轴对称图形的个数为()A.1个B.2个C.3个D.4个27.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.28.如图,△ABC与△DEF关于直线MN轴对称,则下列结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分19.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.9930.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°31.如图,将三角形AOB绕点O按逆时针方向旋转45°后得到三角形A'OB',若∠AOB=21°,则∠AOB′的度数是()A.21°B.24°C.45°D.66°32.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.答案:1.B.2.B.3.A.4.C.5.A.6.B.7.A.8.48.9.60°.10.4.11.18.12.6.5.13..14.解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE∥BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=AC=AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC•sin60°=2×=,CH=EC•cos60°=1,∴.15.C.16.B.17.B.18.解:(1)设较短的边为xcm,则:x+(x+30)=100÷2,解得x=10;(2)设较长边为4x,则:4x+3x=56÷2,解得x=4,那么4x=16.19.65°.20.3<x<11.21.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)连接BE∵BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴EB=EF,∠EBF=60°∵DC=EF,∴EB=DC,∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.22.(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×4=2,∵BE=DE,∴BH=DH=2,设HE=x,则BE=2x,(2x)2﹣x2=22,解得x=,∴BE=2x=,∴DE=,∴四边形ADEF的面积为:DE•DG=.23.(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB ∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.24.(1)证明:连接CD交AE于F,∵四边形PCOD是平行四边形,∴CF=DF,OF=PF,∵PE=AO,∴AF=EF,又CF=DF,∴四边形ADEC为平行四边形;(2)解:当点P运动的时间为秒时,OP=,OC=3,则OE=,由勾股定理得,AC==3,CE==,∵四边形ADEC为平行四边形,∴周长为(3+)×2=6+3.25.(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于F,∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=CF=,∴AE=CE=,∴AC=2.26.C.27.B.28.A.29.B.30.B.31.B.32.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.。

相关文档
最新文档