第一章数学建模概论1

合集下载

数学建模概论.

数学建模概论.
数学建模概论
太原理工大学数学系 魏毅强 教授
第一章 数学模型概论
1.1 数学模型与数学建模 1.2 数学建模示例1 1.3 数学建模示例2 1.4 数学建模示例3 1.5 数学模型的特点和分类 1.6 数学建模的方法和步骤 1.7 怎样撰写数学建模的论文
1.1 数学模型与数学建模
原型: 原型是指人们在现实世界里关心、研 究或者从事生产、管理的实际对象
数学建模将各种知识综合应用于解决实际 问题中,需要有较好的抽象概括能力、数学语 言的翻译能力、善于抓住本质的洞察能力、联 想及综合分析能力、掌握和使用当代科技成果 的能力等。从而数学建模是培养和提高同学们 应用所学知识分析问题、解决问题的综合能力 与素质的必备手段之一。
数学建模是一种创造性的思维活动,没有 统一模式和固定的方法,在数学建模过程中需 要充分发挥想象力,善于联想,新颖而独特地 提出问题、解决问题,并由此产生有价值的新 思想、新方法、新成果等。从而数学建模也是 培养和提高同学们想象力和创新能力的必备手 段之一。
数学模型是一种抽象的模拟,它用符号、 式子、程序、图形等数学语言刻划客观事物的 本质属性与内在联系,是现实世界的简化而又 本质的描述。
数学模型的三个主要功能是:解释、判 断与预测。也就是数学模型能用来解释某些 客观现象及发生的原因;数学模型能用来判 断原来知识,认识的可靠性;数学模型能用 来预测事物未来的发展规律,或为控制某一 现象的发展提供某种意义下的最优策略或较 好策略,为人们的行为提供指导。
问题分析
这是一类智力游戏问题,可经过一番逻辑 推理求解。当然也可视为一个多步决策问题, 每一步(此岸到彼岸或彼岸到此岸)都要对船 上的人员作出决策,在保证安全的前提下(两 岸的随从数不比商人多)经有限步使全体人员 过河

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

浙江大学数学建模第一章数学建模概论

浙江大学数学建模第一章数学建模概论
否则一处的车辆将会越积越多。
例4 飞机失事时,黑匣子会自动打开,发射 出某种射线。为了搞清失事原因,人们必须 尽快找回匣子。确定黑匣子的位置,必须确 定其所在的方向和距离,试设计一些寻找黑 匣子的方法。由于要确定两个参数,至少要 用仪器检测两次,除非你事先知道黑匣子发 射射线的强度。
方法一
点光源发出的射线在各点处的照度与其到点光源的 距离 的平方成反比,即
•例3 交通马路灯的宽在度 绿D是灯容易转测得换的,成问红题的灯关键时在 ,于L有
一个过渡的和状L确2定,态。其为中—确L定1—是L司亮,机还在一应发当段现将黄时灯L划亮间分及为判的两断段应黄:当L灯刹1 。
请分析黄车灯的反应应时当间内亮驶多过的久路程。,L2为刹车制动后 车辆驶过的路程。L1较容易计算,交通部门对司
间?请思考一下,载天十段开达五本5路会分着他分分的合钟题他就钟钟缘点。开不时。解故,往会间似而,故答会提从此乎故相人合前何中由遇条提地回而相时隐件前点家来遇他了不含,了?点已三到步那。够了十会行么提哦分哪合了这前钟点二一的。些到需十。假设

例2 某人第一天由 A地去B地,第二天由 B地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
点测得黑匣子方向后 ,到B点再测方向 ,AB 距
离为a ,∠BAC=α,∠ABC=β,利用正弦定理得
出 d = asinα/sin (α+β) 。需要指出的是,当
黑匣子位于较远处而 α又较小时,α+β可能非
常接近π(∠ACB接近于0),而sin(α+β)又
恰好位于分母上,因而对结果的精确性影响也会
很大,为了使结果较好,应使a也相对较大。
比例系数不随行星而 改变 这其中(必绝定对是某常一数力)学

第1章 数学建模概论

第1章 数学建模概论
• 数学进入一些新领域,为数学建模开辟了许多处女地。
数学建模的具体应用
• 分析与设计
• 预报与决策

控制与优化
• 规划与管理
1.3
数学建模示例
河 小船(至多2人) 3名商人
3名随从
1.3.1 商人们怎样安全过河?
随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货.
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验 模型应用
模 型 准 备 了解实际背景 搜集有关信息
模型分析
模型求解
明确建模目的 掌握对象特征
形成一个 比较清晰 的‘问题’
1.4
数学建模的方法和步骤
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设 在合理与简化之间作出折中 用数学的语言、符号描述问题 发挥想像力 使用类比法
r=0.2557, xm=392.1
模型检验 用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]
x(2000 ) 274.5
实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0 Logistic 模型在经济领域中的应用(如耐用消费品的售量)
数学建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
1.2
数学建模的重要意义
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。 • 电子计算机的出现及飞速发展;

数学建模简明教程课件-第1-2章

数学建模简明教程课件-第1-2章

第1章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。

生物、医学、军事、社会、经济、管理等各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。

利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型,简称数学建模,数学建模正在越来越广泛地受到人们的重视。

从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。

没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。

1.1 数学模型与数学建模1.1.1 模型的概念在日常生活和工作中,人们经常会遇到或用到各种模型,如飞机模型、水坝模型、火箭模型、人造卫星模型、大型水电站模型等实物模型;也有文字、符号、图表、公式、框图等描述客观事物的某些特征和内在联系的模型,如模拟模型、数学模型等抽象模型。

模型是客观事物的一种简化的表示和体现,它应具有如下的特点:1.它是客观事物的一种模仿或抽象;它的一个重要作用就是加深人们对客观事物如何运行的理解,为了使模型成为帮助人们合理进行思考的一种工具,因此要用一种简化的方式来表现一个复杂的系统或现象。

2.为了能协助人们解决问题,模型必须具备所研究系统的基本特征和要素。

此外,还应包括决定其原因和效果的各个要素之间的相互关系。

有了这样的一个模型,人们就可以在模型内实际处理一个系统的所有要素,并观察它们的效果。

模型可以分为实物(形象)模型和抽象模型,抽象模型又可以分为模拟模型和数学模型。

对我们来说,最感兴趣的是数学模型。

与上述的各种各样的模型相对应的是它们在现实世界中的原型(原始参照物)。

所谓原型,是指人们研究或从事生产、管理的实际对象,也就是系统科学中所说的实际系统,如电力系统、生态系统、社会经济系统等。

而模型则是指为了某个特定目的,将原型进行适当地简化、提炼而构造的一种原型替代物。

第一章 数学建模

第一章 数学建模

§1.1 数学模型及数学建模概述
1.1.1 数学模型
数学模型就是对实际问题的一种数学表述,是针对或参照某种问题(事件或系统)的特征和 数量相依关系,采用形式化语言,概括或近似表达出来的数学结构。更确切地说:数学模型就是 对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用 适当的数学工具,得到的一个数学结构。数学结构可以是数学公式、算法、表格、图示等。 数学模型是利用数学工具解决实际问题的重要手段,其特点主要有如下几个方面: (1)模型的逼真性和可行性。一般来说总是希望模型尽可能的逼近所研究的对象,但是一个 完全逼真的模型在数学上常常是难于处理的,因而不容易通过建模对现实对象进行分析、预报、 决策或者控制。另一方面,越逼真的模型常常越复杂,即使数学上能够处理,但处理的代价也相 当高。所以,一个恰当的数学模型需要在逼真性和可行性之间做出选择。 (2)模型的渐进性。复杂问题的数学模型不可能一次成功,需要经过反复修改,由简到繁, 才能得到越来越满意的模型。 (3)模型的可转移性。模型是对现实对象抽象化、理想化的产物,它不为对象的所属领域所 独有,可以转移到另外的其他领域。生物、经济、社会等领域的模型就常常借助于物理领域的模 型。数学模型的这种性质显示了它应用的极端广泛性。 (4)模型的非预制性。虽然已经发展了许多应用广泛的模型,但是实际问题是各种各样的、 千变万化的,不可能把各种模型做成预制品让你在建模的时候使用。模型的这种非预制性使得模 型本身常常是事先没有答案的问题, 在建立新的模型的过程中甚至会伴随新的数学方法或者数学 概念的产生。 (5)模型的局限性。这包括:第一,由数学模型得到的结论虽然具有通用性和精确性,但是 因为模型是现实对象的简化、 理想化的产物, 所以一旦将模型的结论用于实际问题, 那些被忽略、 简化的因素必须考虑,所以结论的通用性和精确性只是相对和近似的。第二,由于人们认识能力 和科学技术包括数学本身发展水平的限制,还有不少实际问题很难得到有实用价值的数学模型。 数学模型可以按照不同的方式分类,通常有 (1)按照模型的应用领域分,如人口模型、交通模型、环境模型、生态模型、水资源模型、 污染模型等。范畴更大的一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济 学、数学社会学等。 (2)按照建立模型的方法分,如初等模型、几何模型、微分方程模型、概率统计模型、数学 规划模型等。 (3)按照建模目的分,有描述模型、预报模型、优化模型、决策模型、控制模型等。

数学建模第一章数学建模概述

数学建模第一章数学建模概述
• 团队精神和组织协调能力: 三人一队,分工合作、 取长补短、求同存异、相互启发、相互学习、相互 争论、同舟共济
• 文字表达水平: 每队完成一篇用数学建模方法解决 实际问题的完整的科技论文
竞赛培养综合素质
• 诚信意识和自律精神:开放型竞赛,三天中同学自 觉地遵守竞赛纪律,不得与队外任何人(包括指导 教师在内)以任何方式讨论赛题,公平竞争
优惠几何
安排
2008 数码相机定位
高等教育收费标 地面搜索 准探讨
NBA赛程的分 析与评价
2009 制动器试验台的控 眼科病床的合理 卫星和飞船的 会议筹备
制方法分析
安排
跟踪测控
2010 储油罐的变位识别 上海世博会影响 输油管的布置 学生宿舍设计
与罐容表标定
力定量评估
方案评价
题目的特点
•题目来源: 实际研究课题的简化、改编;有实际背 景问题的编撰;合适的社会热点(或兴趣)问题. •题目背景尽量通俗易懂,涉及的专业知识不深.
标准 假设的合理性,建模的创造性,
结果的正确性,表述的清晰性。
宗旨 创新意识 团队精神 重在参与 公平竞争
竞赛培养综合素质
评奖标准:假设的合理性、建模的创造性、
结果的正确性、表述的清晰性
• 信息获取能力:通讯形式,三天内同学可以自由地 使用图书馆和互联网以及计算机和软件,需要学生 在很短时间内获取与赛题有关的知识和能力
好方法的结果一般比较好;但不一定是最好的
清晰性:摘要应理解为详细摘要,提纲挈领 表达严谨、简捷,思路清新 格式符合规范,严禁暴露身份
数学的重要性:众所周知
马克思: 一门科学只有成功地运用数学时,才算达到了完善的地步。
英国物理学家伦琴回答“科学家需要什么样的修养”: “第一是数学,第二是数学,第三还是数学。”

第一章,数学建模概论

第一章,数学建模概论

第一章数学建模概论随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。

生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。

利用数学知识研究和解决实际问题,遇到的第一项工作就是要建立恰当的数学模型(简称数学建模),数学建模正在越来越广泛地受到人们的重视。

从这一意义上讲,数学建模被看成是科学研究和技术开发的基础。

没有一个较好的数学模型就不可能得到较好的研究结果,所以,从这一意义上讲,建立一个较好的数学模型乃是解决实际问题的关键步骤之一。

§1.1 数学模型与数学建模模型是客观实体有关属性的模拟。

陈列在橱窗中展览的飞机模型是参照飞机实体的形状,严格按照一定的比例简缩而制成的,它的外形一定要像真正的飞机,至于它是否真的能飞则是无关紧要的;然而参加航模比赛的飞机模型则全然不同了,如果飞行性能不佳或飞不起来,外形再像飞机,也不能算是一个好的模型。

模型并非一定要是实体的一种仿照,也可以是对实体的某些基本属性的抽象。

例如,一张电路图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该电路的结构特征。

数学模型(Mathematical Model)作为模型的一类,也是一种模拟,是以数学符号、数学表达式、程序、图形等为工具对现实问题或实际课题的本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略等。

数学模型一般并非现实问题的直接翻版,它们的建立常常既需要人们对现实问题有比较深入细微的观察和分析,又需要人们能灵活巧妙地利用各种数学知识。

这种应用各种知识从实际课题中抽象、提炼出数学模型的过程被称为数学建模(Mathematical Modeling)。

为了更清楚地说明什么是数学建模,让我们来看一个具体实例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢ 2.在明确建模目的,掌握必要资料的基础上,通过 对资料的分析计 算, 找出起主要作用的因素,经必 要的精炼、简化,提出若干符合客观实际的假设。
➢ 3.在所作假设的基础上,利用适当的数学工具去刻 划各变量之间的关系,建立相应的数学结构 ——即 建立数学模型。
➢ 4.模型求解。
在难以得出解析解时,也应 当借助 计算机 求出数值解
③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。
仅最近几年里,我校 学生都在只参加了半 年左右的学习和实践 后,就在国际性的竞 赛(美国大学生数学 建模竞赛)中交出了 非常出色的研究论文, 夺得了特等奖兼 INFORMS奖2项(1999 年、2003年各一项)、 18项一等奖、10项二 等奖的好成绩。
分析 本题多少 有点象 数学中 解的存在 性条件 及证明,当 然 ,这里的情况要简单得多。
假如我们换一种想法,把第二天的返回改变成另一人在同 一天由B去A,问题就化为在什么条件下,两人至少在途中 相遇一次,这样结论就很容易得出了:只要任何一人的到 达时间晚于另一人的出发时间,两人必会在途中相遇。
研究课题的实际 人口模型、生 态系统模型 、交通
范畴
流模型、经 济模型、 基因模型等
§1.4 数学建模与能力的培养
①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 调查研究阶段,需 要用到观察能力、分析能力和数据处理 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 能力。
②在真正开始自己的研究之前,还应当尽可能先了解一下 前人或别人的工作,使自己的工 作成为别人研究工作 的 继续而不是别人工作的重复,你可以把某些已知的研究结 果用作你的假设,去探索新的奥秘。因此我们还应当学会 在尽可能短的时间 内查到并学会我想应用的知识的本领。
这其中必 定是某一 力学 规律 的反映,哼哼,我 要找出它。。。。
开普勒三大定律
1.行星轨道是一 个椭圆,太 太阳位于此椭圆的一个焦 点上。
2.行星在单位时间内 扫过的 面积不变。
3.行星运行周期的平方正比 于椭圆长半轴的三次方 , 比例系数不随行星而 改变
(绝对常数)
简单推导如下:
如图,有椭圆方程 :
➢ 5.模型的分析与检验。
实体信 息(数据)
假设 建模
求解
验证 应用
§1.3 数学模型的分 类
分类标准
具体类别
对某个实际问题 白箱模型、灰箱模型、黑箱模型 了解的深入程度
模型中变量的特 连续型模型、离散型模型或确定性

模型、随机型模型等
建模中所用的数 初等模型、微分方程模型、差分方
学方法
程模型、优化模型等
T
我们还需算出行星的加速度,为此需要建立 两种
不同的坐标架。第一个是固定的,以太阳为坐标原点, 沿长轴方向的单位向量记 为i,沿短轴方向的单位向量记
为j,于是: r r cos i r sin j
进而有 加速度
a
••
r
d2 dt 2
(
r
cos
)
i
d2 dt 2
(
r
sin
)
j
••


( r rw2 )(cos i sin j) ( 2 r w r w )( sin i cos j)·
T
)2 0
p
b2 a
代入,即得
••
r rw2
ቤተ መጻሕፍቲ ባይዱ
4 2a3
T2

1 r2
也就是说行星的加速度为
4 2a3 1
由开普勒第三定律知
a T 2 • r2 er
a3 / T 2为常数。若记
G
4 2a3
MT 2
那么就导出著名的 万有引力定律:
Mm F G r 2 er
§1.2 数学建模的一般步骤
➢ 1.了解问题的实际背景,明确建模目的,收集掌握 必要的数据资料。
以行星为坐标原点建立活动架标,其两个正交的单位向 量分别是
er cos
因此得出
i
a
sin
••
( r
j,
rw2

)er
sin
由于2

r
i co•s
wrw
0
j
再将椭圆方程
p r(1 e cos )
两边微分两次,得 将前面得到的结果
r
••
( r
2w
rw2
)
p r
1 r3
(
r2w
2ab 和焦参数
第一章 数学建模概论
§1.1 数学模型与数学建模
➢ 数学模型(Mathematical Model)
是用数学符号、数学式子、程序、图形等对实际课题 本质属性的抽象而又简洁的刻划,它或 能解释某些客 观现象,或能预测未来的发展规律,或能为控制某一 现象的发展提供某种意义下的最优策略或较好策略。
➢ 数学建模(Mathematical Modeling)
显然是由于节省了从相遇点到 会合点,又从会合点返回相遇点这一 段路的缘故,故由相遇点到会合点需 开5分钟。而此人提前了三十分钟到 达会合点,故相遇时他已步行了二十 五分钟。
请思考一下,本题解答中隐含了哪些假设 ?
例2 某人第一天由 A地去B地,第二天由 B地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
r p
1 e cos
矢径所扫过的面 积A的微分为: dA 1 r 2d
2
由开普勒第二定 律:
dA 1 r 2w 常数
dt 2
立即得出:
0
d
(r 2w)

2r r w r2

w
行星
即:
dt


2r w r w 0
r
太阳
椭圆面积 ab T dAdt 1 r 2wT
0 dt
2
由此得出 r 2w 2ab 常数
§1.5 一些简单实例
•例1 某人平时下班总是按预定时间到达某处,然 然后他妻子开车接他回家。有一天,他比平时提早 了三十分钟到达该处,于是此人就沿着妻子来接他 的方向步行回去并在途中遇到了妻子,这一天,他 比平时提前了十分钟到家,问此人共步行了多长时 间?
换一种想法,问题就迎刃而 解了。假如他的妻子遇到他后仍 载着他开往会合地点,那么这一 天他就不会提前回家了。提前的 十分钟时间从何而来?
应用知识从实际课题中抽象、提炼出数学模型的过程。
例(万有引力定律的发现 )
十五世纪中期 ,哥白尼 提出了震惊世界的 日心说。 丹麦著名的实验天文学 家第谷花了二十多年时间 观察纪录下了当 时已发现的五大 行星的运动情况 。 第谷的学生和助手 开普勒对这些资料进行了九年时 间的分 析计算后 得出著名的Kepler三定律。 牛顿根据开普勒三定律和牛顿第二定律,利用微积分 方法推导出牛顿第三定律即 万有引力定律。
相关文档
最新文档