2002年普通高等学校招生全国统一考试理科数学(天津)卷
数学_2002年天津市高考数学试卷(理科)(含答案)
2002年天津市高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1. 曲线{x =cosθy =sinθ(θ为参数)上的点到两坐标轴的距离之和的最大值是( )A 12 B √22C 1D √22. 复数(12+√32i)3的值是( )A −1B 1C −iD i3. 已知m ,n 为异面直线,m ⊂平面α,n ⊂平面β,α∩β=l ,则l( )A 与m ,n 都相交B 与m ,n 中至少一条相交C 与m ,n 都不相交D 至多与m ,n 中的一条相交4. 不等式(1+x)(1−|x|)>0的解集是( )A {x|0≤x <1}B {x|x <0且x ≠−1}C {x|−1<x <1}D {x|x <1且x ≠−1}5. 在(0, 2π)内,使sinx >cosx 成立的x 的取值范围是( ) A (π4, π2)∪(π, 5π4) B (π4, π) C (π4, 5π4) D (π4, π)∪(5π4, 3π2)6. 设集合M ={x|x =k2+14, k ∈Z},N ={x|x =k4+12, k ∈Z},则( ) A M =N B M ⊂N C M ⊃N D M ∩N =⌀7. 正六棱柱ABCDEF −A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为√2,则这个棱柱侧面对角线E 1D 与BC 1所成的角是( ) A 90∘ B 60∘ C 45∘ D 30∘8. 函数y =x 2+bx +c(x ∈[0, +∞))是单调函数的充要条件是( ) A b ≥0 B b ≤0 C b >0 D b <0 9. 已知0<x <y <a <1,则有( )A log a (xy)<0B 0<log a (xy)<1C 1<log a (xy)<2D log a (xy)>2 10. 平面直角坐标系中,O 为坐标原点,已知两点A(3, 1)、B(−1, 3),若点C 满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A 3x +2y −11=0B (x −1)2+(y −2)2=5C 2x −y =0D x +2y −5=0 11. 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A 8种 B 12种 C 16种 D 20种12. 据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年−2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为( ) A 115000亿元 B 120000亿元 C 127000亿元 D 135000亿元二、填空题(共4小题,每小题4分,满分16分)13. 函数y =2x1+x (x ∈(−1, +∞))图象与其反函数图象的交点为________.14. 椭圆5x 2−ky 2=5的一个焦点是(0, 2),那么k =________. 15. 求由三条曲线y =x 2,4y =x 2,y =1所围图形的面积. 16. 已知函数f(x)=x 21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=________.三、解答题(共6小题,满分74分) 17. 已知cos(α+π4)=35,π2≤α<3π2,求cos(2α+π4)的值. 18. 选做题:(甲、乙两题任选一题作答)甲、如图,正三棱柱ABC −A 1B 1C 1的底面边长为a ,侧棱长为√2a .(I)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (II)求AC 1与侧面ABB 1A 1所成的角乙、如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a(0<a <√2). (I)求MN 的长;(II)当a 为何值时,MN 的长最小;(III)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.19. 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立), (1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3?20. 已知a >0,函数f(x)=x 3−a ,x ∈(0, +∞),设x 1>0,记曲线y =f(x)在点(x 1, f(x 1))处的切线为l , (1)求l 的方程;(2)设l 与x 轴交点为(x 2, 0)证明: ①x 2≥a 13;②若x 2>a 13则a 13<x 2<x 1.21. 已知两点M(−1, 0),N(1, 0),且点P 使MP →⋅MN →,PM →⋅PN →,NM →⋅NP →成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0, y 0),记θ为PM →与PN →的夹角,求tanθ.22. 已知{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a n+1a n =(a n−1+2)(a n−2+2),n =3,4,5,…, (1)求a 3;(2)证明a n =a n−2+2,n =3,4,5,…; (3)求{a n }的通项公式及其前n 项和S n .2002年天津市高考数学试卷(理科)答案1. D2. A3. B4. D5. C6. B7. B8. A9. D 10. D 11. B 12. C13. (0, 0),(1, 1) 14. −115. 解:如图,因为y =x 2,4y =x 2是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可. 解方程组{y =x 2y =1 和{4y =x 2y =1,得交点坐标(−1, 1),(1, 1),(−2, 1),(2, 1). 选择x 为积分变量,则S =2[∫(1x 2−x 24)dx +∫(211−x 24)dx]=43.∴ 由三条曲线y =x 2,4y =x 2,y =1 所围图形的面积4316. 7217. 解:cos(2α+π4)=cos2αcos π4−sin2αsin π4=√22(cos2α−sin2α).∵ cos(α+π4)=35>0,π2≤α<3π2,∴ 3π2<α+π4<7π4,∴ sin(α+π4)=−√1−cos 2(α+π4)=−45,从而cos2α=sin(2α+π2)=2sin(α+π4)cos(α+π4)=−2425,sin2α=−cos(2α+π2)=1−2cos 2(α+π4)=725, ∴ cos(2α+π4)=√22×(−2425−725)=−31√250. 18. 甲、解:(1)如图,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系. 由已知,得A(0, 0, 0),B(0, a, 0), A 1(0,0,√2a),C 1(−√32a,a2,√2a) (2)坐标系如上.取A 1B 1的中点M , 于是有M(0,a2,√2a), 连AM ,MC 1有MC 1→=(−√32a,0,0), 且AB →=(0,a,0),AA 1→=(0,0,√2a) 由于MC 1→⋅AA 1→=0,MC 1→⋅AA 1→=0所以,MC 1⊥面ABB 1A 1∴ AC 1与AM 所成的角就是AG 1与侧面ABB 1A 1所成的角. ∵ AC 1→=(−√32a ,a 2,√2a),AM →=(0,a2,√2a)∴ AC 1→⋅AM →=0+a 24+2a 2=94a 2而|AC 1→|=√3a 24+a 24+2a 2=√3a|AM →|=√a 24+2a 2=32a ∴ cos <AC 1→,AM →>=94a 2√3a⋅32a=√32所以,AC 1→与AM →所成的角,即AC 1与侧面ABB 1A 1所成的角为30∘ 乙、解:(1)作MP // AB 交BC 于点P ,NQ // AB 交BE 于点Q ,连接PQ ,依题意可得MP // NQ ,且MP =NQ , 即MNQP 是平行四边形.∴ MN =PQ 由已知,CM =BN =a ,CB =AB =BE =1,∴ AC =BF =√2CP 1=a √2,BQ 1=a√2即CP =BQ =a √2∴ MN =PQ =√(1−CP)2+BQ 2 =√(1−√2)2+(√2)2=√(a −√22)2+12(0<a <√2) (2)由(1)MN =√22)12所以,当a =√22时,MN =√22即M ,N 分别移动到AC ,BF 的中点时, MN 的长最小,最小值为√22(3)取MN 的中点G ,连接AG 、BG ,∵ AM =AN ,BM =BN ,∴ AG ⊥MN ,BG ⊥MN , ∴ ∠AGB 即为二面角α的平面角. 又AG =BG =√64, 所以由余弦定理有cosα=(√64)2+(√64)2−1⋅=−13.故所求二面角α=arccos(−13).19. 解:(1)根据题意,可得,“至少3人同时上网”与“至多2人同时上网”互为对立事件, 故“至少3人同时上网”的概率等于1减去“至多2人同时上网”的概率,即“至少3人同时上网”的概率为1−C 60(0.5)6−C 61(0.5)6−C 62(0.5)6=1−1+6+1564=2132.(2)至少4人同时上网的概率为C 64(0.5)6+C 65(0.5)6+C 66(0.5)6=1132>0.3,至少5人同时上网的概率为(C 65+C 66)(0.5)6=764<0.3,因此,至少5人同时上网的概率小于0.3. 20. 解:(1)f(x)的导数f ′(x)=3x 2,由此得切线l 的方程y −(x 13−a)=3x 12(x −x 1); (2)①依题意,在切线方程中令y =0, 得x 2=x 1−x 13−a 3x 12=2x 13+a 3x 12,x 2−a 13=13x12(2x 13+a −3x 12a 13)=13x 12(x 1−a 13)2(2x 1+a 13)≥0,∴ x 2≥a 13,当且仅当x 1=a 13时取等成立.②若x 1>a 13,则x 13−a >0,x 2−x 1=x 13+a 3x 12<0,且由①x 2≥a 13, 所以a 13<x 2<x 1.21. 解:(1)记P(x, y),由M(−1, 0),N(1, 0)得PM →=−MP →=(−1−x, −y), PN →=−NP →=(1−x, −y),MN →=−NM →=(2, 0), ∴ MP →⋅MN →=2(1+x), PM →⋅PN →=x 2+y 2−1, NM →⋅NP →=2(1−x),∵ MP →⋅MN →,PM →⋅PN →,NM →⋅NP →是公差小于零的等差数列 ∴ {x 2+y 2−1=12[2(1+x)+2(1−x)]2(1−x)−2(1+x)<0即x 2+y 2=3(x >0),∴ 点P 的轨迹是以原点为圆心,√3为半径的右半圆.(2)点P 的坐标为(x 0, y 0),则x 02+y 02=3,PM →⋅PN →=x 02+y 02−1=2,∵ |PM →|⋅|PN →|=√(1+x 0)2+y 02⋅√(1−x 0)2+y 02 =√(4+2x 0)(4−2x 0)=2√4−x 02,∴ cosθ=|PM →|⋅|PN →|˙=√4−x 0,∵ 0<x0≤√3,∴ 12<cosθ≤1,0≤θ<π3,sinθ=√1−cos2θ=√1−14−x02,tanθ=sinθcosθ=√1−14−x02√14−x02=√3−x02=|y0|22. 解:(1)由题设得a3a4=10,且a3、a4均为非负整数,所以a3的可能的值为1,2,5,10.若a3=1,则a4=10,a5=32,与题设矛盾,若a3=5,则a4=2,a5=352,与题设矛盾,若a3=10,则a4=1,a5=60,a6=35,与题设矛盾,所以a3=2.(2)用数学归纳法证明,①当n=3,a3=a1+2,等式成立,②假设当n=k(k≥3)时等式成立,即a k=a k−2+2,由题设a k+1a k=(a k−1+2)(a k−2+2),∵ a k=a k−2+2≠0,∴ a k+1=a k−1+2,也就是说,当n=k+1时,等式a k+1=a k−1+2成立.根据①和②,对于所有k≥3,有a k+1=a k−1+2.(3)由a2k−1=a2(k−1)−1+2,a1=0及a2k=a2(k−1)+2,a2=3,得a2k−1=2(k−1),a2k=2k+1,k=1,2,3,即a n=n+(−1)n,n=1,2,3,所以S n={12n(n+1),当n为偶数12n(n+1)−1,当n为奇数。
2002年全国卷高考理科数学试题及标准答案
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。
2002高考数学全国卷及答案理
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 (A )亿元 (B )亿元 (C )亿元 (D )亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k。
2002年普通高等学校招生全国统一考试(数学)理含答案
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
2002 年普通高等学校招生全国统一考试(数学)理及答案
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.
第Ⅰ卷(选择题共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
互相垂直 点 新疆 王新敞
奎屯
M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM = BN = a
C
(0 a 2)
D
(1)求 MN 的长;
P
M
(2) a 为何值时, MN 的长最小;
Q
(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角 的
B
E
大小 新疆 王新敞 奎屯
2
4
当 a 1 ,则函数 f (x) 在 (−, a] 上单调递减,从而函数 f (x) 在 (−, a] 上的最小值为 2
f (a) = a2 +1.
若 a 1 ,则函数 f (x) 在 (−, a]上的最小值为 f (1) = 3 + a ,且 f (1) f (a) .
2
24
2
(ii)当 x a 时,函数 f (x) = x2 + x − a +1 = (x + 1)2 − a + 3
2002年高考试题——数学理(全国卷)
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆1)1(22=+-y x 的圆心到直线y x =的距离是 A .21B .23C .1D .32.复数3)2321(i +的值是 A .i -B .iC .1-D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x xD .1|{<x x 且}1-≠x4.在)2,0(π内,使x x cos sin >成立的x 的取值范围是A .)45,()2,4(ππππB .),4(ππC .)45,4(ππD .)23,45(),4(ππππ5.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .N M ⊂C .N M ⊃D .∅=N M6.点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为A .0B .1C .2D .27.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 A .43B .54C .53D .53-8.正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是A .︒90B .︒60C .︒45D .︒309.函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 A .0≥b B .0≤bC .0>bD .0<b10.函数111--=x y 的图象是11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种 12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 A .115000亿元 B .120000亿元 C .127000亿元 D .135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. 13.函数xa y =在]1,0[上的最大值与最小值这和为3,则a = 14.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 15.72)2)(1(-+x x 展开式中3x 的系数是16.已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值18.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小19.设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围20.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?21.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值22.设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案 一、选择题二、填空题(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== 22cos (2sin 1)(sin 1)0ααα-+=)20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得 222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 11=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1xx x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f . 若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤.(ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立.②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k。
2002年普通高等学校招生全国统一考试数学试卷(理科)
2002年普通高等学校招生全国统一考试数学试卷(理科) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页..满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002全国高考数学试题(全国理)
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002年全国高考数学真题(理科_含答案) WORD直接打印
2002年普通高等学校招生全国统一考试数学试卷(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002年高考全国卷理科数学试题及标准答案
普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第I I卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21 (B )23 (C)1 (D)3 (2)复数3)2321(i +的值是 (A)i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B)0|{<x x 且}1-≠x(C)}11|{<<-x x (D)1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A))45,()2,4(ππππ (B)),4(ππ (C ))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C)N M ⊃ (D)∅=N M (6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B)1 (C)2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A)43 (B)54 (C )53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B)︒60 (C)︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C)0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种 (B)12种 (C)16种 (D)20种(12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间( - )每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C)127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是 (16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.。
2002年全国高考数学试题普通高等学校招生全国统一考试数学试卷(理科)
2002年普通高等学校招生全国统一考试数学试卷(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页..满分 150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002高考数学全国卷及答案理2002高考数学全国卷及答案理
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围聘进来的员工化学教案有两个星期的无薪试用期化学教案如果在这两个星期内的表现没有令老板满意化学教案(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n(I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式;ADE(II )当31≥a 时,证明对所的1≥n ,有(i )2+≥n a n (ii )2111111111321≤++++++++n a a a a参考答案(13)2 (14)1 (15)1008 (16)27三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形14.∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22==)20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I ) 21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG ,∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--m y m x 将x y 2±=代入112222=--m y m x ,并解得 222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1xx x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=-此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n )(II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k据①和②,对于所有1≥n ,有2n a n ≥+.(ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。
2002年高考试题——数学(理)
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆1)1(22=+-y x 的圆心到直线33y x =的距离是 A .21B .23C .1D .32.复数3)2321(i +的值是 A .i -B .iC .1-D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x xD .1|{<x x 且}1-≠x4.在)2,0(π内,使x x cos sin >成立的x 的取值范围是A .)45,()2,4(ππππ B .),4(ππC .)45,4(ππD .)23,45(),4(ππππ 5.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .N M ⊂C .N M ⊃D .∅=N M6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为A .0B .1C .2D .27.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 A .43B .54C .53D .53-8.正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是 A .︒90B .︒60C .︒45D .︒309.函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 A .0≥b B .0≤bC .0>bD .0<b10.函数111--=x y 的图象是11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种 12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 A .115000亿元 B .120000亿元 C .127000亿元 D .135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. 13.函数xa y =在]1,0[上的最大值与最小值这和为3,则a =14.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k15.72)2)(1(-+x x 展开式中3x 的系数是16.已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.xy O 11(A)x y O 11(B)x y O -11(C)x y O -11(D)17.已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值18.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小19.设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围 20.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?21.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值22.设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ABCDEF PQM N参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCBBCBABBC二、填空题(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== 22cos (2sin 1)(sin 1)0ααα-+=)20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得 222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k。
2002年普通高等学校招生全国统一考试理科数学(天津)卷-推荐下载
(15)直线 x=0,y=0,x=2 与曲线 y ( 2) x 所围成的图形绕 x 轴旋转一周而成的旋转体
的体积等于________。
(16)已知函数
f
(x)
x2 1 x2
,那么
f (1) f (2) f (1 ) f (3) f (1) f (4) f (1 ) ______________。
(A) b≥0
(B)b≤0
(9)已知 0 x y a 1,则有
(C)b>0
(D)b<0 ()
(A) loga (xy) 0 (C)1 loga (xy) 2
(B) 0 loga (xy) 1 (D) loga (xy) 2
(10)平面直角坐标系中,O 为坐标原点,已知两点 A(3,1),B(-1,3),若点 C 满足
(A)115000 亿元 (B)120000 亿元
(C)127000 亿元 (D)135000 亿元
第二卷(非选择题共 90 分)
二.填空题:本大题共 4 小题,每小题 4 分,共 16 分,把答案填在题中横线上。
(13)函数 y 2x (x (1,)) 图象与其反函数图象的交点坐标为________。 1 x
2
3
4
三.解答题:本大题共 6 小题,共 74 分。解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分 12 分)
已知 cos( ) 3 , 3 .求 cos(2 ) 的值。
4 52
2
注意:考生在(18 甲)、(18 乙)两题中选一题作答,如果两题都答,只以(18 甲)计分。
2002年普通高等学校招生全国统一考试数学试卷全国卷理
2002年普通高等学校招生全国统一考试数学试卷(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是(A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图像是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002年高考全国卷理科数学试题及答案
(A) i
(B) i
(C) 1
(3)不等式 (1 x)(1 | x |) 0 的解集是
(D)1
(A){x | 0 x 1}
(B){x | 1 x 1}
(D){x | x 1且 x 1}
(4)在 (0,2 ) 内,使sin x cos x 成立的 x 的取值范围是
5 ( A) ( 4 , 2 ) ( , 4 )
(II)当 a1 3 时,证明对所的 n 1,有
(i) an n 2
1
1
1
(ii) 1 a1 1 a2 1 a3
11 1 an 2
参考答案
一、选择题
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 A C D C B B C B A B B C
二、填空题
(13)2
(14)1
(15)1008
7 (16) 2
( B) ( 4 , )
(
C)
(4
5 ,4
)
( D)
(4, )
5 (4
,
3 2
)
(5)设集合 M {x | x k 1 , k Z} , N {x | x k 1 , k Z} ,则
24
42
(A) M N (B) M N
(C) M N
(D) M N
2
(6)点 P(1,0) 到曲线 xy t2t (其中参数t R )上的点的最短距离为
2
奎奎奎奎奎
(18)如图,正方形 ABCD 、 ABEF 的边长都是 1,而且平面 ABCD 、 ABEF 互相垂直 奎奎奎奎奎
点 M 在 AC 上移动,点 N 在 BF 上移动,若 CM BN a (
2002年高考.天津卷.理科数学试题及答案
2002年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至2页。
第二卷3至10页。
共150分。
考试用时120分钟。
第一卷(选择题共60分)注意事项:1、 答第一卷前,考生务必将自己的姓名、准考号、考试科目用铅笔涂在答题卡上。
2、 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3、 考试结束,监考人将本试卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 互相独立,那么 P (AB )=P (A )P (B )如果事件A 在试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(正棱锥、圆锥的侧面积公式 cl S 21=锥侧 其中c 表示底面周长,l 表示斜高或母线长 球的体积公式334R V π=球 其中R 表示球的半径。
一、选择题:本大题共12道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)曲线)(sin cos 为参数θθθ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是(A )21 (B )22 (C )1 (D )2 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1(3)已知m 、n 异面直线,l l n m ,则,平面,平面=⋂⊂⊂βαβα(A ) 与m 、n 都相交 (B )与m 、n 中至少一条相交(B ) 与m 、n 都不相交 (D )至多与m 、n 中的一条相交(4)不等式0)1)(1(>-+x x 的解集是 (A ){}10<≤x x (B ){}10-≠<x x x 且 (C ){}11<<-x x (D ){}11-≠<x x x 且 (5)在(0,2π)内,使sinx>cosx 成立的x 取值范围为 (A ))45,()2,4(ππππ⋃ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ⋃ (6)设集合⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x N Z k k x x M ,214,,412则 (A )N M = (B )N M ⊂ (C )N M ⊃(D )φ=⋂N M(7)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 独角戏与BC 1所成的角是(A )900 (B )600 (C )450 (D )300(8)函数),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是 (A ) b ≥0 (B )b ≤0 (C )b>0 (D )b<0 (9)已知10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a(C )2)(log 1<<xy a (D )2)(log >xy a(10)平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足OB OA OC βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为:(A ) 3x-2y-11=0 (B )(x-1)2+(y-2)2=5 (C ) 2x-y=0 (D )x+2y-5=0(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A ) 8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年普通高等学校招生全国统一考试理科数学(天津)卷参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 互相独立,那么 P (AB )=P (A )P (B )如果事件A 在试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k kn n P P C k P --=)1()(正棱锥、圆锥的侧面积公式 cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长 球的体积公式334R V π=球 其中R 表示球的半径。
一、选择题:本大题共12道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)曲线)(sin cos 为参数θθθ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是 ( ) (A )21 (B )22 (C )1(D )2(2)复数3)2321(i +的值是 ( ) (A )i -(B )i(C )1-(D )1(3)已知m 、n 异面直线,l l n m ,则,平面,平面=⋂⊂⊂βαβα ( ) (A)与m 、n 都相交 (B )与m 、n 中至少一条相交; (C )与m 、n 都不相交 (D )至多与m 、n 中的一条相交 (4)不等式0)1)(1(>-+x x 的解集是 ( ) (A ){}10<≤x x (B ){}10-≠<x x x 且 (C ){}11<<-x x (D ){}11-≠<x x x 且(5)在(0,2π)内,使sinx>cosx 成立的x 取值范围为 ( ) (A ))45,()2,4(ππππ⋃ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ⋃(6)设集合⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x N Z k k x x M ,214,,412则 ( ) (A )N M = (B )N M ⊂ (C )N M ⊃ (D )φ=⋂N M (7)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 独角戏与BC 1所成的角是 ( ) (A )900 (B )600 (C )450 (D )300(8)函数),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是 ( ) (A ) b ≥0 (B )b ≤0 (C )b>0 (D )b<0(9)已知10<<<<a y x ,则有 ( ) (A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a(10)平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足βα+=,其中R ∈βα,,且1=+βα,则点C 的轨迹方程为:(A )3x-2y-11=0 (B )(x-1)2+(y-2)2=5 (C ) 2x-y=0 (D )x+2y-5=0 (11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A)8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%。
” 如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为 (A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元 第二卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)函数)),1((12+∞-∈+=x xxy 图象与其反函数图象的交点坐标为________。
(14)椭圆5522=-ky x 的一个焦点是(0,2),那么k=_____________.(15)直线x=0,y=0,x=2与曲线xy )2(=所围成的图形绕x 轴旋转一周而成的旋转体的体积等于________。
(16)已知函数221)(x x x f +=,那么=++++++)41()4()31()3()21()2()1(f f f f f f f ______________。
AB 1AAED三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分) 已知)42cos(.232,53)4cos(παπαππα+<≤=+求的值。
注意:考生在(18甲)、(18乙)两题中选一题作答,如果两题都答,只以(18甲)计分。
(18甲)(本小题满分12分)如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为a 2。
(1) 建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2) 求AC 1与侧面ABB 1A 1所成的角(18乙)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a(1) 求MN 的长;(2) 当a 为何值时,MN 的长最小;(3) 当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。
(19)(本小题满分12分)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立)。
(1)求至少3人同时上网的概率; (2)至少几人同时上网的概率小于0.3?(20)(本小题满分12分) 已知0>a ,函数),0(,1)(+∞∈-=x x ax x f 。
设ax 201<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。
(1)求l 的方程;(2)设l 与x 轴交点为)0,(2x 。
证明: ①ax 102≤<; ②若a x 11<,则ax x 121<<(21)(本小题满分12分)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ∙∙∙,,成等差小于零的等差数列。
(1)点P 的轨迹是什么曲线?(2)若点P 坐标为),(00y x ,记θ为PM 与的夹角,求θtan 。
(22)已知{}n a 是由非负整数组成的数列,满足,3,021==a a,5,4,3),2)(2(211=++=--+n a a a a n n n n ……。
(1) 求3a ;(2) 证明,5,4,3,22=+=-n a a n n ……; (3) 求{}n a 的通项公式及其前n 项和n S 。
参考答案一.选择题:本题考查基本知识和基本运算。
每题5分,满分60分。
(1)D (2)C (3)B (4)D (5)C (6)B (7)B (8)A (9)D (10)D (11)B (12)C二.填空题:本题考查基本知识和基本运算。
每小题4分,满分16分 (13)(0,0),(1,1) (14)-1 (15)2ln 3π (16)27三.解答题(17)本小题考查同角三角函数关系式、倍角公式等基础知识,考查基本运算能力。
满分12分。
解:).2sin 2(cos 224sin2sin 4cos2cos )42cos(ααπαπαπα-=-=+3737,cos()0,,44442444sin().454324cos 2sin(2)2sin()cos()2()2445525πππππππαααπαπππαααα≤+<+>∴+===-=+=++=⨯-⨯=-由此知〈+〈从而50231)2572524(22)42cos(.257)53(21)4(cos 21)22cos(2sin 22-=--⨯=+∴=⨯-=+-=+-=παπαπαα注意:考生在(18甲)、(18乙)两题中选一题作答,如果两题都答,只以(18甲)计分。
本小题主要考查空间直角坐标系的概念,空间点和向量的坐标表示以及向量夹角的计算方法,考查运用向量研究空间图形的数学思想方法。
满分12分。
解:(1)如图,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以1AA 所在直线为Oz 轴,以经过原点且与平面11A ABB 垂直的直线为Ox 轴,建立空间直角坐标系。
由已知,得)2,2,23(),2,0,0(),0,,0(),0,0,0(11a aa C a A a B A --------4分(2)坐标系如上。
取11B A 的中点M ,于是有)2,2,0(a aM ,连1,MC AM 有DE)0,0,23(1a MC -=,且)2,0,0(),0,,0(1a AA a == 由于0,01111=∙=∙AA MC AA MC 所以,111AABB MC 面⊥∴所成的角。
与侧面所成的角就是与1111A ABB AG AM AC22211120111119(,),(0,)02222443294cos ,30322a a a AC AM AC AM a a AC AM aa AC AM AC AM AC ABB A a =-=∴∙=++=====∴==∙ 而所以,与所成的角,即与侧面所成的角为(18乙)本小题主要考查线面关系、二面角和函数极值等基础知识,考查空间想象能力和推理论证能力。
满分12分。
解:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。
∴MN=PQ 由已知,CM=BN=a,CB=AB=BE=1,∴21,212a BQ aCP BF AC ====即2aBQ CP==∴MN PQ a ====<<(2)由(1)22,,222221)22(2的长最小,最小值为的中点时,分别移动到即时,所以,当MN BF AC N M MN a a MN ==+-=(3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。
又46==BG AG ,所以由余弦定理有 31464621)46()46(cos 22-=∙∙-+=α。
故所求二面角)31arccos(-=α。
(19)本小题考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力。
满分12分。
解:(1)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即0616266661615211(0.5)(0.5)(0.5)16432C C C ++---=-=(2)至少4人同时上网的概率为3.03211)5.0()5.0()5.0(666656646>=++C C C 至少5人同时上网的概率为3.0647)5.0)((66656<=+C C 因此,至少5人同时上网的概率小于0.3.(20)本小题主要考查利用导数求曲线切线的方法,考查不等式的基本性质,以及分析和解决问题的能力。