移动通信系统中的信道特性
2022移动通信第三章移动信道的传播特性

2022移动通信第三章移动信道的传播特性在当今的信息时代,移动通信已经成为我们生活中不可或缺的一部分。
无论是日常的沟通交流,还是工作中的信息传递,都离不开移动通信的支持。
而要实现稳定、高效的移动通信,就必须深入了解移动信道的传播特性。
这一章,我们就来探讨一下 2022 年移动通信中移动信道的传播特性。
移动信道是指移动终端(如手机)和基站之间的无线传播路径。
它的传播特性非常复杂,受到多种因素的影响。
首先,地形地貌是影响移动信道传播特性的重要因素之一。
在城市环境中,高楼大厦林立,会导致信号的反射、折射和散射。
信号可能会在建筑物之间来回反射,形成多径传播。
这就好比我们在一个有很多镜子的房间里说话,声音会经过多次反射才到达对方的耳朵,从而使得声音变得复杂和不稳定。
在山区,地形起伏较大,信号可能会被山峰阻挡,出现阴影效应,导致某些区域信号较弱甚至完全没有信号。
其次,气候条件也会对移动信道的传播特性产生影响。
例如,在雨天,雨水会吸收和散射无线电波,从而导致信号衰减。
大雾天气中,水汽会对信号产生类似的影响。
此外,雷电等恶劣天气还可能会产生电磁干扰,影响信号的质量。
移动信道的传播特性还与信号的频率有关。
一般来说,频率越高,信号的穿透力越弱,但能够提供更高的数据传输速率。
在移动通信中,不同的频段具有不同的传播特性。
低频段的信号传播距离较远,但带宽较窄,数据传输速率相对较低;高频段则相反,虽然传输速率快,但传播距离较短,覆盖范围较小。
多径传播是移动信道的一个重要特性。
当信号从发射端发出后,可能会通过多条不同的路径到达接收端。
这些路径的长度和传播环境各不相同,导致信号到达接收端的时间、相位和幅度都有所差异。
这种多径效应会引起信号的衰落,包括瑞利衰落和莱斯衰落。
瑞利衰落通常发生在没有直射路径的情况下,信号幅度服从瑞利分布;而当存在较强的直射路径时,则会出现莱斯衰落。
为了应对移动信道的复杂传播特性,移动通信系统采用了一系列的技术手段。
移动通信第三章移动信道的传播特性

移动通信第三章移动信道的传播特性在我们的日常生活中,移动通信已经成为了不可或缺的一部分。
无论是打电话、发短信,还是上网浏览、在线视频,都离不开移动通信的支持。
而要实现稳定、高效的移动通信,就必须深入了解移动信道的传播特性。
这一章,咱们就来好好聊聊这个话题。
移动信道的传播特性是相当复杂的。
想象一下,当您在移动中打电话时,信号会受到各种各样的影响。
比如建筑物的阻挡、地形的起伏、天气条件的变化,甚至是人群的干扰等等。
首先,我们来谈谈多径传播。
这就好比您在一个充满镜子的房间里说话,声音会从不同的方向反射回来,形成多个路径到达接收点。
在移动通信中,信号也会通过多条不同的路径从发射端到达接收端。
这些路径的长度和传播条件各不相同,导致信号到达的时间、强度和相位都有所差异。
这就会引起信号的衰落和失真。
信号的衰落可以分为大尺度衰落和小尺度衰落。
大尺度衰落主要是由于距离的增加和障碍物的遮挡导致信号强度的大幅下降。
比如说,您在远离基站的地方,或者身处高楼大厦密集的区域,信号可能就会变得很弱。
小尺度衰落则是由于多径传播引起的信号快速波动。
这种衰落可能在很短的时间内发生,甚至在几分之一秒内,让您的通话出现断断续续的情况。
接下来,说说多普勒效应。
当移动台相对于信号源运动时,接收到的信号频率会发生变化。
这就好比一辆鸣笛的汽车从您身边驶过,您会听到声音的音调发生变化。
在移动通信中,如果您在快速移动,比如在高铁上,多普勒效应就会比较明显,可能会影响信号的质量。
除了这些,移动信道还受到阴影衰落的影响。
这通常是由于大型障碍物,如山脉、高楼等阻挡了信号的传播,造成某些区域的信号强度明显低于其他区域,形成了所谓的“阴影区”。
再来说说传播损耗。
信号在传播过程中会不断损耗能量,这包括自由空间传播损耗、反射损耗、绕射损耗等等。
自由空间传播损耗是指信号在没有任何障碍物的理想空间中传播时,随着距离的增加而逐渐减弱。
反射损耗则是当信号遇到光滑的表面时,一部分能量被反射回去,导致接收端接收到的信号强度降低。
移动通信的信道是指基站天线

1.移动通信的信道是指基站天线,移动用户天线和两副天线之间的传播路径。
2 3G技术标准主要有3G WCDMA CDMA2000 TC-SCDMA.2.移动信道的基本特性是衰落特性。
3.移动信道是一种时变信道。
四种衰落特性:随信号传播距离变化而导致的传播损耗和弥散,由于传播坏境中的地形起伏,建筑物及其他障碍物对电磁波的遮蔽所引起的衰落,称为阴影衰落无线电波在传播路径上受到周围环境中地形地物的做用产生反射绕射和散射,使得其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播所引起的信号在接收端幅度,相位和到达时间的随机变化导致严重的衰落,是多径衰落大尺度衰落是由移动通信信道路径上的固定障碍物的阴影引起的,衰落特性一般服从d-n 律。
小尺度衰落由移动台运动和地点的变化而产生的,主要特征是多径。
4.一般认为,在移动通信系统中影响传播的3中基本机制为反射绕射和散射6.根据衰落与频率的关系,将衰落分为两种:频率选择性衰落和非频率选择性衰落。
频率选择性衰落是指传输信道对信号不同的频率成分有不同的随机响应,信号中不同频率的分量衰落不一致,引起信号波形失真。
非频率选择性衰落,指信号经过传输信道后,各频率分量的衰落是相关的具有一致性,衰落波形不失真。
7.微观分集的类型时间分集频率分集空间分集8.分集的合并方式选择合并,在所接受的多路信号中,合并器选择信噪比最高的一路输出,这相当于在M个系数ak(t),只有一个等于1.其余的为0最大比值合并,在选择合并中,只选择其中一个信号,其余信号被抛弃。
等增益合并,等增益合并器的各个加权系数均为19.为什么扩频信号能够有效抑制窄带干扰?扩频信号对窄带干扰的抑制作用在于接收机对信号的解扩的同时,对干扰信号的扩频,这降低了干扰信号的功率谱密度。
扩频后的干扰和载波相乘,积分(相当于低通滤波)大大地削弱了他对信号的干扰,因此在采样器的输出信号受干扰的影响就大为减少,输出的采样值比较稳定10跳频系统的抗干扰性能和在GSM系统的应用:跳频系统对抗单频或窄带干扰是很有特色的。
移动通信信道-2

N 4
a0
t
五、时延扩展和相关带宽
2、时延扩展的描述
时延功率谱:由不同时延信号分量的平均功率构成
P(τ) 归一化时延谱 P( )
0dB
时延扩展, P(τ )的均方根
P()
30dB
0
m 平均时延
Tm
相对时延值
最大多径时延, P(τ )下 降到-30dB时的时延差
2、多径传播对接收信号产生的影响 典型实例 800MHz室内环境中典型传播时延扩展为
1μs,符号速率200kbps,符号宽度?重叠率?
符号宽度5μs,重叠覆盖率20%
2.2 移动通信信道的多径传播特性
2.2.1 移动通信信道中的电波传播损耗特性 2.2.2 移动环境下的多径传播 2.2.3 多普勒频移 2.2.4 多径接收信号的统计特性(自学) 2.2.5 衰落信号幅度的特征量
2.2.5 衰落信号幅度的特征量
2.2.4 多径接收信号的统计特性(提示)
移动通信信道统计分析:对接收信号的功率或 电压包络进行定量描述。 以瑞利分布为例,接收信号的包络和相位(σ为方差):
– 包络概率密度函数(瑞利分布):
r 2 2 p(r ) 2 e
1 2
r2
r0
– 相位概率密度函数(均匀分布): p( )
深度衰落发生的次数较少,浅度衰落发生得相当频繁。 衰减20dB概率为1%,衰减30dB和40dB的概率分别为 0.1%和0.01%。
正斜率 负斜率
t1
t2
t3
t4
A
1
2
3
4
NA 4 /T
移动通信复习题,第四版。

第 1 章移动通信是指通信双方至少有一方处在移动情况下(或临时静止)的相互信息传输和交换.移动通信的特点:1.必须利用无线电波进行信息的传输2.是在复杂的干扰环境中运行的3.可以利用的频谱资源非常有限,而移动通信的业务量的需求却是与日俱增4.移动通信系统的网络结构是多样化的,网络管理和控制必须有效5.移动通信设备必须适于在移动环境中使用数字移动通信系统的优点:1. 频谱利用率高,有利于提高系统容量2. 能提供多种业务服务,提高通信系统的通用性3. 抗噪声、抗干扰和抗多径衰落的能力强4. 能实现更有效、灵活的网络管理和控制5. 便于实现通信的安全保密6. 课降低设备成本以及减小用户手机的体积和重量第2章1. 移动通信信道的基本特征:第一,带宽有限,取决于使用的频率资源和信道的传播特征;第二,干扰和噪声影响大,这主要是移动通信工作的电磁环境决定的;第三,存在着多径衰落。
要求:已调信号应具有高的频谱利用率和较强的抗干扰、抗衰落的能力。
恒定包络调制:可采用限幅器、低成本的非线性高效功率放大器件非恒定包络调制:需要采用成本相对较高的线性功率放大器件2. GSM中,尽管MSK信号已具有较好的频谱和误比特率性能,但仍不能满足功率谱在相邻频道取值低于主瓣峰值60db以上的要求。
这就要求在保持MSK基本特性的基础上,对MSK的带外频谱特性进行改进,使其衰减速度加快。
3.π/4 - DQPSK的相位跳变规则决定了再码元转换时刻的相位跳变量只有+-π/4和+-3π/4四种取值。
4.. 扩频调制扩频通信的定义:一种信息传输方式,在发端采用扩频码调制,是信号所占的频带宽度远大于所传信息必需的带宽,在收端采用相同的扩频码进行相关解扩以恢复所传信息数据。
扩频系统的处理增益 Gp = 10 lg B/Bm 各种扩频系统的抗干扰能力大体上都与扩频信号带宽B与信息带宽Bm之比成正比。
扩频通信抗干扰性能强,唯一能工作在负信噪比之下。
移动通信电子课件教案-第3章_移动信道的传播特性

第3章 移动信道的传播特性
3.1.4 障碍物的影响与绕射损耗
P
x T
d1 h1
x 为菲涅尔余隙
T d1
d2
R d2
h2
x
h1
P
R h2
(a)
(b)
图 3 - 3 障碍物与余隙
(a) 负余隙; (b) 正余隙
第3章 移动信道的传播特性
t = t0 t= t0+
t1 t1+ 1 1 t1+ 1 2 (a)
t2 t2+ 2 2t2+ 2 3 t2+ 2 1 (b)
t= t0+
t3
(c)
图 3 - 11 时变多径信道响应例如 (a) N=3; (b) N=4; (c) N=5
t3+ 3 4
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.2.4 多径时散与相关带宽 ——续
时延扩展Δ:最大传输时延和最小传输时延的差值,即最后 一个可分辨的时延信号与第一个时延信号到达时间的差值, 实际上就是脉冲展宽的时间。
表示时延扩展的程度。
归一化时延信号的包络E(t):将移动通信中接收机接收 到的多径的时延信号强度进行归一化。
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.1 无线电波传播特性 3.2 移动信道的特征 3.3 陆地移动信道的传输损耗 3.4 移动信道的传播模型 思考题与习题
第3章 移动信道的传播特性
引言
三种研究无线移动通信信道的根本方法: 理论分析:用电磁场理论和统计理论分析电波在移动
环境中的传播特性,并用数学模型来描述移动信道。 现场电波实测:在不同的传播环境中,做电波实测实
5g中的信道和信号 -回复

5g中的信道和信号-回复5G中的信道和信号作为下一代移动通信技术的代表,5G通信系统在无线通信领域带来了巨大的革新。
在5G中,信道和信号是关键要素之一,它们在实现高速、高质量的无线通信中发挥着重要作用。
本文将一步一步回答有关5G中的信道和信号的问题。
1. 什么是信道?信道是指无线通信中的信息传输介质,包括空气介质和传输设备。
在5G中,信道是无线通信系统中传输数据的媒介,负责将发送方发送的信号传输给接收方。
2. 5G中有哪些常见的信道类型?5G中常见的信道类型包括下行信道和上行信道。
下行信道是从基站发送到终端设备的信道,用于传输各种数据和媒体内容。
上行信道是从终端设备发送到基站的信道,用于上传用户数据和进行反馈。
3. 5G信道中的多天线技术有何作用?多天线技术是5G中的重要技术之一,它通过在发送和接收设备上使用多个天线来增强无线信号的传输效果。
多天线技术可以提高无线传输速率、信号覆盖范围和抗干扰能力,从而提升用户的通信体验。
4. 5G信号中的毫米波是什么?在5G中,毫米波是一种高频段的无线信号,其频率通常在30 GHz 到300 GHz之间。
相比传统的微波信号,毫米波信号具有更高的频率和更宽的频谱,可以支持更高的数据传输速率。
然而,毫米波信号的传输距离相对较短,容易受到障碍物的阻挡。
5. 5G中的波束赋形技术有何意义?波束赋形技术是5G中的一项关键技术,它通过对信号进行定向发射和接收,将无线能量集中在用户所在的方向上。
这种技术可以提高传输速率和信号质量,并减少与其他用户之间的干扰,从而为用户提供更稳定、更高效的网络连接。
6. 5G信号中的大规模天线阵列有何优势?大规模天线阵列是5G中的另一项重要技术,它通过在基站和终端设备上使用大量的天线来实现多天线通信。
大规模天线阵列可以实现更精确的波束赋形和更高的信号增益,提供更广阔的信号覆盖范围和更高的数据传输速率。
7. 5G中的小区间干扰如何解决?在5G中,小区间干扰是一个较为普遍的问题,指不同小区之间的频率相互干扰的现象。
a第7章 移动通信传输信道的特性

16
7.1.1 移动通信系统结构及传输特点
图7-3 我国大陆陆地移动通信2G频谱使用和3G新增频谱输特点
• (1)移动性 • 移动性包括设备移动性(Equipment Mobility)和用 户移动性(User Mobility)。设备移动性是用户移动 性的基础,它使得移动设备能够不受位置限制地保持 原有的通信;用户移动性则允许移动用户在任何地点 使用任何形式的终端设备实现通信。为了支持移动终 端和移动用户的移动性,移动通信网络需要建立一套 有效的移动性管理(Mobility Management)机制。 移动台发送信息的过程比较简单,它首先向网络请求 一定的资源,然后就能够与网络实现信息交互了。
711移动通信系统结构及传输特点图71陆地移动通信系统的组成bts设有无线收发信机和天馈线等设备每个bts都有一个可靠通信的服务范围称为无线小区简称小区cell移动网络就是由若干个这样的小区所构成通过分析可以知道如果采用正六边形的小区对服务范围进行覆盖往往可以在频谱利用率网络规划等方面取得较好的效果因此进行移动网络覆盖分析的时候经常采用正六边形小区覆盖其结构非常类似蜂窝所以又可以把小区制移动通信系统称为蜂窝移动通信系统
• (1)新增第三代公众移动通信系统的工作频段 • ① 核心工作频段 • 频分双工(FDD)方式:1920~1980MHz/2110~2170MHz ,共120MHz。 • 时分双工(TDD)方式:1880~1920MHz/2010~2025MHz ,共55MHz。
14
7.1.1 移动通信系统结构及传输特点
21
7.1.1 移动通信系统结构及传输特点
• (5)移动终端要求高 • 移动终端作为用户接入移动通信网络的设备,必须具 有普通电话终端的基本特性,以及无线收发的能力, 除此之外,考虑到移动性的特点,还会有不同的要求 。对面向个人用户的手机终端,主要要求是体积小、 质量轻、省电、操作简单和携带方便,当然,随着技 术的进步,人们已经不满足于手机仅仅具备通话功能 ,而在娱乐、文档处理、多媒体应用等方面都提出了 新的要求,因此智能手机已经逐渐取代普通手机,成 为市场的主流终端。车载台和机载台除要求操作简单 和维修方便外,还应保证在振动、冲击、高低温变化 等恶劣环境中正常工作。
北邮《移动通信系统与原理》期末复习

第一章概述1、个人通信的主要特点是:每个用户有一个属于个人的唯一通信号码,取代了以设备为基础的传统通信的号码。
2、目前最具发展潜力的宽带无线移动技术是:WCDMA、CDMA2000、TD-SCDMA、WiMAX。
3、移动通信的主要特点有:(1)利用无线电波进行信息传输;(2)在强干扰环境下工作;(3)通信容量有限;(4)通信系统复杂;(5)对移动台的要求高。
4、移动通信产生自身产生的干扰:互调干扰,邻道干扰,同频干扰,多址干扰。
第二章移动通信电波传播与传播预测模型1、移动信道的基本特性就是衰落特性。
2、移动信道的衰落一般表现为:(1)随信号传播距离变化而导致的传播损耗和弥散;(2)由于传播环境中的地形起伏,建筑物以及其他障碍物对电磁波的遮蔽所引起的衰落,一般称为阴影衰落;(3)无线电波在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使得其到达接收机时,是从多条路径传来的多个信号的叠加,这种多径传播所引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落,即所谓多径衰落。
3、大尺度衰落主要是由阴影衰落引起的,小尺度衰落主要是由多径衰落引起的。
4、一般认为,在移动通信系统中一项传播的3种最基本的机制为反射、绕射和散射。
5、移动无线信道的主要特征是多径传播。
6、多径衰落的基本特性表现在信号的幅度衰落和时延扩展。
一般来说,模拟移动通信系统主要考虑多径效应引起的接收信号的幅度变化;数字移动通信系统主要考虑多径效应引起的脉冲信号的时延扩展。
7、描述多径信道的主要参数:(1)时间色散参数和相关带宽;(2)频率色散参数和相关时间;(3)角度色散参数和相关距离。
P288、相关带宽是信道本身的特性参数,与信号无关。
9、相关带宽:频率间隔靠得很近的两个衰落信号存在不同的时延,这可使两个信号变得相关,使得这一情况经常发生的频率间隔就是相关带宽。
10、相关时间:一段间隔,在此间隔内,两个到达信号具有很强的相关性,换句话说在相关时间内信道特性没有明显的变化。
移动通信信道1

移动通信信道1移动通信信道1移动通信信道是指在移动通信系统中,用于传输数据和信号的特定物理介质。
移动通信信道承载着方式信号的传输和通话过程中的数据传送。
通常,移动通信信道可以分为下行信道和上行信道。
下行信道下行信道是指从基站(基站可以理解为移动通信系统中的信号发射和接收设备)向方式发送信号和数据的信道。
下行信道用于实现方式接收呼叫、短信、数据等服务。
它是从基站到方式的单向通信信道。
下行信道一般有以下几种类型:1. 广播信道(Broadcast Channel):用于向所有方式广播公告、系统信息等。
2. 公告信道(Paging Channel):用于向特定方式发送来电通知、短信等。
3. 共享信道(Shared Channel):多个方式共享使用的信道,用于传输语音、数据等。
4. 寻呼信道(Pilot Channel):用于基站向方式发送信号,帮助方式进行寻呼监听。
5. 同步信道(Sync Channel):用于同步方式时钟和基站时钟。
6. 邻区信道(Neighbour Channel):用于与周边基站进行通信。
上行信道上行信道是指从方式向基站发送信号和数据的信道。
上行信道用于实现方式发出呼叫、发送短信、数据等服务。
它是从方式到基站的单向通信信道。
上行信道也有多种类型,包括但不限于以下几种:1. 接入信道(Access Channel):用于方式与基站建立连接和发送呼叫等。
2. 数据信道(Traffic Channel):传输方式发出的语音、数据等。
3. 控制信道(Control Channel):传输方式与基站之间的控制信息,如网络注册、身份验证等。
4. 反馈信道(Feedback Channel):用于方式向基站发送接收质量反馈信息。
移动通信信道的特点移动通信信道具有以下几个特点:1. 随机接入:移动通信系统要支持大量的用户接入,信道必须具备随机接入的能力,以确保用户可以随时接入网络。
2. 可靠传输:信道要具备传输信号和数据的可靠性,在无线环境中,信道受到噪声、多径效应等环境因素的干扰,通信系统需要采用相应的纠错技术,提高信道的可靠性。
移动通信原理 课后答案

无线传播与移动信道
2.1 移动通信信道具有哪些主要特点? 答:移动通信信道的主要特点: (1)传播的开放性; (2)接收环境的复杂性; (3)通信用户的随机移动性。 2.2 在移动通信中,电波传播的主要传播方式有哪几种? 答:电波传播的主要方式:直射、反射、绕射。 2.3 移动通信的信道中存在着大、中、小尺度(范围)的衰耗与衰落,它们各自具有什么性 质的特征? 答:移动通信信道中,大、中、小尺度衰耗与衰落的特征: (1)大尺度:电波在空间传播所产生的损耗,反映的是传播在宏观大范围(千米量级)的 空间距离上的接收信号电平平均值的变化趋势; (2)中尺度:主要是指电磁波在传播路径上受到建筑物等的阻挡所产生阴影效应而产生的 损耗,反映了在中等范围内(数百波长量级)的接收信号电平平均值起伏变化的趋势;为无 线传播所特有,一般从统计规律上看遵从对数正态分布,其变化率比传送信息率慢; (3)小尺度:反映微观小范围(数十波长以下量级)接收电平平均值的起伏变化趋势,其 电平幅度分布一般遵从瑞利(Rayleigh)分布、莱斯(Rice)分布和纳卡伽米(Nakagami) 分布。 2.4 移动通信中存在 3 种类型的快衰落,它们各自表示什么类型的快衰落?在什么情况下会 出现?各自克服需要采取的主要措施是什么? 答:移动通信中,快衰落分为以下三种类型:空间选择性快衰落、频率选择性快衰落和时间 选择性快衰落。 其产生的原因和克服需要采取的措施如下: (1)空间选择性快衰落:由于开放型的时变信道使天线的点波束产生了扩散而引起的,克 服措施为空间分集; (2)频率选择性快衰落:由于信道在时域的时延扩散而引起的,可采用自适应均衡喝 Rake 接收加以克服; (3)时间选择性快衰落:由于用户的高速移动在频域引起多普勒频移,在相应的时域其波 形产生时间选择性衰落,可采用信道交织技术加以克服。 2.5 移动通信中主要噪声干扰有哪几种?对于 CDMA,哪一类干扰是最主要的干扰? 答:移动通信中主要噪声干扰有:加性正态白噪声、多径干扰、多址干扰。 对于 CDMA,最主要的干扰是多径干扰。 2.6 Okumura-Hata 传播模型的主要运用环境与条件是什么? 答:Okumura-Hata 传播模型的主要运用环境与条件为:适用于小城镇与郊区的准平坦地区; 应用频率为 150 MHz ≤ f c ≤ 1500 MHz ;有效距离为 1km ≤ d ≤ 20km ;发射(基站)天线 有效高度为 30~200m;接收(移动台)天线有效高度为 1~10m。
04次课 第02章 移动信道的传播特性-3_2013解析

多普勒扩展与相关时间的关系
相关时间由多普勒扩展决定,两者之间成 反比关系 GSM。 系统(900MHz)
步行(5km/h): 4.1667Hz 车载(60km/h): 50Hz 高铁(300km/h): 250Hz
运动速度和信号频率 多普勒扩展 相关时间 实例:移动台速率为60km/h,载频为900MHz,相关 时间保守估计为3.58ms
由移动台与基站的相对运动,或传播路径中物
体的运动引起。
数字移动通信 2-7
多普勒扩展
多普勒扩展:接收的多普勒谱为非0值的频率范围, 一般定义为 BD=最大多普勒频移fm= v /
数字移动通信 2-8
相关时间
定义 相关时间就是信道冲激响应维持不变的时间 间隔的统计平均值。 在相关时间内,两个到达信号有很强的幅度 相关性。
根据发送信号与信道变化快慢程度
快衰落 慢衰落
数字移动通信 2-17
衰落分类
数字移动通信 2-18
内容小结
多径时延扩展->时间色散->频率选择性衰落 多普勒扩展->频率色散->时间选择性衰落
多径时延扩展->时间色散->频率选择性衰落 多普勒扩展 ->频率色散->时间选择性衰落
数字移动通信 2-19
时间分集的设计
思考:慢衰落有没有坏处?如何克服?
当处于深度衰落时,可采用慢跳频的方式克服
数字移动通信 2-14
快衰落与慢衰落
快衰落
形成条件:信道冲激响应在码元宽度内变化很快, 即信道的相干时间比发送信号码元宽度短。
定量判据:
Ts>Tc BD> Bs
数字移动通信 2-15
移动通信系统中的信道特性

移动通信系统中的信道特性在我们生活的这个信息时代,移动通信已经成为了不可或缺的一部分。
无论是日常的电话通话、发送短信,还是通过手机浏览网页、观看视频,这一切都离不开移动通信系统的支持。
而在移动通信系统中,信道特性是一个至关重要的概念,它对于通信质量和效率有着深远的影响。
要理解移动通信系统中的信道特性,首先得明白什么是信道。
简单来说,信道就是信息从发送端传输到接收端所经过的路径。
在移动通信中,这个路径可不是一条笔直的、毫无干扰的“高速公路”,而是充满了各种复杂情况和不确定性。
移动通信信道的一个显著特点就是多径传播。
想象一下,当你在一个高楼林立的城市中打电话,信号从你的手机发送出去后,可能会经过建筑物的反射、折射,甚至绕射,然后以多条不同的路径到达接收端。
这就导致接收端接收到的信号是多个路径传来的信号的叠加。
这种多径传播会带来信号的衰落和时延扩展。
衰落就是信号强度的快速变化,有时候强,有时候弱,让你的通话质量时好时坏。
时延扩展则会导致符号间干扰,使得接收端难以准确地解读发送的信息。
除了多径传播,移动通信信道还存在多普勒频移的现象。
当移动台(比如你的手机)在移动时,相对于基站发送的信号,它会产生频率上的变化。
这就好像一辆行驶中的汽车听到的警笛声,随着汽车的靠近或远离,警笛声的频率会发生变化。
多普勒频移会影响信号的解调,导致误码率增加,进而影响通信质量。
另外,噪声也是移动通信信道中不可忽视的一个因素。
噪声可以来自各种来源,比如自然界的电磁干扰、其他电子设备的辐射等等。
这些噪声会叠加在有用信号上,使得信号变得模糊不清,增加了接收端正确解调信号的难度。
在不同的环境中,移动通信信道的特性也会有所不同。
比如在城市环境中,由于建筑物密集,信号的反射和遮挡比较严重,多径传播和衰落现象更加明显;而在开阔的农村地区,信号传播相对较为顺畅,但可能会受到更远距离的传播损耗影响。
为了应对移动通信信道的这些特性,工程师们想出了各种各样的技术和方法。
12移动通信信道解析

二次波散布于空间,甚至到达阻挡体的背面,这称绕射波 (4)散射波:电波遇到阻碍物表面粗糙或体积小,但数目多时,会
在其表面发生散射,形成散射波 (5)地表面波:沿地球表面传播 忽略不计
1.2 移动通信信道
第1章 移动通信技术基础
造卫星中继、光导纤维以及光波视距传播等传输媒介构成的广义信道
1.2 移动通信信道
第1章 移动通信技术基础
● 随参信道:信道特性随时间随机快速变化
若传输媒介随时间随机快速变化,则构成的广义信道通常属于随参信道 例如:陆地移动信道、短波电离层反射信道、超短波流星余迹散射信道、超 短波及微波对流层散射信道、超短波电离层散射以及超短波视距饶射等信道
0
3 km
hga 15 km
海平面
注:传播距离不足15Km时,则hga为3Km到实际距离间的平均海拔高度
1.2 移动通信信道
第1章 移动通信技术基础
b、移动台天线有效高度:hm 指天线在当地地面上的高度 它是随机变化的,例如:放在口袋约1m,放在耳边约1.5m
(2)、地物(地区)的分类与定义
开阔地:无高大树木、建筑物等。如农田、 荒野、 广场、 沙漠等 郊区:有障碍物但不稠密。如有少量的低层房屋或小树林等 市区:有较密集的建筑物和高层楼房。
合成信号振幅发生深度且快速的起伏,所以称之为快衰落。 因为多径衰落的信号包络服从瑞利分布,因此又被称为瑞利衰落。
多径衰落 = 快衰落 = 瑞利衰落
2、阴影效应与慢衰落 由于MS不断移动,电波传播路径上的地形,地物不断变化,它造
成的衰落比多径效应引起的快衰落要慢的多,所以叫慢衰落
现代通信网络技术(李铮)章 (5)

. (1)路径损耗:是由发射功率的辐射扩散及信道的传输
特性造成的。在路径损耗模型中一般认为对于相同的收发距离, 路径损耗也相同。
(2)快衰落:由于多径效应而使合成信号的幅度、相位 和到达时间随机变化,多径信号造成的结果是信号的严重衰落, 从而严重影响通信质量。这就是所谓的多径衰落现象,由于各 种不同路径反射矢量合成的结果,使信号场强随地点不同而呈 驻波分布,接收点场强包络的变化服从瑞利分布,因此又称为 瑞利衰落或快衰落。
对应工作频率段为30MHz~3GHz。 目前中国频谱划分现状为:
(1)2G频谱 GSM网络:885-915 MHz(上行),930-960 MHz(下行); 1710-1755 MHz(上行),1805-1850 MHz(下行)。 IS-95CDMA网络:825-835 MHz(上行),870-880 MHz (下行)。
第5章 移动通信网
4G采用OFDMA,MIMO等技术,采用纯IP网络来承载,可以 提供更加快速的上网,而且可以高速移动过程中不会断网。4G 有两个制式:FDD-LTE和TD-LTE。二者在技术上并没有太多差 别,FDD-LTE更适合广度覆盖,TD-LTE更适合室内覆盖、室外 扩容。2013年12月4日,工业和信息化部正式向中国移动、中 国电信、中国联通颁布三张4G牌照,均为TD-LTE制式。2015念 2月27日,工业和信息部正式向中国电信和中国联通发放的TDLTE牌照。
基于MWorks的移动通信系统仿真可行性与性能分析

基于MWorks的移动通信系统仿真可行性与性能分析第一章移动通信系统概述随着科技的不断发展,移动通信系统已经成为现代社会中不可或缺的一部分。
本章将对移动通信系统进行概述,包括其定义、发展历程、关键技术和应用领域等方面。
移动通信系统(Mobile Communications System,简称MCS)是一种利用无线电波在空中传输信息的技术,使得用户可以在不同地点之间进行语音、数据、图像等信息的实时交流。
移动通信系统主要包括基站子系统(Base Station Subsystem,简称BSS)、核心网络子系统(Core Network Subsystem,简称CNSS)和终端设备子系统(Terminal Equipment Subsystem,简称TES)。
基站子系统负责与终端设备子系统之间的无线连接,核心网络子系统负责处理和管理整个系统的信令、计费、资源分配等功能。
移动通信系统的发展可以追溯到20世纪70年代末和80年代初,当时主要采用模拟技术进行通信。
随着数字技术的发展,尤其是码分多址(Code Division Multiple Access,CDMA)技术的引入,移动通信系统开始进入数字时代。
21世纪初,随着移动互联网的兴起,移动通信系统又进入了一个新的发展阶段,各种新的技术和应用层出不穷,如4G、5G、物联网等。
频谱资源管理:合理分配和利用无线电频谱资源,以满足不同业务需求和覆盖范围的要求。
信道编码与调制:通过信道编码技术提高信号抗干扰能力,实现高效、稳定的数据传输;通过调制技术将信息信号转换为适合无线传输的电磁波信号。
1多址与冲突检测:采用多址分配技术(如随机接入、时分多址等)实现多个用户同时接入;通过信道估计、空时分组码等技术检测和避免信道冲突。
功率控制与节能:通过动态调整发射功率,实现能量的有效利用,降低能耗。
网络优化:通过统计分析、预测算法等手段对网络性能进行实时监控和优化,提高网络质量和用户体验。
移动通信技术》期末复习

3
云计算与大数据的关系
云计算为大数据提供了存储空间和处理能力,而 大数据则为云计算提供了应用场景和商业价值。
人工智能与机器学习在移动通信中的应用
人工智能定义
人工智能是计算机科学的一个分 支,旨在让计算机具有类似于人 类的智能,能够学习、推理、理
解语言、感知环境等。
机器学习定义
机器学习是人工智能的一个分支, 通过训练和优化算法,使计算机 能够从数据中自动提取知识,并
详细描述
3G技术采用了多种无线技术,如CDMA、TDMA和FDMA,实 现了更高的数据传输速度和更稳定的通信质量。同时,3G技术 还支持多种业务类型,如语音、数据、图像和视频等,为用户 提供了更加丰富的通信体验。
4G技术
总结词
第四代移动通信技术(4G)进一步提高了数据传输速度和业务质量,支持更多的用 户和更广泛的业务应用。
移动互联网应用
包括移动社交、移动支付、移动电商、移动浏览器、移动音乐、移 动视频等。
移动互联网的发展趋势
随着5G技术的普及,移动互联网将更加快速、稳定,应用场景也 将更加丰富。
物联网
01 02
物联网定义
物联网是指通过信息传感设备,如射频识别、红外感应器、全球定位系 统等,实时采集任何需要监控、连接、互动的物体或过程,通过互联网 实现物与物、物与人之间的信息交换和通信。
详细描述
4G技术采用了正交频分复用(OFDM)和多输入多输出(MIMO)等先进技术,实 现了更高的数据传输速度和更稳定的通信质量。同时,4G技术还支持更多的用户和 更广泛的业务应用,如移动互联网、物联网等。
5G技术
总结词
第五代移动通信技术(5G)是最新一代的移动通信技术,具有超高速率、超低时延、高可靠性等特点。
移动通信期末实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,移动通信技术已成为现代社会不可或缺的一部分。
为了更好地理解和掌握移动通信的基本原理和应用,本学期我们进行了移动通信期末实验。
本次实验旨在通过实际操作,加深对移动通信系统组成、信号调制解调、信道特性等方面的理解。
二、实验目的1. 熟悉移动通信系统的组成和基本功能。
2. 掌握信号调制解调的基本原理和方法。
3. 了解移动通信信道的特性和建模方法。
4. 提高动手实践能力和分析问题的能力。
三、实验内容1. 移动通信系统组成及功能实验本实验通过观察移动通信设备,了解其组成和基本功能。
实验内容如下:(1)观察GSM手机,了解其外观、按键、屏幕等组成部分;(2)观察GSM基站,了解其外观、天线、设备室等组成部分;(3)分析GSM手机与基站之间的通信过程,理解其基本功能。
2. 信号调制解调实验本实验通过实际操作,掌握信号调制解调的基本原理和方法。
实验内容如下:(1)观察GSM手机的信号调制解调过程,了解其工作原理;(2)通过实验软件,实现信号的调制解调过程,验证调制解调效果;(3)分析不同调制方式(如QAM、GMSK)的特点和适用场景。
3. 移动通信信道建模实验本实验通过模拟实验,了解移动通信信道的特性和建模方法。
实验内容如下:(1)观察白噪声信道的特性,了解其产生原因和影响;(2)通过实验软件,模拟白噪声信道对信号的影响,分析信噪比的变化;(3)研究多径干扰对信号的影响,了解其产生原因和抑制方法。
4. 移动通信系统仿真实验本实验通过仿真软件,模拟移动通信系统的性能。
实验内容如下:(1)使用OFDM仿真软件,模拟OFDM调制解调过程,分析其性能;(2)研究DSSS调制解调过程,了解其抗干扰能力;(3)分析不同信道条件下的系统性能,评估系统可靠性。
四、实验结果与分析1. 移动通信系统组成及功能实验通过观察GSM手机和基站,我们了解了其组成和基本功能。
实验结果表明,GSM手机主要由天线、射频模块、基带处理器、显示屏等部分组成,基站主要由天线、射频模块、基带处理器、控制单元等部分组成。
移动通信信道-2

移动通信信道-21. 引言在移动通信系统中,信道是指传输无线电信号的介质。
移动信道分为下行信道和上行信道,分别用于移动通信系统中的BS(基站)向UE(用户设备)发送数据,以及UE向BS发送数据。
2. 下行信道下行信道是指BS向UE发送数据的信道。
在移动通信系统中,下行信道经常用于传输语音、数据和控制信号。
下行信道可以分为广播信道和多址信道。
2.1 广播信道广播信道是指BS向所有UE广播信息的信道。
在这种信道上,BS发送的数据可以被所有UE接收到。
广播信道常用于发送系统信息、公告、广告等信息。
2.2 多址信道多址信道是指BS向多个UE发送数据的信道。
在这种信道上,BS发送的数据会经过调度算法分配给不同的UE。
多址信道常用于传输用户数据和控制信号。
3. 上行信道上行信道是指UE向BS发送数据的信道。
在移动通信系统中,上行信道用于传输用户数据、控制信号和反馈信息。
上行信道可以分为分时信道和分频信道。
3.1 分时信道分时信道是指UE在不同的时间片段上向BS发送数据的信道。
在这种信道上,BS会根据时隙分配算法将不同的UE的数据进行分时传输。
分时信道常用于传输用户数据和控制信号。
3.2 分频信道分频信道是指UE通过不同的频率向BS发送数据的信道。
在这种信道上,不同的UE在不同的频段上进行数据传输,从而避免了频率冲突。
分频信道常用于传输用户数据和反馈信息。
4.移动通信信道是移动通信系统中非常重要的一部分,它承载着数据和控制信号的传输。
下行信道用于BS向UE发送数据,上行信道用于UE向BS发送数据。
下行信道可以分为广播信道和多址信道,上行信道可以分为分时信道和分频信道。
了解移动通信信道的工作原理和分类对于理解移动通信系统的运行原理和性能优化具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线信道中电波的传播不是单一路径,而是许多路径来的众多反射波的合成。由于电波通过各个路径的 距离不同,因而各个路径来的反射波到达时间不同,也就是各信号的时延不同。当发送端发送一个极窄 的脉冲信号时,移动台接收的信号由许多不同时延的脉冲组成,我们称为时延扩展。 10
22
小尺度衰落和多径效应
影响小尺度衰落的因素:
多径传播 移动台的运动速度 环境物体的运动速度 信号的传输带宽
23
无线信道中许多物理因素影响小尺度衰落,包括: 多径传播——信道中反射及反射物的存在,构成了一个不断消耗信号能量的环境,导致信号幅度、 相位及时间的变化。这些因素使发射波到达接收机时形成在时间、空间上相互区别的多个无线电波。 不同多径成分具有的随机相位和幅度引起信号强度波动,导致小尺度衰落、信号失真等现象。多径 传播常常延长信号基带部分到达接收机所用的时间.由于码间干扰引起信号模糊。 移动台的运动速度——基站与移动台间的相对运动会引起随机频率调制,这是由于多径分量存在的 多普勒频移现象。决定多普勒频移是正频移或负频移取决于移动接收机是朝向还是背向基站运动。
无线信道的特性
频域扩展——信道的频率弥散性(Frequency dispersion)
11
大尺度路径损耗
无线传播的特性 无线信道的特性 大尺度路径损耗 小尺度衰落和多径效应 无线信道抗衰落技术 移动通信系统中信号传播的效应
12
大尺度路径损耗
五种基本传播机制
小尺度多径传播表现为:
经过短距或短时传播后信号强度的急速变化。 在不同多径信号上,存在着时变的多普勒频移引起的随机频 率调制。
多样传播时延引起的扩展(回音)。 Nhomakorabea21
在高楼林立的市区,由于移动天线的高度比周围建筑物矮很多,因而不存在从移动台到基站的视距 传播,这就导致了衰落的产生。即使有这样一条视距传播路径存在,由于地面与周围建筑物的反射, 多径传授仍会发生。入射电波以不同的传授方向到达,具有不同的传播时延。空间任一点的移动台 所收到的信号都由许多平面波组成,它们具有随机分布的幅度、相位和入射角度。这些多径成分被 接收机天线按向量合并,从而使接收信号产生衰落失真。即使移动接收机处于静止状态,接收信号 也会由于无线信道所处环境中的物体的运动而产生衰落。 如果无线信道中的物体处于静止状态,并且运动只由移动台产生,则衰落只与空间路径有关。此时, 当移动台穿过多径区域时,它将信号中的空间变化看作瞬时变化。在空间不同点的多径波的影响下, 高速运动的接收机可以在很短时间内经过若干次衰落。更为严重的情况是,接收机可能停留在某个 特定的衰落很大的位置上。在这种情况下,尽管可能由行人或车辆改变了场模型,从而打破接收信 号长时间维持失效的情况,但要维持良好的通信状态仍非常困难。天线空间分集可以防止极度衰落 以至于无效的情况。 由于移动台与基站的相对运动,每个多径波都经历了明显的频移过程。移动引起的接收机信号频移 被称为多普勒频移。它与移动台的运动速度、运动方向,以及接收机多径波的入射角有关。
35
小尺度衰落和多径效应
空间选择性衰落
不同的地点,不同的传输路径衰落特性不一样。多径信号到达天线 阵列的到达角度的展宽称为角度扩展。角度扩展给出信号的主要能 量的角度范围,产生空间选择性衰落。
36
小尺度衰落和多径效应
频率选择性衰落
如果在时变多径信道上发射端发射的是一个时间宽度极窄的脉冲信 号(理想情况下为一个冲激),经过多径信道后,由于各信道时延 的不同,接收端接收到的信号表现为一串脉冲,即接收信号的波形 比原脉冲展宽了。这种由于信道时延引起的信号波形的展宽称为时 延扩展。时延扩展产生频率选择性衰落。
路径传播损耗
又称衰耗,它是指电波在空间传播所产生的损耗,它反映了 传播在宏观大范围(即公里量级)的空间距离上的接收信号 电平平均值的变化趋势。
17
小尺度衰落和多径效应
无线传播的特性 无线信道的特性 大尺度路径损耗 小尺度衰落和多径效应 无线信道抗衰落技术 移动通信系统中信号传播的效应
3、绕射波:从较大的山丘或建筑物绕射后到达接收点的传播信号, 其强度与反射波相当。
4、散射波:由空气中离子受激后二次发射所引起的漫反射后到达 接收点的传播信号,其信号强度最弱。
5、透射波:当射线到达两种不同介质界面时,有一部分能量透射 到第二种介质中。 透射会使场强产生急剧衰减。
16
大尺度路径损耗
慢衰落符合对数正态分布
31
小尺度衰落和多径效应
阴影衰落
对数正态阴影衰落
由于受到地形地物等阴影的影响 ,在信号到达处,经历了多次反 射或绕射的包含随机量的多个信 号的叠加信号,体现的分布是正 态分布 典型的阴影衰落标准差是8dB
32
小尺度衰落和多径效应
快衰落(多径衰落)损耗
它主要由于多径传播而产生的衰落,由于移动体周围有许多散射、 反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加, 其合成信号幅度和相位随移动台的运动表现为快速的起伏变化,它 反映微观小范围内数十波长量级接收电平的均值变化而产生的损耗, 其变化率比慢衰落快,故称它为快衰落,由于快衰落表示接收信号 的短期变化,所以又称短期衰落(short-term -fading)。
移动通信系统中的信道特性
1
学习目标
学习完成本课程您将会:
了解移动通信中的无线传播和信道的特性 了解移动通信中的抗衰落技术
2
无线传播特性
无线传播的特性 无线信道的特性 大尺度路径损耗 小尺度衰落和多径效应
无线信道抗衰落技术
移动通信系统中信号传播的效应
3
无线传播特性
传播的开放性 接收点地理环境的复杂性与多样性 通信用户的随机移动性
29
小尺度衰落和多径效应
小尺度衰落产生的损耗
慢衰落(阴影衰落)损耗 快衰落(多径衰落)损耗
同时由于各个路径来的反射波到达时间不同,相位也就不同。不同相位的多个信号在接收端迭加,有时迭 加而加强(方向相同),有时迭加而减弱(方向相反)。这样,接收信号的幅度将急剧变化,即产生了快 衰落。这种衰落是由多种路径引起的,所以称为多径衰落,也叫快衰落。 此外,接收信号除瞬时值出现快衰落之外,场强中值(平均值)也会出现缓慢变化。主要是由地区位置的 改变以及气象条件变化造成的,以致电波的折射传播随时间变化而变化,多径传播到达固定接收点的信号 的时延随之变化。这种由阴影效应和气象原因引起的信号变化,称为慢衰落。 30
小尺度衰落和多径效应
慢衰落(阴影衰落)损耗
它是由于在电波传输路径上受到建筑物及山丘等的阻挡所产生的阴 影效应而产生的损耗。它反映了中等范围内数百波长量级接收电平 的均值变化而产生的损耗,其变化率较慢故又称为慢衰落,由于慢 衰落表示接收信号的长期变化,所以又称长期衰落(long-termfading)。
24
小尺度衰落和多径效应
多普勒频移
1 v fd cos 2 t
而且,由于移动通信中移动台的移动性,如前所说那样,无线信道中还会有多普勒效应。在移动通信中,当 移动台移向基站时,频率变高,远离基站时,频率变低。我们在移动通信中要充分考虑“多普勒效应”。虽 然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动 通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移 动通信的复杂性。 多普勒频移与移动台运动速度及移动台运动方向,与无线电波入射方向之间的夹角有关。若移动台朗向入射 波方向运动,则多普勒频移为正(即接收频率上升);若移动台背向入射波方向运动,则多普勒频移为负(即接 收频率下降)。信号经不同方向传播,其多径分量造成接收机信号的多普勒扩散,因而增加了信号带宽 25
6
无线传播特性
3、通信用户的随机移动性
慢速步行时的通信; 高速车载时的不间断通信。
7
无线信道的特性
无线传播的特性 无线信道的特性 大尺度路径损耗 小尺度衰落和多径效应 无线信道抗衰落技术 移动通信系统中信号传播的效应
8
无线信道的特性
时延扩展 频域扩展
9
无线信道的特性
33
小尺度衰落和多径效应
多径衰落
多径衰落
当接收机在可引起反射、绕射的复杂环境下移动时, 在不到一个波长范围内会出现几十分贝的电平变化和激烈的相位摆动
34
小尺度衰落和多径效应
快衰落
空间选择性衰落 频率选择性衰落 时间选择性衰落
所谓选择性是指在不同的空间,不同的频率和不同的时间其衰落特性是不一样的
4
无线传播特性
1、传播的开放性
一切无线信道都是基于电磁波在空间传播来实现信息传播的。
5
无线传播特性
2、接收点地理环境的复杂性与多样性
一般可将地理环境划分为下列四类典型区域: 高楼林立的城市中心繁华区,也称密集城区; 一般楼宇的城市区域,也称一般城区; 以一般性建筑物为主的近郊小城镇区,也称郊区; 以山丘、湖泊、平原为主的农村及远郊区。
18
小尺度衰落和多径效应
小尺度衰落:简称衰落,是指无线信号在经过短时间或短距传 播后其幅度快速衰落
19
小尺度衰落和多径效应
什么是多径
在CDMA系统中当两信号的多径时延相差大于一个扩频码片宽度时, 这两个信号是不相关的,或者说是可分离的。我们习惯上将某一可 分离的信号叫做信号的径。
20