第2章 随机分析(使用版)

合集下载

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。

《时间序列分析讲义第02章滞后算子》

《时间序列分析讲义第02章滞后算子》

第二章滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。

§ 2.1基本概念时间序列是以观测值发生的时期作为标记的数据集合。

一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:(y i, V2, ,Y T)如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。

相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:( ,y i,y2, ,*"•,) ={y t}匚;例2.1几种代表性的时间序列(1) 时间趋势本身也可以构成一个时间序列,此时:y t =t ;(2) 另一种特殊的时间序列是常数时间序列,即:y t =c , c是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:y t =为,{%};妾是一个独立随机变量序列,每个随机变量都服从N (0,。

2)分布。

时间序列之间也可以进行转换,类似于使用函数关系进行转换。

它是将输入时间序列转换为输出时间序列。

例2.2几种代表性的时间序列转换(1) 假设x t是一个时间序列,假设转换关系为:y t =P为,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。

(2) 假设X t和W t是两个时间序列,算子转换方式为:y t =* +W t ,此算子是将两个时间序列求和。

定义2.1如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L。

即对任意时间序列x t,滞后算子满足:L(x Q = X 4 (1)类似地,可以定义高阶滞后算子,例如二阶滞后算子记为L2,对任意时间序列x t,二阶滞后算子满足:L2(*)三L[L(xJ] =x^ ⑵一般地,对于任意正整数k ,有:L k (x t) = x t * (3)命题2.1滞后算子运算满足线性性质:(1) L(: x t) =':L(x t)(2) L(x t W t)=L(x Q L(W t)证明:(1)利用滞后算子性质,可以得到:L( ' xt) = :xj = ' L(xt)(2) L( x t w t)=x t】w t1 =L(x t) L(w t) End由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。

高中数学第二章随机变量及其分布 事件的独立性学案含解析新人教A版选修2_3

高中数学第二章随机变量及其分布 事件的独立性学案含解析新人教A版选修2_3

2.2.2 事件的独立性自主预习·探新知情景引入在一次有关“三国演义”的知识竞赛中,三个“臭皮匠”能答对某题目的概率分别为50%,45%,40%,“诸葛亮”能答对该题目的概率为85%,如果将“三个臭皮匠”组成一组与“诸葛亮”进行比赛,各选手独立答题,不得商量,团队中只要有一人答出即为该组获胜.试问:哪方获胜的可能性大?新知导学相互独立事件1.概念(1)设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即__P(B|A)=P(B)__,则称两个事件A,B相互独立,并把这两个事件叫做__相互独立事件__.(2)对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受__其他事件是否发生__的影响,则称n个事件A1,A2,…,A n相互独立.2.性质(1)如果事件A与B相互独立,那么事件A与__B__,A与__B__,__A__与__B__也都相互独立.(2)若事件A与B相互独立,则P(A|B)=__P(A)__,P(A∩B)=__P(A)×P(B)__.(3)若事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于__每个事件发生的概率积__,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n).并且上式中任意多个事件A i换成其对立事件后等式仍成立.预习自测1.(2020·刑台高二检测)甲、乙两人各用篮球投篮一次,若两人投中的概率都是0.7,则恰有一人投中的概率是( A )A .0.42B .0.49C .0.7D .0.91[解析] 设甲投篮一次投中为事件A ,则P (A )=0.7, 则甲投篮一次投不中为事件A ,则P (A )=1-0.7=0.3, 设乙投篮一次投中为事件B ,则P (B )=0.7,则乙投篮一次投不中为事件B ,则P (B )=1-0.7=0.3, 则甲、乙两人各投篮一次恰有一人投中的概率为:P =P (A ∩B )+P (A ∩B )=P (A )·P (B )+P (A )·P (B )=0.7×0.3+0.7×0.3=0.42.故选A . 2.国庆节放假,甲、乙、丙去北京旅游的概率分别是13、14、15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( B )A .5960B .35C .12D .160[解析] 设甲、乙、丙去北京旅游分别为事件A 、B 、C ,则P (A )=13,P (B )=14,P (C )=15,P (A )=23,P (B )=34,P (C )=45,由于A ,B ,C 相互独立,故A ,B ,C 也相互独立,故P (A B C )=23×34×45=25,因此甲、乙、丙三人至少有1人去北京旅游的概率P =1-P (A B C )=1-25=35. 3.已知A 、B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=__16__;P (A B )=__16__.[解析] ∵A 、B 是相互独立事件, ∴A 与B ,A 与B 也是相互独立事件. 又∵P (A )=12,P (B )=23,故P (A )=12,P (B )=1-23=13,∴P (A B )=P (A )×P (B )=12×13=16;P (A B )=P (A )×P (B )=12×13=16.4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__0.128__.[解析] 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.互动探究·攻重难互动探究解疑 命题方向❶事件独立性的判断典例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解析] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, ∴P (A )=36=12,P (B )=26=13,P (AB )=16,∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立.『规律总结』 (1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.┃┃跟踪练习1__■一个家庭中有若干个小孩,假设生男孩和生女孩是等可能的,设A ={一个家庭中既有男孩,又有女孩},B ={一个家庭中最多有一个女孩}. 对下列两种情况讨论事件A 与B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩.[解析] (1)有两个小孩的家庭,对应的样本空间Ω={(男,男),(男,女),(女,男),(女,女)},有4个基本事件,每个基本事件的概率均为14,这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},每个基本事件的概率均为18,这时A 中有6个基本事件,B 中有4个基本事件,AB 中含有3个基本事件,于是P (A )=68=34,P (B )=48=12.P (A )·P (B )=38,即P (AB )=38=P (A )P (B )成立,从而事件A 与B 是相互独立的. 命题方向❷求相互独立事件的概率典例2 (2020·鹤岗高二检测)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.[解析] 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A )=0.2,P (B )=0.3,P (C )=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (ABC )=1-P (A )P (B )P (C )=1-0.2×0.3×0.1=0.994.『规律总结』 与相互独立事件有关的概率问题求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B ; (2)A ,B 都发生为事件AB ; (3)A ,B 都不发生为事件A B ; (4)A ,B 恰有一个发生为事件A B +A B .(5)A ,B 中至多有一个发生为事件A B +A B +A B . 它们之间的概率关系如表所示:┃┃跟踪练习2__■(2020·浙江杭州高级中学检测)甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解析] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立,因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )·P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A 4∪A 1A 2A 3A 4,且A 1A 2A 3A 4与A 1A 2A 3A 4是互斥事件. 由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A 4∪A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)+P (A 1)P (A 2)P (A 3)P (A 4) =(23)3×13+13×(23)3=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B 3B 4∪B 1B 2B3B 4,且B 1B 2B3B 4与B 1B 2B 3B 4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B3B 4∪B 1B 2B3B 4)=P (B 1)P (B 2)P (B 3)P (B 4)+P (B 1)P (B 2)P (B 3)P (B 4) =(34)2×(14)2+34×(14)3=364. 命题方向❸相互独立事件的综合应用典例3 (2020·西安高二检测)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. [解析] (1)设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P (A )=23×(1-35)=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙、丙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0, P (X =0)=(1-23)×(1-35)2=475.当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P (X =1)=23×(1-35)2+(1-23)×35×(1-35)+(1-23)×(1-35)×35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P (X =2)=23×35×(1-35)+(1-23)×35×35+23×(1-35)×35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3, P (X =3)=23×(35)2=1875.X 的分布列如下表:『规律总结』 概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A )=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.┃┃跟踪练习3__■某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.[解析] (1)两地区用户满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”;则C A 1与C B 1相互独立,C A 2与C B 2相互独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2),由所给数据得C A 1,C A 2,C B 1,C B 2的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,所以P (C )=1020×1620+820×420=0.48.学科核心素养正难则反的思想的应用正难则反的思想在求解概率问题中应用广泛,尤其是解概率问题的综合题中,出现“至少”或“至多”等事件的概率求解问题,如果从正面考虑,它们是诸多事件的和或积,求解过程繁杂,而且容易出错,但如果考虑“至少”或“至多”事件的对立事件往往会简单,其概率很容易求出,此时可逆向分析问题,先求出其对立事件的概率,再利用概率的和或积的互补公式求出原来事件的概率.典例4三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,求乙队连胜四局的概率.[思路分析]乙队每局胜利的事件是相互独立的,可由其公式计算概率.[解析]设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6,第二局中乙胜丙(A2),其概率为0.5,第三局中乙胜甲(A3),其概率为1-0.4=0.6,第四局中乙胜丙(A4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为P(A)=P(A1A2A3A4)=0.62·0.52=0.09.『规律总结』(1)求复杂事件的概率一般可分三步进行:①列出题中涉及的各个事件,并用适当的符号表示它们;②理清各事件之间的关系,列出关系式;③根据事件之间的关系准确地运用概率公式进行计算.(2)直接计算符合条件的事件个数较复杂,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率.┃┃跟踪练习4__■在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.[解析]如图所示,分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027,于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A B C )=1-0.027=0.973.易混易错警示因混淆独立事件和互斥事件而致错典例5 设事件A 与B 相互独立,两个事件中只有A 发生的概率和只有B 发生的概率都是14,求事件A 和事件B 同时发生的概率.[错解] ∵A 与B 相互独立,且只有A 发生的概率和只有B 发生的概率都是14,∴P (A )=P (B )=14,∴P (AB )=P (A )·P (B )=14×14=116.[正解] 在相互独立事件A 和B 中,只有A 发生即事件A B 发生,只有B 发生即事件A B 发生.∵A 和B 相互独立,∴A 与B ,A 和B 也相互独立.∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=14,① P (A B )=P (A )·P (B )=[1-P (A )]·P (B )=14.② ①-②得P (A )=P (B ).③联立①③可解得P (A )=P (B )=12.∴P (AB )=P (A )·P (B )=12×12=14.[误区警示] 在A 与B 中只有A 发生是指A 发生和B 不发生这两个事件同时发生,即事件A B 发生.课堂达标·固基础1.下列事件A ,B 是相互独立事件的是( A )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“一个灯泡能用1 000小时”,B =“一个灯泡能用2 000小时”[解析] 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.故选A .2.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( C )A .事件A ,B 同时发生B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生[解析] P (A )P (B )是指A ,B 同时发生的概率,1-P (A )P (B )是A ,B 不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( C )A .512B .12C .712D .34[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712. 4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为__12__. [解析] 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12. 5.甲、乙两人独立地破译密码的概率分别为13、14.求: (1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一人译出密码的概率;(5)至少一人译出密码的概率.[解析] 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”.(1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P(A B)=P(A)P(B)=[1-P(A)][1-P(B)]=(1-13)(1-14)=12.(3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B+A B,∴P(A B+A B)=P(A B)+P(A B)=P(A)·P(B)+P(A)P(B)=13×(1-14)+(1-13)×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P(AB)=1-112=1112.(5)至少一人译出密码的对立事件为两个都没有译出密码, ∴其概率为1-P(A B)=1-12=12.。

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。

随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。

随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。

主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。

通过对随机信号的特性分析,可以为后续的分析和处理提供基础。

第二章:随机过程本章讨论了随机过程的定义和性质。

随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。

通过对随机过程的分析,可以了解其演化规律和统计性质。

本章介绍了随机信号的表示与分解方法。

随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。

通过将随机信号进行分解,可以提取出其中的有用信息。

第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。

功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。

第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。

相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。

通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。

本章介绍了随机信号的滤波和平均处理方法。

滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。

第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。

参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。

第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。

检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。

第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。

随机分析1--均方极限

随机分析1--均方极限
aX bY H ,
证明
E aX bY
2
E ( a X b Y )( a X b Y )
E ( a X b Y )( a X b Y ) E ( aX
2
bY
2
aX bY aX bY )
aX bY aX bY 2 Re( aX bY )
E a
二阶矩过程的均方微积分
研究对象 一类具有二阶矩的随机过程 研究内容 连续性、可导性与可积性等. 是均方极限意义下的随机微积分
重点
均方极限,均方连续,均方可导
以及均方可积的概念和准则.
要求 掌握均方极限,均方连续,均方可导 以及均方可积的的概念以及相应准则. 熟悉一阶线性随机微分方程及其解. 熟悉正态过程的随机分析的一些结果.
a

k
a l R X ( k , l )收 敛 .
二阶矩过程均方极限定义
设 { X ( t ), t T }是 二 阶 矩 过 程 , X H , t 0 T ,
如 果 lim E X ( t ) X
t t0 2
0,
则 称 当 t t 0时 ,X ( t ), t T }收 敛 于 X . {
定理(均方大数定理)
设 { X n , n 1, 2, } H
是相互独立同分布的随机变量序列,且
E X n , n 1, 2, , 则
l.i.m
n
1
X n
k 1
n
k
,
证明:E
n
1
n i 1
n
1
n
2
Xi
E
2
i 1
(X n

新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(答案解析)(1)

新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(答案解析)(1)

一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为( ) A .0.324B .0.36C .0.4D .0.543.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16214.元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X 的期望值()E X =( ) A .25B .24C .22D .205.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.46.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .457.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.488.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )A .313 B .413C .14D .159.已知ξ是离散型随机变量,则下列结论错误的是( ) A .21133P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B .()()()22E E ξξ≤C .()()1D D ξξ=-D .()()()221D D ξξ=-10.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( ) A .67B .2125C .4950D .不确定11.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.6二、填空题13.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 14.一批产品的一等品率为0.9,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的一等品件数,则D()X =__________。

分析化学第六版第二章

分析化学第六版第二章

x t n s
以t为统计量的分布称为t分布。t分布可说明当n不大时 (n<20)随机误差分布的规律。
t分布曲线的纵坐标仍为概率密度,但横坐标为统计量t。
t分布与标准正态分布的区别: 1.横坐标不同t u; 2.随测定次数减少,t分布曲线 趋于平坦,即t分布曲线随着自 由度(f=n-1)而改变:

2.1 定量分析中的 误差
误差与准确度
准确度(accuracy)是指测定平均值与真值接近的程度,
常用误差大小表示。误差小,准确度高。

误差(Error) :
表示测量值与真值之差,表征测量

结果的准确度。 误差有两种表示方法:绝对误差(E)和相对误差(Er)。

绝对误差(E)是测量值(x)与真实值(xT)之间的
标准正态分布曲线
这样,曲线的横坐标就变为μ,纵坐标为概率密度,用μ和概率密度
表示的正态分布曲线称为标准正态分布曲线,用符号N(0,1)表示。这样, 曲线的形状与σ大小无关,即不论原来正态分布曲线是瘦高的还是扁平的 ,经过这样的变换后都得到相同的一条标准正态分布曲线。
误差在某些区间出现的概率
标准正态分布曲线与横坐标之间所加的面积,代表了某 一区间的测量值或某一范围 随机误差出现的概率。
准确度与精密度的关系
高的精密度不一定保证高的准确度; 但精密度高是准确度高的前提。
例2 p10
误差的分类及减免误差的方法
在定量分析中,对于各种原因导致的误差,根据误差的 来源和性质的不同,可以分为系统误差和随机误差两大类。
根据产生的具体原因,系统误差可分为:方法误差; 仪器和试剂误差;操作误差;主观误差。
亦称偶然误差,由难以控制且无法避免的偶然因素造成 ,如测定过程中温度、湿度、气压等变化引起的误差。 由于疏忽或错误引起,实质是一种错误,不能成为误差。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.1简单随机抽样含解析2。

1随机抽样2.1.1简单随机抽样学习目标核心素养1.理解简单随机抽样的定义、特点及适用范围.(重点)2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点)1.通过抽取样本,培养数据分析素养.2.借助简单随机抽样的定义,培养数学抽象素养。

1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点优点缺点抽签法简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平随机数法操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是()A.总体是302名学生B.个体是每1名学生C.样本是30名学生D.样本容量是30D[本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B[在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79(第8行)33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)57 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28(第10行)16,55,19,10,50,12,58,07,44,39[第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95〉59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]简单随机抽样的概念(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解](1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.错误!1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用【例2】为迎接2022年北京冬奥会,奥委会从报名的北京某高校20名志愿者中选取5人组成冬奥会志愿小组,请用抽签法设计抽样方案.[解](1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.抽签法的应用条件及注意点1一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.2系统抽样含解析

2020-2021人教版数学3教师用书:第2章 2.1 2.1.2系统抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.2系统抽样含解析2。

1.2系统抽样学习目标核心素养1.理解系统抽样的概念.(重点) 2.掌握系统抽样的方法与步骤,能用系统抽样从总体中抽取样本.(难点、易错点)1.通过系统抽样的学习,体现数学运算素养.2.借助系统抽样步骤的理解,养成数学建模素养.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀",从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组抽0 068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C .2,4,6,8D .5,8,11,14A [将20分成4组.每组5个号,间隔等距离为5.]4.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.40 [分段间隔k =N n =错误!=40。

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。

精品文档-随机信号分析基础(梁红玉)-第2章

精品文档-随机信号分析基础(梁红玉)-第2章

一维概率分布函数为
FX(x; t)=P[X(t)≤x] 一维概率密度函数为
(2-3)
fX
( x; t )
FX (x;t) x
(2-4)
第二章 随机信号的基本概念
与随机变量不同的是, 随机信号的一维概率分布或概率 密度函数不仅是状态x的函数, 也是时间t的函数。 图2-9给 出了一维概率密度函数示意图。
计算二元变换的雅可比行列式
g1 J = a
g2 a
g1 1
g2
=
cos 0t1+ cos 0t2 +
a a
cos cos
0t1 0t2
+ +
1
=
a
sin
1
0
t1
t2
第二章 随机信号的基本概念
1
a2
fX x1,x2;t1,t2
fA (a, )
J

2
sin
0
t1
t2
exp
2
2
第二章 随机信号的基本概念
图2-5 脉冲信号发生器的典型波形
第二章 随机信号的基本概念
(3) 连续型随机信号(时间连续、 状态连续)。 例如随机正弦信号X(t)=acos(ωt+θ), 式中a, ω, θ 部分或全部是随机变量。 图2-6示出了它在某个变量是随机 变量、 其他两个为常数时的典型波形。
y
mY
2
2 Y
2
第二章 随机信号的基本概念
在t=t1时刻, X(t1)是一个随机变量, 令 X1=X(t1)=Ycosω0t1, 根据一维随机变量函数的变换, 需求 出反函数及其导数:
Y X1 ,
cos 0t1

新人教版高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)(5)

新人教版高中数学选修三第二单元《随机变量及其分布》测试题(答案解析)(5)

一、选择题1.红外线自动测温门能有效避免测温者与被测温者的近距离接触,降低潜在的病毒感染风险.为防控新冠肺炎,某厂生产的红外线自动测温门,其测量体温误差服从正态分布()20.1,0.3N ,从已经生产出的测温门中随机取出一件,则其测量体温误差在区间()0.4,0.7内的概率为( )(附:若随机变量ξ服从正态分布()2,Nμσ,则()68.27%P μσξμσ-<<+=,()2295.45%P μσξμσ-<<+=)A .31.74%B .27.18%C .13.59%D .4.56%2.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .163.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19 B .39 C .59 D .794.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2155.条件:p 将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格A 中的数字为1x ,方格B 中的数字为2x ;命题1若p ,则()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则()()1124D x D x =,且()()()1212D x x D x D x +=+( )A .命题1是真命题,命题2是假命题B .命题1和命题2都是假命题C .命题1是假命题,命题2是真命题D .命题1和命题2都是真命题6.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .347.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .128.已知离散型随机变量X 的分布列如下:由此可以得到期望()E X 与方差()D X 分别为( ) A .() 1.4E X =,()0.2D X = B .()0.44E X =,() 1.4D X = C .() 1.4E X =,()0.44D X =D .()0.44E X =,()0.2D X =9.已知某随机变量X 的概率密度函数为0,0,(),0,x x P x e x -≤⎧=⎨>⎩则随机变量X 落在区间(1,3)内在概率为( )A .21e e +B .231e e-C .2e e -D .2e e +10.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .111.2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( ) A .14B .34C .110D .31012.已知某次数学考试的成绩服从正态分布2(102,4)N ,则114分以上的成绩所占的百分比为( )(附()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤)A .0.3%B .0.23%C .0.13%D .1.3%二、填空题13.已知随机变量X 服从正态分布()23,N σ,若()130.3P X <≤=,则()5P X ≥=______.14.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.15.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率(A |B)P 等于______.16.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______. 17.已知1 000名考生的某次成绩X 近似服从正态分布2(530,50)N ,则成绩在630分以上的考生人数约为_______.(注:正态总体2(,)N μσ)在区间(,),(2,2),(3,3)μσμσμσμσμσμσ-+-+-+内取值的概率分别为0.683,0.954,0.997) 18.设随机变量()()10,1,910XN P X a ≤<=,其中1419a =⎰,则()11P X ≥=__________.三、解答题19.上饶市正在创建全国文明城市,我们简称创文.全国文明城市是极具价值的无形资产和重要城市品牌.创文期间,将有创文检查人员到学校随机找学生进行提问,被提问者之间回答问题相互独立、互不影响.对每位学生提问时,创文检查人员将从规定的5个问题中随机抽取2个问题进行提问.某日,创文检查人员来到A 校,随机找了三名同学甲、乙、丙进行提问,其中甲只能答对这规定5个问题中的3个,乙能答对其中的4个,而丙能全部答对这5个问题.计一个问题答对加10分,答错不扣分,最终三人得分相加,满分60分,达到50分以上(含50分)时该学校为优秀. (1)求甲、乙两位同学共答对2个问题的概率;(2)设随机变量X 表示甲、乙、丙三位同学共答对的问题总数,求X 的分布列及数学期望,并求出A 校为优秀的概率.20.为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为13,答错的概率为23. (1)若甲回答完5个问题后,甲上的台阶等级数为X ,求X 的分布列及数学期望; (2)若甲在回答过程中出现在第()2i i ≥个等级的概率为i P ,证明:{}1i i P P --为等比数列.21.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .22.魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974 年发明的.魔方与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,为333⨯⨯的正方体结构,由26个色块组成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.截至2020年,三阶魔方还原官方世界纪录是由中国的杜宇生在2018年11月24日于芜湖赛打破的纪录,单次3.475秒.(1)某魔方爱好者进行一段时间的魔方还原训练,每天魔方还原的平均速度y (秒) 与训练天数x (天)有关,经统计得到如下数据:x (天)1 234 5 6 7y (秒)99 99 45 323024 21现用y a x=+作为回归方程类型,请利用表中数据,求出该回归方程,并预测该魔方爱好者经过长期训练后最终每天魔方还原的平均速度y 约为多少秒(精确到1) ?参考数据(其中1i iz x =)71i ii z y =∑z72217i i zz =-⨯∑184.50.37 0.55对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆva u β=+的斜率和截距的最小二乘估计公式分别为:1221ˆˆˆ,ni i i nii u vnuv av u unu ββ==-==--∑∑.(2)现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面.某人按规定将魔方随机扭动两次,每次均顺时针转动90︒,记顶面白色色块的个数为X,求X的分E X.布列及数学期望()23.某市有两家共享单车公司,在市场上分别投放了黄、蓝两种颜色的单车,已知黄、蓝两种颜色单车的投放比例为1:2.监管部门为了解两种颜色单车的质量,决定从市场中随机抽取5辆单车进行体验,若每辆单车被抽取的可能性相同.(1)求抽取的5辆单车中有3辆是蓝色单车的概率;(2)在骑行体验过程中,发现蓝色单车存在一定质量问题,监管部门决定从市场中随机抽取一辆送技术部门作进一步抽样检测并规定若抽到的是蓝色单车,则抽样结束,若抽取的是黄色单车,则将其放回市场中,并继续从市场中随机抽取下一辆单车,并规定抽样的次数最多不超过4次.在抽样结束时,已取到的黄色单车数量用ξ表示,求ξ的分布列及数学期望.24.2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如图:(Ⅰ)现从2020年6月至12月中随机选取1个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的概率;(Ⅱ)从2020年6月至12月中任意选取2个月,记X为选取的这2个月中回收的废纸可再造好纸超过3.0吨的月份的个数. 求X的分布列及数学期望;(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a吨. 当a为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)25.假设有3箱同种型号零件,里面分别装有50件、30件、40件,而且一等品分别有20件、12件和24件,现在任取一箱,从中不放回地先后取出两个零件,试求:(1)先取出的零件是一等品的概率; (2)两次取出的零件均为一等品的概率.26.为研究一种新药的耐受性,要对白鼠进行连续给药后观察是否出现F 症状的试验,该试验的设计为:对参加试验的每只白鼠每天给药一次,连续给药四天为一个给药周期,试验共进行三个周期.假设每只白鼠给药后当天出现F 症状的概率均为13,且每次给药后是否出现F 症状与上次给药无关.(1)从试验开始,若某只白鼠连续出现2次F 症状即对其终止试验,求一只白鼠至少能参加一个给药周期的概率;(2)若在一个给药周期中某只白鼠至少出现3次F 症状,则在这个给药周期后,对其终止试验,设一只白鼠参加的给药周期数为X ,求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知0.1,0.3μσ==,结合题意得出(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<=,再由()(0.50.7)(0.20.4)0.40.72P P P ξξξ-<<--<<<<=,即可得出答案.【详解】由题意可知0.1,0.3μσ==则(0.20.4)68.27%P ξ-<<=,(0.50.7)95.45%P ξ-<<= 即()(0.50.7)(0.20.4)95.45%68.27%0.40.713.59%22P P P ξξξ-<<--<<-<<===故选:C 【点睛】本题主要考查了利用正态分布对称性求概率,属于中档题.2.B解析:B【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).3.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =,222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.5.D解析:D 【分析】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.再利用数学期望的性质及其方差的性质即可得出. 【详解】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.命题1若p ,则由数学期望的性质可得:()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则由方差的性质可得:()()1124D x D x =,且()()()1212D x x D x D x +=+.因此命题1,2都正确. 故选:D. 【点睛】本题考查数学期望的性质及其方差的性质,考查逻辑推理能力和运算求解能力.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.8.C解析:C 【分析】由离散型随机变量X 的分布列的性质求出x =0.1,由此能求得结果 【详解】由x +4x +5x =1得x =0.1, E(X)=0×0.1+1×0.4+2×0.5=1.4,D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 故选C 【点睛】本题主要考查了离散型随机变量的分布列的性质,由已知先求出x 的值,然后运用公式求得期望和方差,属于基础题.9.B解析:B 【分析】求概率密度函数在(1,3)的积分,求得概率. 【详解】由随机变量X 的概率密度函数的意义得3233111d xx e P e x ee---==-=⎰,故选B . 【点睛】随机变量X 的概率密度函数在某区间上的定积分就是随机变量X 在这一区间上概率.10.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.11.A解析:A 【解析】分析:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅”,求出22223241,10101010C C C P A P AB +====(),() ,利用()()|P AB P B A P A =(),可得结论. 详解:设事件A =“取到的两个为同一种馅”,事件B =“取到的两个都是腊肉馅馅”,由题意,22223241,10101010C C C P A P AB +====(),(),()()1|.4P AB P B A P A ∴==() 故选A .点睛:本题考查条件概率,考查学生的计算能力,正确运用公式是关键.12.C解析:C 【解析】分析:先求出u,σ,再根据(33)0.9974P X μσμσ-<≤+=和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,4,σ=3114.u σ∴+= 因为(33)0.9974P X μσμσ-<≤+=,所以10.9974(114=0.00130.13%2P X ->==). 故答案为C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.二、填空题13.02【分析】根据随机变量X 服从正态分布可知正态曲线的对称轴是利用对称性可得结果【详解】随机变量服X 从正态分布正态曲线的对称轴是故答案为:02【点睛】本题考查了正态分布考查了计算能力属于一般题目解析:0.2 【分析】根据随机变量X 服从正态分布2(3),δN ,可知正态曲线的对称轴是3x =,利用对称性,可得结果. 【详解】随机变量服X 从正态分布2(3),δN ,正态曲线的对称轴是3x =(35)(13)0.3≤<=<≤=P X P X ,(5)0.5(35)0.2>=-≤<=P X P X故答案为:0.2 【点睛】本题考查了正态分布,考查了计算能力,属于一般题目.14.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:13【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n =3,这时另一个也是女孩包含的基本事件个数m =1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率. 【详解】一个家庭有两个小孩,假设生男生女是等可能的, 基本事件有: {男,男},{男,女},{女,男},{女,女}, 已知这个家庭有一个女孩的条件下,基本事件总数n =3 , 这时另一个也是女孩包含的基本事件个数m =1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13m p n ==, 故答案为:13【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.15.【分析】本题利用条件概率公式求解【详解】至少出现一个5点的情况有:至少出现一个5点的情况下三个点数之和等于15有一下两类:①恰好一个5点则另两个点数只能是4和6共有;②恰好出现两个5点则另一个点数也 解析:113【分析】本题利用条件概率公式()(|)()n AB P A B n B =求解. 【详解】至少出现一个5点的情况有:336591-=,至少出现一个5点的情况下,三个点数之和等于15有一下两类:①恰好一个5点,则另两个点数只能是4和6,共有11326C C ⨯=;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况.()611(|)()9113n AB P A B n B +∴===, 故答案为:113. 【点睛】本题考查条件概率的公式,需要求出基本事件的个数,运用正难则反的思想.16.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到 ()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.17.23【分析】根据正态分布的对称性求得成绩在分以上的概率为进而可求得成绩在分以上的考生人数得到答案【详解】由题意某次成绩X 近似服从正态分布即所以在区间的概率为所以成绩在分以上的概率为则成绩在分以上的考解析:23 【分析】根据正态分布的对称性,求得成绩在630分以上的概率为0.023,进而可求得成绩在630分以上的考生人数,得到答案. 【详解】由题意,某次成绩X 近似服从正态分布2(530,50)N ,即530,50μσ==,所以在区间(430,630)的概率为0.954, 所以成绩在630分以上的概率为10.9540.0232-=,则成绩在630分以上的考生人数约为10000.02323⨯=人. 【点睛】本题主要考查了正态分布的性质的应用,以及3σ原则的应用,其中解答中熟记正态分布的对称性,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.18.【解析】分析:随机变量根据曲线的对称性得到根据概率的性质得到结果详解:由题意所以因为随机变量所以曲线关于对称所以点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义其中利用正态分布曲线的对称性是解析:16【解析】分析:随机变量()10,1X N ~,根据曲线的对称性得到()()1190.5(910)P X P X P X ≥=≤=-≤<,根据概率的性质得到结果.详解:由题意1144191|3a ===,所以1(910)3P X ≤<=, 因为随机变量()10,1X N ~,所以曲线关于10x =对称, 所以()()11190.5(910)6P X P X P X ≥=≤=-≤<=. 点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中利用正态分布曲线的对称性是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.三、解答题19.(1)310;(2)分布列见解析,期望值245,3350. 【分析】(1)首先事件甲、乙两位同学共答对2个问题,分为两人各答对1题,或是乙答对2题,再求互斥事件和的概率;(2)由条件可知3,4,5,6X =,再根据随机变量对应的事件,分别求概率,再列出分布列,并计算数学期望,根据分布列,列出该学校为优秀的概率. 【详解】(1)记“甲、乙两位同学共答对2题”为事件A ,则()()111122324124225310C C C C C C P M C ⋅⋅⋅+⋅==(2)由题意可知随机变量X 的可能取值为3、4、5、6,()()211224153251325C C C C P X C ⋅⋅⋅===()()3410P X P M ===()()211211223415324532512525C C C C C C C C P X C ⋅⋅⋅+⋅⋅⋅===()()2223453259650C C C P X C ⋅⋅===所以,随机变量X 的分布列如下表所示:13129243456251025505EX =⨯+⨯+⨯+⨯= A 校为优秀的概率()()1293356255050P X P X =+==+=. 【点睛】关键点点睛:本题的关键是分清随机变量代表的事件,其中容易错的是乙同学会5题中的四个题,所以两个题,至少会一题. 20.(1)分布列答案见解析,数学期望:203;(2)证明见解析. 【分析】(1)首先确定X 的所有可能取值5,6,7,8,9,10X =,根据概率公式分别求出对应发生的概率,列出分布列,即可求出数学期望;(2)根据已知的关系,求出1i P +与i P ,1i P -的关系式112133i i i P P P +-=+,再通过化简和等比数列的定义求解即可. 【详解】解:(1)依题意可得,5,6,7,8,9,10X =,55552232(5)33243P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,4445212180(6)53333243P X C ⎛⎫⎛⎫⎛⎫===⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32352180(7)33243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()23252140833243P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()4152110933243P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()50511103243P X C ⎛⎫=== ⎪⎝⎭, 则X 的分布列如表所示.()56789102432432432432432433E X =⨯+⨯+⨯+⨯+⨯+⨯=. (2)处于第1i 个等级有两种情况: 由第i 等级到第1i等级,其概率为23i P ; 由第1i -等级到第1i 等级,其概率为113i P -;所以112133i i i P P P +-=+,所以()1113i i i i P P P P +--=--,即1113i i i i P P P P +--=--. 所以数列{}1i i P P --为等比数列. 【点睛】本题考查概率公式、随机变量的分布列及数学期望,考查运算求解能力、数据处理能力,考查数学运算、逻辑推理核心素养.其中第二问解题的关键在于寻找1i P +与i P ,1i P -的关系式,即:()1121233i i i P P P i +-=+≥,进而根据等比数列的定义证明. 21.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.22.(1)100ˆ13y x=+,每天魔方还原的平均速度y 约为13秒;(2)分布列见解析,509. 【分析】(1)利用题设中的数据清除y 的平均值,进而可以求出ˆb的值和ˆa 的值,即可求解; (2)写出随机变量X 的可能取值,求出对应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)由题意,根据表格中的数据,可得99994532302421507y ++++++==,可得7172217184.570.375055ˆ1000.550.557i ii i i z y z ybz z==-⋅-⨯⨯====-∑∑,所以501000.3713a y bz =-=-⨯=,因此y 关于x 的回归方程为:100ˆ13yx=+, 所以最终每天魔方还原的平均速度y 约为13秒 (2)由题意,可得随机变量X 的取值为3,4,6,9,可得141(3)669A P X ===⨯,1422(4)669A P X ⨯===⨯,()111142241205(6)66369A A A A P X ++====⨯,11221(9)669A A P X ⨯===⨯, 所以X 的分布列为所以()346999999E X =⨯+⨯+⨯+⨯=. 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 23.(1)80243;(2)分布列答案见解析,数学期望:4081. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题可知,随机变量ξ的可能取值有0、1、2、3、4,计算出随机变量ξ在不同取值下的概率,由此可得出随机变量ξ的分布列和期望. 【详解】(1)因为随机地抽取一辆单车是蓝色单车的概率为23,用X 表示“抽取的5辆单车中蓝色单车的个数”,则X 服从二项分布,即2~5,3X B ⎛⎫ ⎪⎝⎭, 所以抽取的5辆单车中有3辆是蓝色单车的概率为3235218033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; (2)随机变量ξ的可能取值为:0、1、2、3、4.()203p ξ==,()1221339p ξ==⨯=,()212223327p ξ⎛⎫==⨯= ⎪⎝⎭, ()312233381p ξ⎛⎫==⨯= ⎪⎝⎭,()4114381p ξ⎛⎫=== ⎪⎝⎭.所以ξ的分布列如下表所示:()012343927818181E ξ=⨯+⨯+⨯+⨯+⨯=.【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 24.(Ⅰ)17;(Ⅱ)分布列见解析,67;(Ⅲ) 4.4a =. 【分析】(Ⅰ)这是一个古典概型,共有7个月,该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨的只有8月份,然后代入公式求解.(Ⅱ)先得到6月至12月回收的废纸可再造好纸超过3.0吨的月份有:7月、8月、10月,共3个月,则X 的所有可能取值为0,1,2,再分别求得相应的概率,列出分布列,再求期望.(Ⅲ)根据添加的新数a 等于原几个数的平均值时,方差最小求解. 【详解】(Ⅰ)记“该垃圾处理厂可回收物中废纸和塑料品的回收量均超过4.0吨”为事件A 由题意,只有8月份的可回收物中废纸和塑料品的回收量均超过4.0吨 所以1()7P A =. (Ⅱ)因为回收利用1吨废纸可再造出0.8吨好纸。

随机信号分析(常建平,李林海)课后习题答案第二章习题讲解资料

随机信号分析(常建平,李林海)课后习题答案第二章习题讲解资料

2-1 已知随机过程0()cos X t A t ω=,其中0ω为常数,随机变量A 服从标准高斯分布。

求000,3,2t πωπω=三个时刻()X t 的一维概率密度?解:221~(0,1)..........()2A a A N f a e π-=21211()~(0,1)(0)2t X x X t A N f x eπ-==⇒=;,2223203A 12()~(0,)()242X t x X t N f x e πωπωπ-==⇒;=, 002323()0()()t X t f x x πωπωδ===,;(离散型随机变量分布律)2-2 如图2.23所示,已知随机过程()X t 仅由四条样本函数组成,出现的概率为1131,,,8484。

t()X t 1234561t 2t 1()x t 2()x t 3()x t 4()x t o图2.23 习题2-2在1t 和2t 两个时刻的分布律如下:1ζ2ζ3ζ4ζ1()X t 1 2 6 3 2()X t54211212(,)k k p t t 1/8 1/4 3/8 1/4求 ? 1212[()],[()],[()()]E X t E X t E X t X t ()41129[()]8k k k E X t x p t ===∑221[()]8E X t =()()(){}121212121122[()()],,X k k E X t X t R t t k k p X t k X t k ====∑∑2-23[][]12()cos (0,1)(;),()()(,)XXX t A t XH A U f x t E X t D X t R t t =+~随机过程,其中(均匀分布)。

求,,?[][][][][][][][][][][]()()()22221212221121222()cos cos ()()()()cos cos cos cos 12(,)cos cos cos cos cos cos 1cos c 232o X XYD aE X t E A t XH t EA XHD X tE X t E X t D X t D A t XH D A t D XH tt DA R t t E A t XH X a D X b D Y abC EA EA A t XH t t XH t t XHt =+=⋅+⎡⎤=-⎣⎦=+=+=⋅=++⎡⎤⎣⎦+==+=+++公式:+b =Y方法:()2212s cos cos 2XH t t t XH +++()()()()22cos 022~,322cos 022~,cos 0()2122,cos 2cos cos cos c 21322,(;)cos o 2s 2X k t k t tX t U XH XH k t k t t X t U XH XH t k t X t XHk t k XH x XH t k t k XH x XH f x t t x X t t t t ππππππππππππππππππδ-+<<+>+<<+<=+==-+<<+<<-++<<+<+++<=-对某一固定时刻对某一固定时刻概率密度用冲激函数表示(),20H t k x XH else ππ⎧⎪⎪⎪⎪⎨⎪=+=⎪⎪⎪⎩2-4 已知随机过程()X t A Bt =+,其中,A B 皆为随机变量。

工业分析(实训篇)第二版 第2章 试样的采取、制备和分解

工业分析(实训篇)第二版 第2章  试样的采取、制备和分解
第2章 试样的采取、制备和分解
学习指南 1.了解采样的目的、意义及相关的工业物料知
识; 2.了解并掌握固体试样、液体试样和气体试样
的采样工具及采样方法; 3.掌握试样的制备方法; 4.掌握试样的几种分解方法。
1
2.1 概述
2.1.1试样采取的目的和意义 2.1.2基本术语 2.1.3试样的采取原则 2.1.4采样方案的制定
5.周期非随机不均匀物料 指在连续的物料流中物料的特性值呈现出周期 性变化,其变化周期有一定的频率和幅度的物料。 最好在物料流动线上采样,采样的频率应高于 物料特性值的变化频率,切忌两者同步。 6.混合非随机不均匀物料 指由两种以上特性值变异性类型或两种以上特 性平均值组成的混合物料,如由几批生产合并的 物料。 首先尽可能使各组成部分分开,然后按照上述 各种物料类型的采样方法进行采样。
13
2.1.4采样方案的制定
5.注意事项 (5)采集的样品应由专人妥善保管,并尽快送达 指定地点,且要注意防潮、防损、防丢失和防污染。 (6)样品的交接一定要有文字记录,手续要清楚。 (7)采样地点要有出入安全的通道、照明和通风 条件;贮罐或槽车顶部采样时要防止掉下来,还要 防止堆垛容器的倒塌;如果所采物料本身有危险, 采样前必须了解各种危险物质的基本规定和处理办 法,采样时,需有防止阀门失灵、物料溢出的应急 措施和心理准备。 (8) 采样时必须有陪伴者,且需对陪伴者进行事先 培训。
5
2.1.2基本术语
7.实验室样品:供实验室检验或测试而制备的样
品。
8.备考样品:与实验室样品同时同样制备的样品。
在有争议时,作为有关方面仲裁分析所用样品。
9.部位样品:从物料的特定部位或在物料流的特定
部位和特定时间取得的一定数量或大小的样品,

(仅供参考)随机信号分析与处理简明教程--第二章习题答案

(仅供参考)随机信号分析与处理简明教程--第二章习题答案
x≥2
⎧ 0,
(2)
FX
⎜⎛ ⎝
x1
,
x2
;
1 2
,1⎟⎞ ⎠
=
⎪⎩⎪⎨ 121,,
x1 < 0,−∞ < x2 < ∞; 0 ≤ x1 < 1, x2 ≥ −1;
x1 ≥ 1,
x1 ≥ 0, x2 < −1 x1 ≥ 1,−1 ≤ x2 < 2
x2 ≥ 2
2.3 设某信号源,每 T 秒产生一个幅度为 A 的方波脉冲,其脉冲宽度 X 为均匀分布于[0,T ]
当 ti
=
0 时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
0< x <1 else
当 ti
=
π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
0<x< π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
− 2 2<x<0 else
当 ti
=
π ω
时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
当kl时有rtsx2????????????eakutkt0utkt01uskt0uskt01ea2eut?k?t?ut?k?t?1us?k?t?us?k?t?1k0000eut?k?t0?ut?k?t0?1us?k?t0?us?k?t0?1kt00faa?2??0a0是在02中均匀分布的随机变量且与a统计独立为常量
D[ X (t)] = D[ Acosωt + B sin ωt] = D[ A]cos2 ωt + D[B]sin2 ωt = σ 2

金融随机分析第一卷和第二卷教学设计

金融随机分析第一卷和第二卷教学设计

金融随机分析第一卷和第二卷教学设计1. 课程背景金融随机分析是金融数学的一个重要分支,它主要研究金融市场上的随机变量、随机过程及其间的关系,为金融市场的理论和实践提供了重要的工具。

同时,随着金融市场的不断发展,随机分析在金融领域中的应用越来越广泛,因此对于专业金融类的学生来说,掌握随机分析的基本理论和方法、能够较为熟练地运用随机分析工具进行金融市场的分析是非常重要的。

2. 课程目标本课程以介绍随机过程和随机变量的理论为主,介绍金融市场中的使用。

主要包括如下几个方面:•增加学生对随机过程和随机变量的认识和了解;•掌握随机过程和随机变量的计算方法和应用;•能够合理运用随机分析工具进行金融市场的分析。

3. 课程内容第一卷:随机过程第一章:概率与统计1.1 概率的基本概念及其运算法则1.2 随机变量及其概率分布1.3 数理统计方法第二章:随机过程的基本概念2.1 随机过程的概念及其分类2.2 随机过程的标准特性2.3 马尔科夫过程及其分类第三章:随机过程的统计分析3.1 典型随机过程的统计量3.2 随机过程的随机积分3.3 随机过程的谱分析第二卷:随机变量第四章:离散随机变量4.1 离散随机变量及其概率分布4.2 随机变量的特征数4.3 大数定律与中心极限定理第五章:连续随机变量5.1 连续随机变量及其概率密度函数5.2 统计分析方法5.3 均值、方差、偏度和峰度4. 课程方法本课程采用理论讲授和实例分析相结合的教学方法。

在理论讲授环节中,教师通过概念讲解和示例演示,对课程内容进行全面讲解,并通过课堂互动和问题讨论增强学生的参与度。

在实例分析环节中,教师将各种金融市场中的实例进行案例分析,直观地呈现随机分析的实际运用。

5. 课程评估本课程采用成绩评定制度,总成绩=平时成绩(40%) +考试成绩(60%)。

其中,平时成绩主要由学生的出勤状况、参与互动、作业完成情况等组成;考试成绩分为两次期末考试和两次随堂测试,期末考试占60%,随堂测试占40%。

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差课时分层作业(含解析)新人教A版

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差课时分层作业(含解析)新人教A版

课时分层作业(十五) 离散型随机变量的方差(建议用时:40分钟)一、选择题1.设随机变量X 的分布列为P (X =k )=p k (1-p )1-k (k =0,1),则E (X )和D (X )的值分别为( )A .0和1B .p 和p 2C .p 和1-pD .p 和(1-p )pD [由题意知随机变量X 满足两点分布,∴E (X )=p ,D (X )=(1-p )p .]2.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21D [E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1.7-1)2×0.3+(1.7-2)2×0.7=0.21.]3.已知随机变量X 服从二项分布,即X ~B (n ,p ),且E (X )=7,D (X )=6,则p 等于( ) A.17B.16 C.15D.14A [由题意得np =7且np (1-p )=6,解得1-p =67,∴p =17.]4.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)等于( )A .6B .9C .3D .4A [E (ξ)=(1+2+3)×13=2,D (ξ)=13[(1-2)2+(2-2)2+(3-2)2]=23,所以D (3ξ+5)=32D (ξ)=9×23=6.故选A.]5.甲、乙两个运动员射击命中环数ξ,η的分布列如下表.表中射击比较稳定的运动员是( )环数k8910A.甲 C .一样D .无法比较B [由题中分布列可得:E (ξ)=8×0.3+9×0.2+10×0.5=9.2, E (η)=8×0.2+9×0.4+10×0.4=9.2,D (ξ)=(8-9.2)2×0.3+(9-9.2)2×0.2+(10-9.2)2×0.5=0.76, D (η)=(8-9.2)2×0.2+(9-9.2)2×0.4+(10-9.2)2×0.4= ∵E (ξ)=E (η),D (ξ)>D (η),∴甲、乙两名运动员射击命中环数的平均数相等,而乙的成绩波动性较小,更稳定.] 二、填空题6.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为________.89[由题意知X ~B ⎝⎛⎭⎫4,13,所以D (X )=4×13×⎝⎛⎭⎫1-13=89.] 7.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.0.5[在一次试验中发生次数记为ξ,则ξ服从两点分布,则D (ξ)=p (1-p ),所以p (1-p )=0.25,解得p =0.5.]8.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.25[设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.]三、解答题9.已知随机变量X 的分布列为P12 13p 若E (X )=23.(1)求D (X )的值;(2)若Y =3X -2,求D (Y )的值. [解] 由12+13+p =1,得p =16.又E (X )=0×12+1×13+16x =23,所以x =2.(1)D (X )=⎝⎛⎭⎫0-232×12+⎝⎛⎭⎫1-232×13+⎝⎛⎭⎫2-232×16=59. (2)因为Y =3X -2,所以D (Y )=D (3X -2)=9D (X )=5.10.有三X 形状、大小、质地完全一致的卡片,在每X 卡片上写上0,1,2,现从中任意抽取一X ,将其上数字记作x ,然后放回,再抽取一X ,其上数字记作y ,令X =x ·y .求:(1)X 所取各值的概率; (2)随机变量X 的均值与方差. [解] (1)P (X =0)=53×3=59;P (X =1)=1×13×3=19;P (X =2)=1+13×3=29;P (X =4)=13×3=19.(2)X 的分布列如下:X 0 1 2 4 P59 19 29 19所以E (X )=0×59+1×19+2×29+4×19=1.D (X )=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.1.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6B [由已知E (ξ)=10×0.6=6,D (ξ)=10×0.6×0.4=2.4. 因为ξ+η=8,所以η=8-ξ.所以E (η)=-E (ξ)+8=2,D (η)=(-1)2D (ξ)=2.4.]2.抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X 的均值和方差分别是( )A.103,20081B.559,10081C.809,109D.509,20081D [成功次数X 服从二项分布,每次试验成功的概率为1-23×23=59,故在10次试验中,成功次数X 的均值E (X )=10×59=509,方差D (X )=10×59×49=20081.]3.某旅游公司为三个旅游团提供了a ,b ,c ,d 四条旅游线路,每个旅游团队可任选其中一条线路,则选择a 线路的旅游团数X 的方差D (X )=________.916[由题意知X 的可能取值有0,1,2,3,并且 P (X =0)=3343=2764,P (X =1)=C 13×3243=2764,P (X =2)=C 23×343=964,P (X =3)=143=164.∴E (X )=0×2764+1×2764+2×964+3×164=34,D (X )=⎝⎛⎭⎫0-342×2764+⎝⎛⎭⎫1-342×2764+⎝⎛⎭⎫2-342×964+⎝⎛⎭⎫3-342×164 =916×2764+116×2764+2516×964+8116×164=916.] 4.抛掷一枚均匀硬币n (3≤n ≤8)次,正面向上的次数ξ服从二项分布B ⎝⎛⎭⎫n ,12,若P (ξ=1)=332,则方差D (ξ)=________.32[因为3≤n ≤8,ξ服从二项分布B ⎝⎛⎭⎫n ,12,且P (ξ=1)=332,所以C 1n ·⎝⎛⎭⎫12n -1·⎝⎛⎭⎫1-12=332,即n ⎝⎛⎭⎫12n=664,解得n =6,所以方差D (ξ)=np (1-p )=6×12×⎝⎛⎭⎫1-12=32.] 5.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 1)和Y 2(单位:万元)分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.[解] (1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4;E (Y 2)=2×0.2+8×0.5+12×0.3=8;D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝⎛⎭⎫x 100·Y 1+D ⎝ ⎛⎭⎪⎫100-x 100·Y 2 =⎝⎛⎭⎫x 1002D (Y 1)+⎝ ⎛⎭⎪⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2]=41002(4x2-600x+3×1002).所以当x=6002×4=75时,f(x)=3为最小值.。

高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3

高中数学第2章统计2.1抽样方法2.1.3分层抽样教案苏教版必修3

2.1.3 分层抽样整体设计教材分析本课是在学生已经学习了简单随机抽样与系统抽样之后所要学习又一种抽样方法——分层抽样.由前两节课我们知道简单随机抽样或系统抽样有时获得样本不具有很好代表性,比方,当个体间差异比拟大时,如果采用简单随机抽样,不同人就有可能得到差异很大结果;同样,如果采用系统抽样也很可能得不到具有代表性样本.为此,为了更大程度地提高样本代表性,我们需要事先对总体有一定了解,然后根据已有了解,再按照一定方式抽取,这就是分层抽样.本教案着眼点是让学生主体参与,让学生动手、动脑,并通过观察、分析、比拟、归纳等进展合情推理,鼓励学生积极活动,勇于探索.针对本节课概念性强、思维量大、例习题较多特点,本课教法是以启发学生观察思考分析讨论为主启发式教学.三维目标1.了解分层抽样概念,理解科学、合理选用抽样方法必要性.2.掌握分层抽样操作步骤,对实际问题比照分析.3.了解各种抽样方法使用范围,使学生能根据具体情况选择适当抽样方法.4.结合教学内容培养学生学习数学兴趣以及“用数学〞意识,培养学生科学探索精神.重点难点教学重点:通过实例了解分层抽样方法.教学难点:分层抽样步骤.课时安排1课时教学过程导入新课设计思路一:〔事例引入〕有一条消息“抽查局部考生成绩了解知道,江苏省2005年高考物理学科平均分约为95分.〞请问这个数据是用什么样抽样方法得到?分析:不能单纯地用简单随机抽样或系统抽样,因为江苏省有很多地区,而每个地区学生成绩不平衡,甚至相差太大.那么,设计抽样方法时,最核心问题是什么,应该注意什么呢?一定要使抽取样本具有很好代表性.为此,在设计抽样方法时,我们应充分利用自己对总体情况已有了解,选择适合抽样方法.师:请同学们一起来探讨一例,你认为应当怎样抽取样本?设计思路二:〔实例引入〕某校高一、高二与高三年级分别有学生1 000,800与700名,为了了解全校学生视力情况,欲从中抽取容量为100样本,怎样抽样较为合理?〔让中档生配合教师引入新课,增强他们赶超意识;优秀生补充,树立他们“我要更强〞竞争意识;后进生主动参与,提高他们课堂上有效思考活动时间〕分析:由于不同年级学生视力状况有一定差异,不能在2 500名学生中随机抽取100名学生,也不宜在三个年级平均抽取.为准确反映客观实际,不仅要使每个个体被抽到概率相等,而且要注意总体中个体层次性,所以,先将全体学生分成高一、高二与高三年级三层,分别抽样.三局部学生人数有较大差异,应考虑各层个体数在总体中所占比例.用各层个体数与总体个体数比乘以样本容量就可得各层所要抽取个体数.推进新课新知探究学生思考,交流讨论,然后代表发言.一般地,当总体由差异明显几个局部组成时,为了使样本更客观地反映总体情况,我们常常将总体中个体按不同特点分成层次比拟清楚几局部,然后按各局部在总体中所占比实施抽样,这种抽样方法叫做分层抽样〔stratified sampling〕,其中所分成各个局部称为“层〞.分层抽样步骤是:〔1〕将总体按一定标准分层;〔2)计算各层个体数与总体个体数比;〔3〕按各层个体数占总体个体数比确定各层应抽取样本容量;〔4〕在每一层进展抽样〔可用简单随机抽样或系统抽样〕.分层抽样特点是:分层抽样时,每个个体被抽到可能性是相等.由于分层抽样充分利用了信息,使样本具有较好代表性,而且在各层抽样时,可以根据具体情况采取不同抽样方法,因此分层抽样在实践活动中有着广泛应用.应用例如例1 某电视台在因特网上就观众对其某一节目喜爱程度进展调查,参加调查总人数为12 000人,其中持各种态度人数如下表所示:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072电视台为进一步了解观众具体想法与意见,打算从中抽选出60人进展更为详细调查,应怎样进展抽样?分析:因为总体中人数较多,所以不宜采取简单随机抽样,又由于持不同态度人数差异较大,故也不宜用系统抽样,而以分层抽样为妥.解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很喜爱〞“喜爱〞“一般〞“不喜爱〞;②因为总人数为12 000人,所以各层个体数与总体个体数之比分别为“很喜爱〞占;“喜爱〞占;“一般〞占;“不喜爱〞占;③因为抽选出60人,所以从每层中抽出人数为:“很喜爱〞有×60≈12人,“喜爱〞有×60≈23人,“一般〞有×60≈20人,“不喜爱〞有×60≈5人.④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:〔1〕分层抽样四个步骤中按比例分配各层所要抽取个体数时,有时计算出个体数可能是一个近似数,但这并不影响样本容量.〔2〕分层抽样适用于总体由差异比拟明显几个局部组成情况,是等概率抽样,它是客观、公平.〔3〕分层抽样是建立在简单随机抽样或系统抽样根底上,由于它充分利用了调查者对被调查对象〔总体〕事先所掌握各种信息,并充分考虑了保持样本构造与总体构造一致性,从而使抽取样本具有较好代表性.并且在各层抽样时可以根据情况采用不同抽样方法,因此分层抽样在实践中有着非常广泛应用.例2 一工厂生产了某种产品16 800件,他们来自甲、乙、丙生产三条线.为检查这批产品质量,决定采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么乙生产线生产了________________件产品.分析:审题是思维入口,抓住问题透露信息,进展分检、组合与加工,找出解题思路.非常有价值信息是从甲、乙、丙3条生产线抽取个体数组成一个等差数列.解法一:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,故设从甲、乙、丙三条生产线抽出个体数分别为a,a+d,a+2d,那么各层抽出个体合在一起就得到了所需样本容量3a+3d,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a+d,x=5 600.解法二:设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d,那么各层抽得个体合在一起就得到了所需样本容量为3a,所以从各条生产线抽出个体数占总体比为.设乙生产线生产了x件产品,那么×x=a,x=5 600.解法三:因为从甲、乙、丙3条生产线抽取个体数组成一个等差数列,由分层抽样原理知甲、乙、丙3条生产线生产产品件数也组成一个等差数列.故设甲、乙、丙生产线生产产品件数分别为y-m,y,y+m件,那么(y-m)+y+(y+m)=16 800,即y=5 600.点评:解法二妙在设三数时考虑了“三数成等差且它们与〞条件.解法三思路:由于此题采用分层抽样方法进展抽样,从甲、乙、丙3条生产线抽取个体数组成一个等差数列,那么甲、乙、丙3条生产线生产产品件数也组成一个等差数列.因为从各条生产线抽出人数占总体比〔设为k〕是不变,那么设从甲、乙、丙三条生产线抽出个体数分别为:a-d,a,a+d〔等差数列〕,那么甲、乙、丙3条生产线生产产品件数分别为:〔等差数列〕.思考:求出了乙生产线生产了5 600件产品,能否求出甲与丙生产线分别生产了多少件产品.如果不能,能否加一些条件,求出甲与丙生产线分别生产产品件数.解:不能,因d,k,a都不知.可以通过加条件求出甲与丙生产线分别生产产品件数,如a=56,d=4,那么k==1100,所以甲、丙生1,那么产线生产产品件数分别为:=5 200,=6 000.或者d=4,k=1001,所以a=56,以下解法同前.k=3a16 800=100例3 为了考察某校教学水平,将抽查这个学校高三年级局部学生本学年考试成绩.为了全面地反映实际情况,采用以下三种方式进展抽查〔该校高三年级共有20个教学班,并且每个班内学生已经按随机方式编好了学号,假定该校每班学生人数都一样〕:①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们学习成绩;②每个班抽取一人,共计20人,考察这20个学生成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进展考察〔:假设按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人〕.根据上面表达,试答复以下问题:〔1〕上面三种抽取方式中,其中总体、个体、样本分别指是什么?每一种抽取方式抽取样本中,其样本容量分别是多少?〔2〕上面三种抽取方式中各自采用何种抽取样本方法?〔3〕试分别写出上面三种抽取方式各自抽取样本步骤.分析:此题主要考察数理统计中一些根本概念与根本方法.做这种题目时,应该注意表达完整性与条理性.解:〔1〕这三种抽样方式中,其总体都是指该校高三全体学生本年度考试成绩,个体都是指高三年级每个学生本年度考试成绩.其中第一种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第二种抽取方式中样本为所抽取20名学生本年度考试成绩,样本容量为20;第三种抽取方式中样本为所抽取100名学生本年度考试成绩,样本容量为100.〔2〕上面三种抽样方式中,第一种方式采用方法是简单随机抽样法;第二种方式采用方法是系统抽样法与简单随机抽样法;第三种方式采用方法是分层抽样法与简单随机抽样法.〔3〕第一种方式抽样步骤如下:第一步:在这20个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一个学生,记其学号为a;第二步:在其余19个班中,选取学号为a学生,共计19人.第三种方式抽样步骤如下:第一步:分层.因为假设按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步:确定各个层次抽取人数.因为样本容量与总体个体数比为:100∶1000=1∶10,所以在每个层次抽取个体数依次为,即15,60,25.第三步:按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取20人.点评:1.弄清考察对象是明确总体、个体、样本关键,这里考察对象指是数据.样本中有多少个个体,样本容量就是多少.总体、个体、样本考察对象是同一,所不同是范围大小.2.判断采用何种抽样方法时,应充分理解三种抽样方法定义.三种抽样方法共同点、各自特点、三者之间联系以及适用范围:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取概率相等从总体中逐个抽取总体中个数较少系统抽样将总体均分成几局部,按事先确定规那么分别在各局部中抽取在起始局部抽样时采用简单随机抽样总体中个数较多分层抽样将总体分成几层,分层进展抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显几局部组成例4 以下问题中,采用怎样抽样方法较为合理〔1〕从10台冰箱中抽取3台进展质量检查;〔2〕某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会完毕后为听取意见,需留下32名听众进展座谈;〔3〕某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面意见,拟抽取一个容量为20样本.此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.分析:此题特征是:总体情况来分析选择抽样方法.解:〔1〕总体容量比拟小,用抽签法或随机数表法都很方便. 〔2〕总体容量比拟大,用抽签法或随机数表法比拟麻烦.由于人员没有明显差异,且刚好32排,每排人数一样,可用系统抽样.具体做法是:将每排40人组成一组,共32组,从第1排至第32排分别为1~32组,先在第1排用简单随机抽样抽取一名听众,再将其他各排与此听众座位号一样听众全部取出.〔3〕由于学校各类人员对这一问题看法可能差异较大,故应采用分层抽样方法.具体做法是:总体容量为160,故样本中教师人数应为20×160120=15名,行政人员人数应为20×16016=2名,后勤人员应为20×16024=3名. 点评:此题考察统计中抽样方法有关知识,要求学生会区别几种抽样方法.知能训练1.在10 000个有时机中奖参加港澳七日游号码〔编号为0000~9999〕中,在公证部门监视下按照随机抽取方法确定后三位数为369号码为中奖号码.请你分析这里运用了哪种抽样方法来确定中奖号码?依次写出这10个中奖号码.2.某校共有118名教师,为了支援西部教育事业,现要从中抽出16名教师组成暑期西部讲师团.请用系统抽样法选出讲师团成员.3.某大学共有全日制学生15 000人,其中专科生3 788人、本科生9 874人、研究生1 338人,现为了调查学生上网查找资料情况,欲从中抽取225人,为了使样本具有代表性,应该怎样抽取样本?〔充分给予学生思考时间,由学生分析思路,写出详细解题过程,培养学生标准化书写解题过程意识,教师点拨与指导.出示投影片上准备好解题过程,让学生对照自己书写过程,扬长避短〕4.某市3个区共有高中学生2 000人,且3个区高中学生人数之比为2∶3∶5,现要用分层抽样方法从所有学生中抽取一个容量为200样本,这3个区分别应抽取多少人?写出抽样过程.解答:1.因为中奖号码后三位数一样,因此10个中奖号码依次为:0369,1369,2369,3369,4369,5369,6369,7369,8369,9369.它们间隔一样,因此采用是系统抽样方法.2.(1)对这118名教师进展编号1,2, (118)(2)计算间隔k=16118=7.375.由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进展系统抽样.例如我们随机剔除了3、46、59、57、112、93这6名教师,然后再对剩余112名教师编号,计算间隔k=7.(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第二个个体编号12,再加上7得到第三个个体编号19,依次进展下去,直到获取整个样本.3.采用分层抽样.具体抽样步骤如下:①将总体分成三层:“专科生〞“本科生〞“研究生〞;②因为总人数为15 000人,所以各层个体数与总体个体数之比分别为:“专科生〞占;“本科生〞占;“研究生〞占;③因为抽选出225人,所以从各层中抽出人数为:“专科生〞有×225≈57人;“本科生〞有×225≈148人;“研究生〞有×225≈20人;④在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.4.由分层抽样原理知从各层中抽取样本个数之比等于各层个体数之比,所以从各层中抽出人数为:“第一区〞有102×200=40人;“第二区〞有103×200=60 人;“第三区〞有105×200=100人;然后在每层中用系统抽样方法抽取样本,把各层抽得个体合在一起就得到了所需样本.点评:有针对性与例题配套,加强学生对上课例题理解.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕〔1〕分层抽样定义;〔2〕分层抽样实施方法及步骤;〔3〕简单随机抽样、系统抽样及分层抽样区别与联系.作业课本习题2.1 2、8.设计感想由于课程标准对分层抽样要求层次为“了解〞,因此没有在如何合理分层这个层面上花过多时间,而是以例题、习题形式补充了一些与学习、生活、生产相关背景材料,让学生感受分层抽样应用广泛性与必要性.习题详解1.解:采用分层抽样方法.具体为:①将全市800家企业分成四个层:“中外合资企业〞“私营企业〞“国有企业〞“其他性质企业〞;②“中外合资企业〞与全市企业总数之比为160∶800=1∶5;“私营企业〞与全市企业总数之比为320∶800=2∶5;“国有企业〞与全市企业总数之比为240∶800=3∶10;“其他性质企业〞与全市企业总数之比为80∶800=1∶10;③应抽取“中外合资企业〞40×51=8家 ;“私营企业〞40×52=16家;“国有企业〞 40×103=12家;“其他性质企业〞40×101=4家; ④将抽出40家企业合在一起就组成所要样本.2.解:由题意知:抽取高二年级学生15人.故抽取高二年级学生与高二年级学生总数之比为15∶300=1∶20,所以高一年级学生总数为20×20=400人,高三年级学生总数为10×20=200人,全校学生总数为400+300+200=900人.3.解:因为4个区学生人数之比为3∶2.8∶2.2∶2,因此各个区学生数分别占总数3∶(3+2.8+2.2+2)=3∶10,2.8∶(3+2.8+2.2+2)=7∶25, 2.2∶(3+2.8+2.2+2)=11∶50,2∶(3+2.8+2.2+2)=2∶10,所以应分别从各个区抽取学生200×103=60人,200×257=56人,200×5011=44人,200×102=40人. 4.解:可先将高一年级学生按年龄分为15岁、16岁、17岁,然后再将每一个年龄段内学生分为男、女调查他们身高,这样整个年级学生就可分为9个层,最后采用分层抽样方法抽取一些学生调查他们作为样本.5.解:可对全校学生分为三个层:“高一学生〞“高二学生〞“高三学生〞,然后在每一层中采用系统抽样方法抽取出各层学生,最后调查这些学生身高与心率,获得数据,制成表格.6.解:先将学生按年级分为几个局部,然后对每一局部学生采用随机抽样方法抽取一些学生组成样本,调查他们父母年龄,收集数据以制成表格.7.可对班级学生按男、女分为两个局部,然后按男、女生在班级所占比例在每一局部采用随机抽样方法抽取一些学生,以调查他们对这一问题看法.8.解:〔1〕采用分层抽样方法,具体步骤如下:①将500名学生分为4个层:“血型为O 型学生〞“血型为A 型学生〞“血型为B 型学生〞“血型为AB 型学生〞;②“血型为O 型学生〞占总人数比为,“血型为A 型学生〞占总人数比为,“血型为B 型学生〞占总人数比为,“血型为AB 型学生〞占总人数比为;③应抽取血型为O 型学生40×52=16人;血型为A 型学生40×41=10人;血型为B 型学生40×41=10人;血型为AB 型学生40×101=4人; ④从各层用随机抽样方法抽出学生组成样本.〔2〕AB 血型样本抽样过程〔抽签法〕步骤:①将血型为AB 型学生进展随机编号为1,2, (50)②用白纸做成形状、大小完全一样1至50号签;③把1至50号签集中在一起放在一个大容器中充分搅拌均匀; ④沉着器中随机地抽出4个签;⑤最后把编号与抽中号码相一致学生抽出即可.9.解:抽签法或随机数表法:如检查某个班级同学对英语单词掌握情况;系统抽样:检查高一年级同学对英语单词掌握情况;分层抽样:检查全校同学对英语单词掌握情况.10.略.。

随机前沿分析(整理版)

随机前沿分析(整理版)
随机前沿分析(整理版)
3.2 面板数据生产边界模型 3.2.1 非时变的技术有效性 3.2.2 时变的技术有效性
• 第四章 对生产率和效率变化的度量 • 第五章 与其他方法的比较
随机前沿分析(整理版)
一、导言
1.1 随机前言方法简介
在经济学中,技术效率的概念应用广泛。 Koopmans首先提出了技术效率的概念,他将技术有效 定义为:在一定的技术条件下,如果不减少其它产出就 不可能增加任何产出,或者不增加其它投入就不可能减 少任何投入,则称该投入产出为技术有效的。Farrell首 次提出了技术效率的前沿测定方法,并得到了理论界的 广泛认同,成为了效率测度的基础 。
随机前沿分析(整理版)
但非参数方法存在的最大局限是: 该方法主要 运用线性规划方法进行计算, 而不像参数方法有统 计检验数作为样本拟合度和统计性质的参考; 另外, 非参数方法对观测数有一定的限制, 有时不得不舍 弃一些样本值, 这样就影响了观测结果的稳定性。 因此, 我们在这里选择参数方法进行前沿生产函数 的计算。
在参数型前沿生产函数的研究中, 围绕误差项的 确立, 又分为随机性和确定性两种方法。首先, 确 定性前沿生产函数不考虑随机因素的影响, 直接
随机前沿分析(整理版)
直接采用线性规划方法计算前沿面, 确定性前 沿生产函数把影响最优产出和平均产出的全部误差 统归入单侧的一个误差项ε中, 并将其称为生产非 效率; 随机前沿生产函数( Stochastic Frontier ProductionFunction)在确定性生产函数的基础上提 出了具有复合扰动项的随机边界模型。其主要思想 为随机扰动项ε应由v 和u 组成, 其中v 是随机误差 项, 是企业不能控制的影响因素, 具有随机性, 用以 计算系统非效率; u是技术损失误差项, 是企业可以 控制的影响因素, 可用来计算技术非效率。很明显, 参数型随机前沿生产函数体现了样本的统计特性, 也反映了样本计算的真实性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 X (t) ,t (,) t在 处均方可微的充要条件是
其相关函数R(s,t) 在(t,t) 处广义二次可微。

由均方收敛准则知 l.i.m X (t h) X (t)
h0
h
存在
的充要条件是
lim
h0 k 0
E

X
(t

h) h

X
(t
) X

(t

k) k

X
(t
)

存在
R(t h,t k) R(t h,t) R(t,t k) R(t,t) hk
Home
当 h 0, k 0 时 正是 R(s,t) 在(t,t) 处广义二次可微。
21/41
三、均方导数的性质
性质1 设 X (t) 和Y (t) 均方可微,a,b 为常数,
10/41
性质2
若 l.i.m X n X l.i.m Yn Y

lim
n
E[
X
nYm
]

E(
XY)
E(l.i.m
X n l.i.m Yn )
m
证 由许瓦兹不等式得
Home
| E( X nYm ) E( XY ) || E( X nYm XY ) |
| E[ X (Ym Y ) ( X n X )Y ( X n X )(Ym Y )] |
dt
dt
dt
Home
22/41
性质3
设X (t)在t处均方可微,则 X (t)在t处均方连续。
性质4 设 X (t) 均方可微,R(s,t) 为其相关函数,则
R(s,t) E[X (s)X (t)] s R(s,t) E[ X (s) X (t)] t
2 R(s,t) 2 R(s,t) E[ X (s) X (t)]

0
Home
19/41
二次均方可微 若{ X (t) , t (,) }在 t 处均方可微,
则称 X (t) 在 t 处二次均方可微
二阶均方导数 X (t) 的均方导数记为X (t)
定义2 广义二次可微
设 R(s,t) 为随机过程{ X (t) ,t T }的相关函数,
若它在(s,t) 点当h, k 0 时,极限
则称为二阶矩过程。
Home
3/41
例1 设 X (t) X 0 Vt ,a t b ,
其中 X 0和V是相互独立且都服从正态分布N(0,1) 的随机变量,试判断 X (t) 为二阶矩过程。
解 由正于态分X布0和,V且都服从正态分布,所以 X (t)也具有
mX (t) E[X (t)] E[X0 Vt] E[X0] tE[V ] 0
st
ts
证1
Home
23/41
E[X (s)X (t)] E l.i.m X (s h) X (s) X (t)
h0
h
lim E X (s h) X (s) X (t)
则 aX (t) bY(t) 也均方可微,且
d [ aX (t) bY(t) ] a dX (t) b dY(t)
dt
dt
dt
性质2 设 X (t) 为均方可微, f (t) 为一个普通可微函数,
则 f (t) X (t) 也均方可微,且
d [ f (t) X (t) ] df (t) X (t) f (t) dX (t)
三、均方收敛性质
性质1 证
若l.i.m Xn X 则
lim
n
E[X n
]

E(X
)

E(l.i.m
Xn
)
由许瓦兹不等式得
Home
| E(X n ) E(X ) |2 | E(X n X ) |2 E | X n X |2

lim[E(
n
X
n

X
)2
]

0
故得证
注 当 X n均方收敛于X时,X n的期望收敛于X的期望
Home
17/41
定理3 若二阶矩过程{ X (t) ,t T }是均方连续的,

lim E[X (t h)] E[X (t)]
h0
证 由均方连续定义
lim E[(X (t h) X (t))2 ] 0
h0
从而 lim E[X (t h)] E(l.i.mX (t h)) E[X (t)]
C(t1,t2) E[X (t1)X (t2)] E[( X0 Vt1)( X0 Vt2 )]
E[X02] t1t2E[V 2] 1 t1t2
令t1 t2 t ,得 DX (t) 1 t 2
故 X (t) 为二阶矩过程。
Home
4/41
二、性质
二阶矩过程的协方差函数一定存在
R( h, k) E(X ( h)(X ( k))
由均方收敛性质2得
首页
lim R( h, k) E(X ( )X ( )) R( , )
h0 k 0
即 R(s,t) 在(, ) 连续。
定理2 如果 R(s,t) 在{ (t,t) , t (,) }处连续,
证 C(t1,t2 ) cov[ X (t1), X (t2 )] E{[ X (t1) m(t1)][ X (t2 ) m(t2 )]}
由许瓦兹不等式得
| C(t1,t2 ) |2 | E{[ X (t1) m(t1)][ X (t2) m(t2)]}|2
E{[ X (t1) m(t1)]2}E{[ X (t2 ) m(t2 )]2}
h0
h0
说明
在均方连续的条件下,均值运算与极限运算的次 序可以互换。但要注意,上式左边为普通函数的 极限,而右边表示均方收敛意义下的极限。
Home
18/41
第四节 均方导数
一、均方导数的定义
定义1 设随机变量{ X (t) ,t (,) }为二阶矩过程
对于确定的t (,) , 如果均方极限
m

X
)2
]

0
Home
8/41
又由
( X n X m )2 [( X n X ) ( X m X )]2
2( X n X )2 2( X m X )2
所以 当 n , m 时,得
0

lim
n
E[(X n

X m )2 ]
m

2{lim n
l.i.m X (t h) X (t) 存在
h0
h
则称X (t)在t处均方可微, 并将此极限记作X (t)
称为 X (t) 在 t 处的均方导数
即有 X (t) l.i.m X (t h) X (t)
h0
h

lim
h 0
E

X
(t

h) h

X
(t)

2
X (t)
l.i.mX (t h) X (t) h0
再由均方收敛性质2,得
lim R(s h,t k) lim E[X (s h)X (t k)]
h0
h0
k 0
k 0
E[X (s)X (t)] R(s,t)
即 R(s,t) 在{(s,t) ,s,t (,) }处连续。
1/41
第二章 随机分析
第一节 二阶矩过程 第二节 均方极限 第三节 均方连续 第四节 均方导数 第五节 均方积分
2/41
第一节 二阶矩过程
一、定义
若随机过程{ X (t) ,t T },对任意t T ,有 m(t) E[ X (t)]
D(t) E[( X (t) m(t))2 ]
| E[ X (Ym Y )] | | E[( X n X )Y ] | | E[( X n X )(Ym Y )] |
1
1
{E( X
2 )E(Ym
Y )2 ]}2
{E[( 1
X
n

X
)2 ]E(Y )}2
{E[( X n X )2 ]E[(Ym Y )2 ]}2
Home
6/41
第二节 均方极限
一、均方收敛
定义1
设量随X都机存变在量二序阶列矩{ ,X如n果,n = 1,2,…}和随机变
lim
n
E[(X
n

X
)2
]

0
则称{ X n }均方收敛于X, 或称X是{ X n }的均方极限
记作
l n
.i
. mX
n

X
或简记为 l.i.m X n X
D[ X (t1)] D[ X (t2 )]
故 | C(t1, t2 ) |2
即二阶矩过程X (t) 的协方差函数存在
注 二阶矩过程的相关函数R(t1,t2 ) 也一定存在。
Home
5/41
说明
在讨论二阶矩过程中,常假定均值为零, 这样相关函数的形式和协方差函数的形式 相同。
返回
2a2E[( X n X )2 ] 2b2E[(Yn Y )2 ] n 0
故得证
Home
12/41
性质4 均方极限的唯一性
若 l.i.m Xn X
l.i.m Xn Y
则 X Y
注 若 P(X Y ) 1 ,则称 X 与 Y 相等
相关文档
最新文档