射频元器件及电路模型-PPT资料
合集下载
CMOS射频集成电路设计-CMOS射频IC器件模型
集成电路的设计和制作行业逐渐变成两个独立的产业方向,
出现了专门从事集成电路制造的代工厂(foundry)和无生产线
(fabless)的专业集成电路设 计公司。
CMOS射频IC器件模型
本书研究的芯片设计采用的是无生产线的集成电路设计
方法。所谓无生产线芯片设 计,是指设计者根据设计指标选
择某一种特定的工艺和代工厂,基于代工厂提供的工艺模 型
关于扩散电容Cd,有如下数学表示式:
其中,τT 为渡越时间(transittime)。
CMOS射频IC器件模型
2. 二极管线性模型
如果二极管工作在一个直流电压偏置点上,而且信号仅
在该点附近发生微小变化,就 引入了线性模型,即小信号模型
(small-signalmodel)。二极管线性模型通过偏置点(以 Q 表示)
signal工艺在第 五层金属(M5)和顶层金属(M6)之间又增加了
一层金属,通过降低金属之间氧化层厚度增 大电容值,该金属
与 M5之间形成的 MIM 电容约为1fF/μm2。图2-3给出了
CMOS工 艺的 MIM 电容的等效电路模型。
CMOS射频IC器件模型
图2-3 MIM 电容的等效电路模型
CMOS射频IC器件模型
通过引入基极 发射极扩散电容、基极 集电极扩散电容
(Cde、Cdc)以及二极管的结电 容(Cje、Cjc),可以将上述静态模
型修正为动态模型。图2-9(a)给出了动态埃伯斯 莫尔 模型。
对于射频工作条件下的电路,还要考虑引线电阻、电感以及
端点之间的分布电容, 如图2-9(b)所示。
CMOS射频IC器件模型
4)反向线性区(0<-UDS<UGD-UT0)
射频电路原理框图PPT课件
.
18
射频电路的主要元件及工作原理
• MT6129系列采用非常低中频结构(与零中频相比,能够改 善阻塞抑制、AM抑制、邻道选择性,不需DC偏移校正,对 SAW FILTER共模平衡的要求降低),采用镜像抑制(35dB 抑制比)混频滤波下变频到IF,第1中频频率为:GSM 200KHZ,DCS/PCS 100KHZ。第1IF信号通过镜像抑制滤 波器和PGA(每步2dB共78dB动态范围)进行滤波放大,经 第2混频器下变频到基带IQ信号,频率为67.708KHz。
.
21
射频电路的主要元件及工作原理
当混频器的输出信号为信号频率与本振信号之差,且 比信号频率高时,所用的变频器被称为下边带上变频。
• 在接收机电路中的混频器是下变频器,即混频器输出 的信号频率比输入信号频率低;在发射机电路中的混 频器通常用于发射上变频,它将发射中频信号与 UHFVCO(或RXVCO)信号进行混频,得到最终发射信 号。
.
27
射频电路的主要元件及工作原理
• 在GSM 系统中,有一个公共的广播控制信道(BCCH), 它包含频率校正信息与同步信息等。手机一开机,就会在 逻辑电路的控制下扫描这个信道,从中获取同步与频率校 正信息,如手机系统检测到手机的时钟与系统不同步,手 机逻辑电路就会输出AFC 信号。AFC 信号改变 13MHz/26MHz 电路中VCO 两端的反偏压,从而使该 VCO 电路的输出频率发生变化,进而保证手机与系统同 步。
.
3
手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。
RF(射频)电路理论与设计精品PPT课件
12阻和幅、抗相的传,位变播用变化常化;Z数in的相表 参移示是数常。描。数输述衰入传减阻表输常抗示线数是单上是位入周长表射期度示波性行单和函波位反数相长射,位度波周的行的期变波衰为化减振。 2
13、无耗传输线上通过任意点的传输功率等于该点的入 射波功率与反射波功率之差。
14、TEM传输线(即传输TEM波的传输线)无色散。色 散是指电磁波的传播速度与频率有关。TEM传输线上 电磁波的传播速度与频率无关。
2
2
其中
是由终端算起的坐标 I (z' ) V2 I2Z0 e jz' V2 I2Z0 e jz'
2Z0
2Z0
z' l z, z'
在已知传输线始端电压 和始端电流 的前提下:
V (z) V1 I1Z0 e jz V1 I1Z0 e jz
2
2
5、反射系数
I (z) V1 I1Z0 e jz V1 I1Z0 e jz
ZC
ABCD
YA
1 YB
YC
YB
YAYB YC
1
1
YC YA
YC
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
析。
4、互易网T络仅适用于含有线性双向阻抗的无源网络,满
足该条件的无源网络可含有电阻、电容、电感或变压器 等线性无源器件。由铁氧体各项异性媒质构成的元件及 有源电路不是互易网络。对称网络是互易网络的一个特 例。对称网络中电子元件的大小及尺寸位置对称分布。 对称网络首先是互易网络。
13、无耗传输线上通过任意点的传输功率等于该点的入 射波功率与反射波功率之差。
14、TEM传输线(即传输TEM波的传输线)无色散。色 散是指电磁波的传播速度与频率有关。TEM传输线上 电磁波的传播速度与频率无关。
2
2
其中
是由终端算起的坐标 I (z' ) V2 I2Z0 e jz' V2 I2Z0 e jz'
2Z0
2Z0
z' l z, z'
在已知传输线始端电压 和始端电流 的前提下:
V (z) V1 I1Z0 e jz V1 I1Z0 e jz
2
2
5、反射系数
I (z) V1 I1Z0 e jz V1 I1Z0 e jz
ZC
ABCD
YA
1 YB
YC
YB
YAYB YC
1
1
YC YA
YC
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
析。
4、互易网T络仅适用于含有线性双向阻抗的无源网络,满
足该条件的无源网络可含有电阻、电容、电感或变压器 等线性无源器件。由铁氧体各项异性媒质构成的元件及 有源电路不是互易网络。对称网络是互易网络的一个特 例。对称网络中电子元件的大小及尺寸位置对称分布。 对称网络首先是互易网络。
《射频电路与天线》课件
电容元件
定义
电容元件是一种能够存储电场能 量的元件,其基本结构是两个平
行板导体之间的绝缘介质。
工作原理
当电压施加在电容元件上时,会在 电介质中产生电场,使得两极板之 间产生电荷吸引力。
特性
电容元件具有容抗,其值与电容量 和频率成反比。在射频电路中,电 容元件常用于滤波、耦合和匹配等 应用。
电阻元件
天线的工作原理
总结词
天线的工作原理
VS
详细描述
天线的工作原理基于电磁波的传播和辐射 。当天线受到电磁波激励时,会在其周围 产生电磁场,形成电磁波的辐射和传播。 天线的形状、尺寸和材料等因素决定了其 辐射特性和方向性。常见的天线形式包括 偶极子天线、单极子天线、抛物面天线等 ,它们各有不同的工作原理和应用场景。
能将得到进一步提升,为无线通信技术的发展提供有力支持。
02 射频电路的基本元件
电感元件
定义
电感元件是一种能够存储磁场能量的 元件,其基本结构是一个导线绕组。
工作原理
特性
电感元件具有感抗,其值与电感量成 正比,与频率成反比。在射频电路中 ,电感元件常用于滤波、耦合和调谐 等应用。
当电流在电感元件中流动时,会产生 一个与电流变化方向相反的感应电动 势,阻碍电流的变化。
《射频电路与天线》PPT课件
contents
目录
• 射频电路概述 • 射频电路的基本元件 • 天线基础 • 常见天线类型与应用 • 天线阵列与馈电网络 • 射频电路与天线的未来发展
01 射频电路概述
定义与特点
总结词
射频电路是无线通信系统中的关键组成部分,具有频率高、频带宽、信号传输损耗低等特点。
要点二
详细描述
在进行馈电网络设计与实现时,需要综合考虑信号传输效 率、功率分配均匀性、相位一致性等因素。通过对传输线 型式、功率分配器和相位调整器等进行合理选择和设计, 可以确保馈电网络的性能满足天线阵列的工作需求。同时 ,还需要考虑馈电网络的可靠性、可维护性和成本等因素 ,以满足实际应用的需求。
《射频电路设计一》课件
设计匹配网络
为确保信号传输效率,设计合适的信号源和负载 匹配网络。
3
设计滤波器、功分器等辅助电路
根据系统需求,设计相应的滤波器、功分器等辅 助电路。
电路版图绘制与仿真验证
使用专业软件绘制电路版图
使用专业软件,如Cadence、Mentor Graphics等,绘制射频电路 的版图。
进行电磁仿真验证
《射频电路设计一 》ppt课件
目 录
• 射频电路概述 • 射频电路的基本元件 • 射频电路的分析方法 • 射频电路的设计流程 • 射频电路的调试与优化 • 案例分析
01
射频电路概述
定义与特点
定义
射频电路是指工作在射频频段的 电子电路,通常用于无线通信、 雷达、导航等领域。
特点
射频电路具有高频率、高带宽、 高灵敏度等特点,能够实现高速 、远距离的无线信号传输。
具有通直流阻交流的特性,常用于滤波、 振荡、延迟等电路中。
种类
包括空心电感、磁芯电感、变压器等。
应用
在射频电路中,电感常用于调谐、匹配、 滤波等电路中。
电阻
定义
导体对电流的阻碍作用称为电阻,是一个物理量,符号为R。
特性
具有消耗电能的作用,常用于限流、分压等电路中。
种类
包括碳膜电阻、金属膜电阻、线绕电阻等。
传输线近似分析法
总结词
传输线近似分析法适用于分析传输线和微波网络,通过将电路简化为传输线模型 ,便于理解和计算。
详细描述
传输线近似分析法主要应用于传输线和微波网络的射频电路设计。该方法将电路 简化为传输线模型,通过求解传输线和微波网络的参数来分析电路性能。该方法 计算简便,精度较高,适用于对信号传输特性要求较高的场合。
为确保信号传输效率,设计合适的信号源和负载 匹配网络。
3
设计滤波器、功分器等辅助电路
根据系统需求,设计相应的滤波器、功分器等辅 助电路。
电路版图绘制与仿真验证
使用专业软件绘制电路版图
使用专业软件,如Cadence、Mentor Graphics等,绘制射频电路 的版图。
进行电磁仿真验证
《射频电路设计一 》ppt课件
目 录
• 射频电路概述 • 射频电路的基本元件 • 射频电路的分析方法 • 射频电路的设计流程 • 射频电路的调试与优化 • 案例分析
01
射频电路概述
定义与特点
定义
射频电路是指工作在射频频段的 电子电路,通常用于无线通信、 雷达、导航等领域。
特点
射频电路具有高频率、高带宽、 高灵敏度等特点,能够实现高速 、远距离的无线信号传输。
具有通直流阻交流的特性,常用于滤波、 振荡、延迟等电路中。
种类
包括空心电感、磁芯电感、变压器等。
应用
在射频电路中,电感常用于调谐、匹配、 滤波等电路中。
电阻
定义
导体对电流的阻碍作用称为电阻,是一个物理量,符号为R。
特性
具有消耗电能的作用,常用于限流、分压等电路中。
种类
包括碳膜电阻、金属膜电阻、线绕电阻等。
传输线近似分析法
总结词
传输线近似分析法适用于分析传输线和微波网络,通过将电路简化为传输线模型 ,便于理解和计算。
详细描述
传输线近似分析法主要应用于传输线和微波网络的射频电路设计。该方法将电路 简化为传输线模型,通过求解传输线和微波网络的参数来分析电路性能。该方法 计算简便,精度较高,适用于对信号传输特性要求较高的场合。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电阻器的结构图
电阻器的简化RF等效电路
4
§2.1 无源集总元件
2、HMIC中的电阻器 混合集成电路中,常见的电阻器有线绕电阻、碳质电阻、
金属膜电阻和薄膜片状电阻等类型。其中,由于薄膜片状电 阻具有体积小、可以作为贴片器件等优点,使得它广泛应用 于现今的RF和MW电路中。
贴片电阻的结构示意图
5
表贴电阻器的等效电阻
CMOS技术 BiCMOS技术
双极型器件和场效应器件的ft和fmax 双极型器件和场效应器件的噪声性能 双极型器件和场效应器件的功率与线性度性能
3
§2.1 无源集总元件
2.1.1 电阻器 1、MMIC中的电阻器
单片射频/微波集成电路中,电阻器主要通过在半导体基片的 掺杂区域沉积一层阻性材料如NiCr、TaN金属膜或多层多晶硅等进 行生产,其结构及RF等效电路如下图所示:
11
§2.1 无源集总元件
47pF电容的阻抗绝对值与频率的关系
RFC阻抗绝对值随频率的变化关系
12
§2.2 射频二极管
2.2.1 肖特基二极管 肖特基二极管是以贵金属为正极,以N型半导体为负极,
利用二者接触面上形成的势垒具有整流特性而制成的金属半导体器件。 电流-电压特性方程为:
I Is(eVA-IRS 1)
反向饱和电流为: ISA(R*T2exp[kqTVb])
Si基肖特基二极管的截面图
13
§2.2 射频二极管
附加有绝缘环的肖特基二极管 典型肖特基二极管的电路模型
14
§2.2 射频二极管
2.2.2 PIN二极管 PIN二极管的I-V特性的数学表达与电流的大小和方向有
关。对轻掺杂N型本征层在PIN二极管两端的电压为正向电压 时,流过PIN二极管的电流为:
图2.10 螺旋电感器示意图 图2.11 螺旋电感器的RF等效电路
9
§2.1 无源集总元件
2、HMIC中的电感器 在混合集成电路设计中,电感器常用于晶体管的偏置电
路。最常用的电感器是用漆包线在圆柱体上绕制而成。考虑 线绕电感器的寄生参数效应,线圈的导线不是理想的,需要 考虑其损耗,并且相邻绕线间存在的分离移动电荷会产生寄 生电容效应。
图2.12 电感器一种简化等效电路
图2.13 空心螺旋管电感器
10
§2.1 无源集总元件
2.1.4 无源元件的射频特性 电阻、电容和电感是最为常见的三种无源元件,广泛应
用于射频/微波电路设计中。在频率较低的情况下,这些元 件可近似为理想元件,而在射频/微波频段,必须考虑这些 元件的寄生参数效应。
500欧金属膜电阻的阻抗绝对值随频率的变化关系
电容是一种常见的贴片电容器,它由其间交叠着的若干金属 电极矩形陶瓷介质和金属接触片组成,其结构如下图所示:
陶瓷电容器的结构
8
§2.1 无源集总元件
2.1.3 电感器 电感器在射频/微波电路设计中常用于偏置、反馈和匹配
等电路,是一种重要的元器件。 1、MMIC中的电感器
在单片微波集成电路中,最常见的是螺旋电感器,它具 有结构紧凑、面积相对较小、电感量较大、自谐振频率高、 品质因素高等特点。
第2章 射频元器件及电路模型
教学 重点
本章重点介绍了电感器、电容器、电阻器等无源集总元件 的物理结构、射频特性及等效电路模型;射频二极管、双 极型晶体管、场效应晶体管的等效电路模型、模型与应用 ;并对比分析了双极型和场效应两类晶体管的频率、功率 和噪声性能。
能教力学 要重求点
掌握:双极型晶体管、场效应晶体管的物理结构、射频特 性等效电路模型。
电容器的集总元件式等效电路
6
§2.1 无源集总元件
(2)交指型电容器 交指型电容器由一组平行的交错排列的薄导带构成。交
指型电容器的电容量随着交指长度呈近似线性关系。其结构 如下图所示:
图2.7 结构版式布局
图2.8 电容器与交指长度的函数关系
7
§2.1 无源集总元件
2、HMIC中的电容器 在混合集成电路中,片状电容得到了广泛的应用。陶瓷
变容二极管的简化电路模型及其电容特性
17
§2.2 射频二极管
2.2.4 IMPATT二极管 IMPATT是仅有的实用固态器件,其典型的工作频率为
10-300GHz,且具有比较高的功率,其效率可达15%。
IMPATT二极管的特性
IMPATT二极管的电路表示
频
元
器
件
双极型晶体管
及
电
路
模
场效应晶体管
型
双极型器件和场 效应器件的比较
电阻器 电容器 电感器 无源元件的射频特性
肖特基二极管 PIN二极管 变容二极管
IMPATT二极管 耿氏二极管 其它二极管
双极型晶体管工作特性
异质结双极型晶体管
MESFET工作特性 高电子迁移率晶体管
PHEMT技术 金属氧化物场效应管
了解:电感器、电容器、电阻器等无源集总元件的物理结 构、射频特性及等效电路模型。
熟悉:各类射频二极管的等效电路模型、功能与应用。
1
本章目录
第一节 无源集总元件 第二节 射频二极管 第三节和场效应器件的比较
2
知识结构
无源集总元件
射
射频二极管
串联设置下偏置PIN二极管的衰减器电路
并联设置下的偏置二极管的衰减器电路
16
§2.2 射频二极管
2.2.3 变容二极管 变容二极管是利用PN结电容与其反向偏置电压依赖关系
及原理制成的二极管。它是一种非线性元件,它通常用做可 变电抗电路元件,主要产生三种基本不同的电路功能:谐波 产生、微波信号调谐和调制、参量放大和上变频。
I A(qni2W)(eVA/(2VT) 1)
NDP
经台面处理技术加工成的PIN二极管结构
15
PIN二极管的简化结构
§2.2 射频二极管
PIN二极管在衰减器电路中既用于串联又用于并联的情况 PIN二极管工作时需DC回路提供偏置电压,而DC回路必须与 射频信号通路分开,因此可用一射频线圈RFC,RFC在DC电路 中短路而在高频下开路。与此相反,电容在DC电路中开路而 在高频下短路。
§2.1 无源集总元件
2.1.2 电容器 电容器是射频/微波电路设计必备的元器件,广泛应用于
隔直、匹配、耦合、旁路、滤波、调谐等电路。 1、MMIC中的电容器 (1) 金属-绝缘层-金属(MIM)电容器
通常在两个金属板间填充一层电介质材料夹层便可形成 金属-绝缘层-金属电容器。
金属-绝缘层-金属电容器的结构图