第 3 章 静力学平衡问题
静力学中的平衡问题与解法
静力学中的平衡问题与解法静力学是力学中的一个分支,研究物体在静止或匀速直线运动时的力、力之间的关系以及物体的平衡条件等内容。
在静力学中,平衡问题是一个重要的研究内容。
本文将讨论静力学中的平衡问题以及常见的解法。
静力学中,平衡是指物体所受的合外力合力矩为零的状态。
平衡可以分为两种类型:平衡在点和平衡在体。
1. 平衡在点平衡在点指的是物体受力的合力通过一个点,也就是力矩为零。
这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。
平衡在点的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。
步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。
步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。
步骤四:根据力矩为零的条件,确定物体的平衡条件。
如果力矩不为零,则说明物体不处于平衡状态。
平衡在点的解法中,可以利用力矩的性质,如力矩的叠加原理、力矩的向量性质等,来简化计算。
此外,还可以运用平衡条件求解未知的力或力矩。
2. 平衡在体平衡在体指的是物体受力的合外力和合力矩都为零的状态。
这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。
平衡在体的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。
步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。
步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。
步骤四:根据合外力和力矩都为零的条件,确定物体的平衡条件。
如果合外力或力矩不为零,则说明物体不处于平衡状态。
平衡在体的解法中,通常需要考虑物体所受力的叠加效应。
常见的方法有力的分解、力矩的叠加等。
除了上述两种平衡问题的解法,静力学中还有一些特殊情况的解法,如斜面上物体的平衡、悬挂物体的平衡等。
对于这些特殊情况,可以利用相关的几何关系和平衡条件,采取相应的解法进行求解。
总之,静力学中的平衡问题是一个重要的内容,通过合理的求解方法可以确定物体的平衡条件。
第3章 静力学平衡问题 (2)
例题
(2)再研究轮
FOx FOy FʹB
M
O
(F ) 0
FB cos R M 0
F
F
解得:
x
0
0
FOx FB sin 0
FB cos FOy 0
y
M FP R
FOx FP tg
FOy FP
【负号表示力的方向与图中所设方向相反】
由图示几何关系,在Rt△BFE和 Rt△EDA中
BD=BE+DE=1.2 2+
1.8 2
≈2.97(m)
∑ MA(F) =0 M-FA×BD=0
解得 FA=M/BD=269.36(N) FC=FA=269.36N
B
解法二:以整体作为研究对象, 画出受力图。
C
M FCy
FAx
FCx
列平衡方程
∑ Fx=0 ∑ Fy=0
§3-1 平面力系的平衡条件与平衡方程
例题
M A (F ) 0 : MB (F ) 0 MC (F ) 0
解得:
2 3M FA 3a 3P 3
FC
3 aM 0 2
3 a FA aP M 0 2 2 3 a FB a P M 0 2 2
FAx=FCx=190.48kN
【3-5】为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放
置,其一轮搁置在地秤上。当螺旋桨未转动时,测得地秤所受的压
力为4.6 kN;当螺旋桨转动时,测得地秤所受的压力为6.4 kN。已 知两轮间的距离l=2.5 m。试求螺旋桨所受的空气阻力偶的力偶矩 M 的数值。
B
α
FNC
∑ MB(F) =0
4-第三章 静力学平衡问题
a
a
再回到原系统,可建立3个平衡 方程解得:
5 2M FOX 0 , FAY 2 F qa , 2 a M FOY F qa a
FOX
O A
F
B
a
a
M
q
FCY qa
C D
FOY FAY FBY
FBX
B
x
D M
a a FCY
[例3-3]图示一结构由AB、BC 与CE 三个构件构成。E 处有一滑轮,细绳 通过该轮悬挂一重为 12 kN 的重物。A为固定铰支座,B 为滑动铰支座, C、D 与E 为圆柱铰。AD = BD = l1= 2m,CD = DE = l2= 1.5m。不计杆件 与滑轮的重量,求支座处的反力。
• 上述第一种情况称为静滑动摩擦力(静摩擦力)
• 第二种情况称为极限摩擦力 • 第三种情况称为动滑动摩擦力(动摩擦力) • 可见极限摩擦力与维持平衡的静摩擦力的关系为: 1、(静)滑动摩擦力的计算、干摩擦与粘性摩擦
Fmax
Fmax F f 0
由大量实验,库仑给出一近似公式:
Fmax f s FN
如果是平面问题(设为xy平面),则平 衡方程简化为 3 个:
X 0 , Y 0 , mO F 0
上式称为平衡方程一矩式,而二矩式和三矩式分别为:
X 0 或 Y 0 mA F 0 mB F 0 m A F 0 mB F 0 m F 0 C
如图 a 所示建立参考基 分析: 系统主动力只有重力 G 约束反力有4个显然无法直接求解
FT
y
C
q FAy A D B
第3章静力学平衡问题习题解
解:以A为研究对象,受力如图(a)ห้องสมุดไป่ตู้
所示 ,其中:FT=G。
,
,
3–6图示液压夹紧机构中,D为固定铰链,B、C、E为铰链。已知力F,机构平衡时角度如图所示,求此时工件H所受的压紧力。
解:图(a):ΣMz= 0, ,F=70.95 N
ΣMy= 0, ,FBx=-207N(↓)
ΣFx= 0, ,FAx=-68.4N(↓)
ΣMx= 0, ,FBy=-19.04N
ΣFy= 0, ,FAy=-47.6N
F= 70.95N; N; N
3-25水平轴上装有两个凸轮,凸轮上分别作用已知力F1(大小为800N)和未知力F。如轴平衡,求力F的大小和轴承A、B的约束力。
解:图(a)中,
kN/m
F= 40kN(后轮负重)
ΣMD= 0
l= 1m
即lmax= 1m
3-15图示构架由杆AB、CD、EF和滑轮、绳索等组成,H,G,E处为铰链连接,固连在杆EF上的销钉K放在杆CD的光滑直槽上。已知物块M重力P和水平力Q,尺寸如图所示,若不计其余构件的自重和摩擦,试求固定铰支座A和C的反力以及杆E F上销钉K的约束力。
取节点A为研究对象,受力如图(d)所示。
, ;
, ;
取节点B为研究对象,受力如图(e)所示。
, ;
, ;
取节点C为研究对象,受力如图(f)所示。
, ;
, ;
取节点E为研究对象,受力如图(g)所示。
, ;
(2)取图(b)中桁架为研究对象,求
理论力学-3-力系的平衡
z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0
理论力学第3章 力系的平衡
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
理论力学3
第3章 力系的平衡
3.4 例 题 分 析
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.4 例 题 分 析
例3-1 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力 F=20 kN,力偶矩m=10 kNm,求A、B支座的约束力。
解:画受力图
m A F 0 FNB 4 q 4 2 m F sin 6 0
m = 0
三力平衡汇交定理 刚体受不平行的三个力作用而平衡时,此三力的作用线 必共面,且汇交于一点。
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.1.5 静定问题与超静定问题
3.1 主要内容
•物体系统:由若干个物体通过适当的约束相互连 接而成的系统 。 •静定问题:单个物体或物体系未知量的数目正好 等于它的独立的平衡方程的数目。
M y F 0
Fx 0, Fy 0, Fz 0
结论:各力在三个坐标轴上投影的代数和以及 各力对此三轴之矩的代数和都必须同时等于零。
Theoretical Mechanics
返回首页
第3章 力系的平衡
1. 空间汇交力系 如果使坐标轴的原点与各力的汇交点重合,则有 Mx≡My≡Mz≡0,即空间汇交力系平衡方程为
F
F
选刚架为研究对象 画受力图
FA FD
Theoretical Mechanics
返回首页
第3章 力系的平衡
解:几何法
F
3.4 例 题 分 析
选刚架为研究对象 画受力图
FA FD FA
作力多边形,求未知量
选力比例尺F=5 kN/cm作封
第3章 静力学平衡问题
FQ Cx FN
习题 3-11b 解图
取节点C为研究对象,见习题3-11b解图,
∑ Fy = 0 : F'BC cosα = FN
∴ FN
=
FP cosα 2 sin α
=
FP 2 tan α
=
3 × 15 2×2
= 11.25kN
3-12 蒸汽机的活塞面积为0.1m2,连杆AB长2m,曲柄BC长0.4m。在图示位置时, 活塞两侧的压力分别为p0=6.0×105Pa, p1=1.0×105Pa, ∠ABC=90D 。试求连杆AB作用于曲柄 上 的 推 力 和 十 字 头 A对 导 轨 的压力(各部件之间均为光滑接触)。
图(b):ΣMi = 0
∴ 由对称性知
FRB
=
M d
(←)
FRA
=
M d
(→)
FBy = FAy = 0
FBx
=
M d
M
FB
3-10 固定在工作台上的虎钳如图所示,虎钳丝杠将一铅垂力 F=800N 施加于压头上, 且沿着丝杠轴线方向。压头钳紧一段水管。试求压头对管子的压力。
习题 3-10 图
FNB
FNC FN
10
由几何关系得 cosα = 4500 = 0.9 , 5000
列平衡方程
sin α = 0.436
∑ MO (F ) = 0 : 2FA × 4500 −F Wcosα × 5000 +F Wsinα ×1250 = 0
解得 FA = 27.25 kN
∑ Fx = 0 : FOx = FW sin α = 27.03kN ∑ Fy = 0 : FOy = FW cosα − 2FA = 1.3kN
静力学力的平衡与受力分析
静力学力的平衡与受力分析在物理学中,力是物体之间相互作用的结果,是描述物体受到的外界作用的量。
静力学力的平衡与受力分析是力学中的重要概念和方法。
本文将通过对静力学平衡和受力分析的讨论,阐述力的平衡条件以及如何进行受力分析。
静力学平衡的概念使我们能够了解物体在静止状态下所受的力的关系。
在一个封闭的系统中,如果物体保持静止,则该物体的受力和力的矩之和为零。
这可以用以下公式表示:ΣF = 0其中,ΣF表示所有作用在物体上的力的矢量和。
这个方程称为力的平衡条件,它是静力学平衡的基础。
平衡条件的主要应用在于解决各种物体和结构的受力问题。
通过对平衡条件的分析,我们可以确定物体上受力的大小、方向和作用点的位置。
在进行受力分析时,我们首先需要明确物体所处的受力系统。
受力系统包括物体所受的所有外力和内力。
外力是由外界环境对物体施加的力,如重力、摩擦力等。
内力是物体内部不同部分之间相互作用的力,如张力、弹力等。
确定了受力系统后,我们可以使用受力分析方法来计算物体所受力的大小和方向。
下面介绍几种常见的受力分析方法:1. 自由体图法:将物体从整体中分离出来形成自由体,只考虑物体受到的力,不考虑周围物体的作用。
通过绘制自由体图,我们可以清楚地看到物体所受的各个力的大小和方向,从而计算出受力平衡的条件。
2. 悬挂点法:对于悬挂在一定点上的物体,我们可以通过设定悬挂点作为坐标原点,建立力的平衡方程来求解物体所受的力。
通过受力分析,我们可以确定物体所受力的大小、方向和作用点的位置。
3. 斜面分解法:对于放置在斜面上的物体,我们可以将受力分解为平行和垂直于斜面的分力,通过受力分析得到物体所受力的大小和方向。
受力分析在工程学和物理学中有着广泛的应用。
它可以帮助我们解决各种实际问题,如桥梁的结构稳定性分析、机械装置的设计优化等。
除了上述介绍的受力分析方法,还有其他一些分析方法,如向量分解法、平衡方程法等。
不同的问题需要选择合适的受力分析方法,以便得到准确的结果。
静力学平衡力和力矩的平衡条件
静力学平衡力和力矩的平衡条件静力学平衡是物体在静止状态下所具备的性质,对于一个物体来说,要保持平衡,必须使其所受合力和合力矩为零。
力的平衡条件是指合力为零,力矩的平衡条件是指合力矩为零。
本文将详细介绍静力学平衡力和力矩的平衡条件。
一、静力学平衡力的平衡条件在静力学中,力的平衡条件是一个重要概念。
当一个物体处于平衡状态时,它所受合力必须为零,即ΣF=0。
这意味着物体所受的合力等于零,各个力相互抵消,物体不会发生运动。
要满足力的平衡条件,需要考虑物体所受力的方向和大小。
对于一个处于平衡状态的物体,可以根据力的平衡条件来解决物体在平衡时所受的力。
二、力矩的平衡条件力矩是一个物体所受外力作用下的转动效应。
对于力矩的平衡条件而言,物体所受合力矩必须为零,即ΣM=0。
这意味着物体所受的合力矩等于零,物体不会发生转动。
要满足力矩的平衡条件,需要考虑物体所受力的距离和大小。
通过计算物体所受力和力臂之间的乘积,可以判断物体是否处于平衡状态。
三、力和力矩的平衡条件的应用静力学平衡力和力矩的平衡条件在物体平衡和力的分析中起着重要作用。
通过分析力和力矩的平衡条件,可以判断物体是否处于平衡状态,并解决与平衡相关的问题。
例如,在建筑工程中,需要考虑物体的平衡状态,以保证建筑物的稳定性。
通过分析物体所受的力和力矩,可以确定建筑物是否能够承受外界力的影响。
此外,在工程设计中,也需要考虑力和力矩的平衡条件。
通过分析物体所受的力和力矩,可以确定工程设计的合理性,以保证工程的稳定性和安全性。
总结:静力学平衡力和力矩的平衡条件是保持物体平衡的基本原理。
力的平衡条件要求物体所受合力为零,力矩的平衡条件要求物体所受合力矩为零。
通过分析力和力矩的平衡条件,可以判断物体是否处于平衡状态,并解决与平衡相关的问题。
在建筑工程和工程设计中,这些平衡条件起着重要的作用,确保了结构的稳定性和安全性。
以上是关于静力学平衡力和力矩的平衡条件的文章内容。
希望能够对你有所帮助。
3章力系的平衡方程及应用
A
FAx
3m
P
1m
2m
由: 解得:
3 3FAy 3P 4 P 0 1
l
P1
FT 17.33kN FAx 15.01kN FAy 5.33kN
• 结果均为正,表明实际受力方向与假设方向相同。 • 为使平衡方程尽可能包含较少的未知量,避免联立求 解,通常将矩心取在两个未知力的交点。
M A (Fi ) 0 M B (Fi ) 0 M C (Fi ) 0
限制条件:A、B、C矩心不能在同一直线上(共线)。
y
C B A O
FR
因为平衡方程
满足,但不能排除图 示不平衡的情形。
x
3.1 空间任意力系的平衡条件和平衡方程
• 以上三种形式的平衡方程均为平衡的 必要与充分条件。
F X 0
x
F Y 0
y
•两个独立平衡方程,可以求解两个未知数。
3.1 空间任意力系的平衡条件和平衡方程 2. 空间平行力系的平衡方程
z
F1 F2
O x
y
F
iz
0
M x ( Fi ) 0
M y ( Fi ) 0
可以求解三个未知数。
F3
Fn F4
平面平行力系的平衡方程
3.1 空间任意力系的平衡条件和平衡方程
六个方程相互独立。联立,可求解六个未知量。 由平衡条件导出的方程称为平衡方程的基本形式。 • • 空间任意力系平衡方程:基本形式、四矩 应当注意:每一种形式最多只能列6个独立 式、五矩式和六矩式。
平衡方程,解6个未知数,任何多于6个的方程都
是这些方程的线性组合。
y
(Fi ) 0
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
材料力学工程构件静力学平衡问题
13
3.1 汇交力系的平衡条件和方程 平衡方程为:
-例题
sin F sin 0 Xi 0 , F CB AB 2
(4)
Y i 0
F cos F cos 0(5) N B CB AB , F 2
14
3.1 汇交力系的平衡条件和方程 由(4)和(5)解得:
26
3.3 平面一般力系的例题
例3-5 起重机水平梁AB,A处为固定铰链支座,DC为 钢索。已知梁重G1=2.4KN,电动小车与重物共重 G2=16KN,尺寸如图(a)所示。试求当电动小车 在图示位置时,钢索的拉力和铰链支座A的约束力。
27
3.3 平面一般力系的例题 解: 取梁AB为研究对象 分析受力,作用于梁AB的力,除其自重G1外,在B处 受载荷G2的作用,C处有钢索拉力FT,铰链支座A处的 约束力为FAx和FAy,受力图如图(b)所示。梁AB在 平面任意力系作用下处于平衡。
例3-1 如图a所示为一简单的起重设备。
-例题
AB和BC两在A,B,C三处用铰链连接。在 B处的销钉上装一不计重量的光滑小滑轮 ,绕过滑轮的起重钢丝绳,一端悬重为 G=1.5KN的重物,另一端绕在卷扬 机绞盘D上。当卷扬机开动时, 可将重物吊起,设AB和BC 两杆的自重不计,小滑轮 尺寸亦不考虑,并设重 物上升时匀速的, 试求AB杆和BC杆所受的力.
FAy为负值,表明受力图中FAy的实际指向与图中 的假设相反。
注:本题可用二矩式及三矩式平衡方程求解。取A、 C为矩心,二矩式平衡方程为
X 0 , F F cos 0 Ax T
M ( F ) 0 . 6 F sin 2 . 7 G 5 . 4 G 0 ,3 A T 1 2
工程力学 同济 2版 第三章静力学专题
[例7] 由不计自重的三根直杆组成的A字形支架置于光滑地面 上,如图 a) 所示,杆长AC=BC=L=3 m,AD=BE=L/5,支架 上有作用力F1=0.8 kN,F2=0.4 kN,求横杆DE的拉力及铰C和A 、B处的反力。
(a)
(b)
(c)
23
解 A字形支架由三根直杆组成,要求横杆DE的拉力和铰C的 反力,必须分开研究,又DE为二力杆,所以可分别研究AC和BC 两部分,但这两部分上A、B、C、D、E处都有约束反力,且未 知量的数目都多于3个。用各自的平衡方程都不能直接求得未知 量。如果选整个系统为研究对象,则可一次求出系统的外约束 反力。 (1) 先取整体为研究对象,在其上作用有主动力Fl和F2,A、 B处均为光滑面约束,而A处是两个方向上受到约束,因而约束 反力有FAx,FAy和FB,并选取坐标轴如图 b) 所示。列出平衡方 程
目
录
§3-1 物体系统的平衡问题
§3-2 特殊构架—平面桁架
2
§3-1 物体系统的平衡问题
一、静定与超静定的概念 我们学过: ∑X = 0
平面汇交力系
力偶系 平面 任意力系
Y ∑ =0
两个独立方程,只能求两个独立未知数。
一个独立方程,只能求一个独立未知数。 三个独立方程,只能求三个独立未知数。
m ∑
i
=0
X ∑ =0 Y ∑ =0
m ∑
O
( Fi ) = 0
当:独立方程数目≥未知数数目时,是静定问题(可求解) 独立方程数目<未知数数目时,是静不定问题(超静定问题)
3
[例 ]
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中用位移协 调条件来求解。
第三章 力系的平衡
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程
空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
工程力学中的静力学平衡与结构平衡问题
工程力学中的静力学平衡与结构平衡问题工程力学是研究物体静止或运动状态下受力和变形的学科。
而静力学平衡和结构平衡问题是工程力学的重要内容之一。
本文将探讨静力学平衡的基本原理和结构平衡的相关概念。
一、静力学平衡问题静力学平衡问题是指研究物体在不发生运动的情况下的受力平衡情况。
在静力学平衡问题中,物体所受外力和外力对物体的作用点位矢量之和为零,即∑F = 0。
这是基于牛顿第一定律的,物体处于静止或匀速直线运动状态时,所受合力为零。
在解决静力学平衡问题时,常使用力的合成与分解原理以及受力分析的方法。
通过分析物体所受的各个力的作用方向和大小,可以确定物体所处的平衡状态。
静力学平衡问题的应用很广泛,比如在建筑工程中,我们需要确保建筑物的稳定性。
通过分析各个构件所受的力和力矩,可以确定建筑物的结构是否平衡,从而保证其安全性。
二、结构平衡问题结构平衡问题是指研究物体内部各个构件的受力平衡情况。
在解决结构平衡问题时,需要考虑物体内部的各个节点和构件之间的相互作用关系。
结构平衡问题可以通过静力学平衡的原理来解决。
对于一个构件而言,其受力平衡要求总力合为零。
在力的合成与分解原理的帮助下,可以确定每个节点上的力的大小和方向,从而得到整个结构的受力平衡状况。
在实际工程中,结构平衡问题是保证建筑物和桥梁等工程结构稳定性的重要问题。
通过分析结构的受力平衡情况,可以确定结构的合理设计,并且预测结构在受到外力作用时的变形情况,从而确保结构的安全性。
三、应用实例为了更好地理解工程力学中的静力学平衡与结构平衡问题,我们举一个简单的桥梁的实例。
考虑一座桥梁,桥上有一辆汽车在通过。
我们需要确保桥梁的结构平衡以保证安全。
首先,我们可以将桥梁简化为若干个构件,比如桥墩、桥面等。
通过静力学平衡原理,我们可以分析每个构件所受的受力情况。
以桥墩为例,桥墩受到来自桥面和汽车的作用力。
通过力的合成与分解原理,我们可以确定桥墩所受力的大小和方向。
类似地,我们可以对桥面和其他构件进行受力分析。
第3章 静力学平衡问题
第3章 静力学平衡问题 §3.1 平衡与平衡条件一、平衡的概念物体的平衡,在工程上是指物体相对于地面保持静止或作匀速直线运动的状态。
平衡是相对于确定的参考系而言的。
静力学所讨论的平衡问题可以是单个刚体,也可以是由若干个刚体组成的刚体系统。
刚体或刚体系统是否平衡取决于作用在其上的力系。
二、平衡条件要使物体保持平衡状态,作用在其上的力必须满足一定的条件,这种条件我们称为力的平衡条件。
从效应上看,物体保持平衡应是既不移动,又不转动。
因此,力系的平衡条件是,力系的主矢和力系对任一点的主矩等于零。
其解析表达式称为平衡方程。
§3.2 平面力系的平衡方程一、平面力系的平衡方程1)基本形式⎪⎩⎪⎨⎧=∑=∑=∑0)(000F M Y X2)二矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴3)三矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线特殊力系的平衡方程 1)共线力系:=∑i F2)平面汇交力系:⎩⎨⎧=∑=∑00Y X3)平面力偶系: 0i m =∑4)平面平行力系: )//( 0)(0轴y M Y i o F F ⎩⎨⎧=∑=∑§3.3 空间力系的平衡方程一、空间力系的平衡方程其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0必须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程1)空间汇交力系ΣX=0ΣY=0ΣZ=02)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=03)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=04)平面任意力系(若力系在Oxy平面内)∑X==∑YM(=∑F)z§3.4 平衡方程的应用一、一般应用举例例3-1,例3-3,例3-4,例3-5(改求起重机不翻平衡块的重量就应是多少?),例3-6,例3-7 补充:已知:带轮D :D1=400 mm ,FT=2000 N ,Ft=1000 N ;齿轮C :D2=200 mm ,a=20° 求:齿轮C 的啮合力Fn ,轴承A 、B 的约束力FA 、FB轴承A 、B 的约束力FA 、FB 就是圆轴受支座中圆孔的约束力,圆孔销钉就是固定铰链两个分力 为说明两分力方向,建立空间直角坐标系Oxyz ?y 轮轴线,z 轴铅直,Oxy 是水平面,三轴垂直 轴承支座表示方法(下图),其约束两分力为xz 方向,用F Ax 、F Az 和F Bx 、F Bz ,或X A 、Z A 和X B 、Z B 侧视图(将轮轴及其受力投影到Oxz 平面上)受力图,没有画轴承A 、B 的约束力,因为没有解除这两个轴承约束=B M ∑02cos 2221t 1T =⨯⨯⨯D F D F D F n a --2000×200-1000×200-Fncos20°×100=0 Fn=2130 N主视图(将轮轴及其受力投影到Oyz 平面上)受力图,其中Fnz=Fncos20°=2130×0.9396=2000 N因主动力Fnz=2000 N 作用点到A 、B 两个支座距离相同,方向向上显然,与之平衡的两支座约束力大小相等,实际方向向下,和受力图所画的方向相反,所以N10002N 20002-====--nzB A F Z Z俯视图(将轮轴及其受力投影到Oxy 平面上) 受力图,其中Fnx=Fnsin20°=2130×0.3420=729 NΣMA=0 -(FT+Ft)×0.15+Fnx ×0.25-XB ×0.5=0 -(2000+1000)×0.15+729×0.25-XB ×0.5=0 XB=-536 NΣFx=0 -FT-Ft+XA-Fnx+XB=0 -2000-1000+XA-729+(-536)=0 XA=4265 N 结论:Fn=2130 NXA=4265 N ; XB=-536 N ZA=-1000 N ; ZB=-1000 N 小结:①轮轴类部件平面解法:1.侧视图求未知主动力 2.主视图求铅直向约束力 3.俯视图求水平向约束力在每一视图上,使用平面力系力的投影方程和力矩平衡方程求解未知力 ②皮带拉力,无论倾斜与否,总是和轮缘相切,对轮轴的力矩等于拉力乘以半径齿轮啮合力一定和其分度圆不相切,对轮轴的力矩=啮合力×cosa ×半径(啮合力×cosa=圆周方向分力)③侧视图上没有画轴承A 、B 的约束力,因为没有解除两个轴承约束(若画有XA 、ZA 和XB 、ZB 四力) 不能用ΣFx=0,-FT-Ft-Fnsina=0求Fn ,因为在x 方向,实际上还有XA 、XB 两力的投影 二、重心1、物体的重心物体的重量(力):物体每一微小部分地球引力的合力。
工程力学03-工程构件的静力学平衡问题
相应的结构——超静定结构
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
3.2 简单的刚体系统问题
3.2.1 刚体系统静定与超静定的概念
MO O1
B F
A
A
B
C
D
O2
3.1 平面力系的平衡条件与平衡方程
3.1.1 平面一般力系的平衡条件与平衡方程 当力系的主矢和对任一点的主矩同时为零时, 力系既不能使物体发生移动,也不能使物体发生转 动——物体处于平衡状态 1)力系的平衡条件 力系平衡的充分与必要条件是: 力系的主矢和对任一点的主矩同时等于零。 即:
FR = SFi = 0
该式使用条件:A、B、C三点不能在同一条直线上
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
应用举例 例3-5 图示结构,A、C、D三处均为铰链约束。横 梁AB的B端受一集中力F。尺寸如图,若F、l为 已知,求:撑杆CD的受力和A处的约束力 l l 2 F 2 解: 取AB研究对象,画受力图 A B C 建立坐标系,列平衡方程(三矩式) 45° SMA (F) = 0 l - F×l + FRC× 2 sin45°= 0 D l y l 2 F SMC (F) = 0 2 FAy A l l Bx – F× 2 –FAy× 2 = 0 FAx C 45° FRC SMD (F) = 0 l –F×l –FAx× 2 = 0 D # 解得:FAx= – 2F FAy= –F FRC= – 2 2 F
03-理论力学-第一部分静力学第三章空间力系
X
Y
Z
( yZ zY )i (zX xZ) j (xY yX )k
2 力对轴的矩
力使物体绕某一轴转动效应的度 量,称为力对该轴的矩。
16
力对轴的矩的定 义 M z (F ) MO (Fxy )
力系简化的计算 计算主矢的大小和方向
FRx X , FRy Y , FRz Z
FR FRx2 FRy2 FRz2
cos FRx ,
FR
cos FRy ,
FR
cos FRz
FR
计算主矩的大小和方向
MOx M x (F ) , MOy M y (F ) ,
MOz M z (F )
与 z 轴共面
18
力对轴的矩的解析式
先看对z轴的矩:
M z (F ) MO (Fxy )
M O (Fy ) MO (Fx )
Fy x y Fx
xY yX
类似地,有:
M x (F) yZ zY M y (F ) zX xZ M z (F ) xY yX
Fy
Fx
Fxy
力对轴的矩的 解析表达式
3
§3 - 1 空间汇交力系 本节的主要内容有:
★ 空间力的投影;
★空间汇交力系的合成与平衡。
1 力在直角坐标轴上的投影和力沿直角坐标轴的
分解
(1) ■直接投影法
X F cos
Y F cos
Z F cos
也称为一次投影法
4
■间接投影法
Fx y F sin X Fxy cos F sin cos Y Fxy sin F sin sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力学平衡问题
§3-1 平面力系的平衡条件与平衡方程 §3-2 简单的空间力系平衡问题 §3-3 简单的刚体系统平衡问题
§3-4 考虑摩擦时的平衡问题
§3-1 平面力系平衡条件与平衡方程 一、平面一般力系的平衡条件与平衡方程
y F1
O
O
F2
F4
y
F R
MO
FR Fi
i 1
y
4. 联立求解,得
FAB
FAB 54.5 KN
FBC 74.5 KN
FBC
B
30° 30° T1 F
x
FT2
反力FAB 为负值,说明该力实际指向与图上假 定指向相反。即杆AB 实际上受拉力。
例题 3-7 折杆AB的支承方式如图所示,设有一力矩数
值为M的力偶作用在折杆AB上,求支承处的约束力大小。
Fx 0
Fy 0 M o (F ) 0
独立平衡方程只有三个
上述平衡方程表明,平面力系平衡的必要与充分条件是: 力系中所有的力在直角坐标系Oxy的各坐标轴上的投影的代 数和以及所有的力对任意点之矩的代数和同时等于零。
求解力系平衡问题的方法和步骤。 (1)选取研究对象; (2)分析研究对象受力,画受力图; (3)根据力系的类型列写平衡方程;选取适当的 坐标轴和矩心,以使方程中未知量个数最少;尽可 能每个方程中只有一个未知量。 (4)求解未知量,分析和讨论计算结果。
1、静定问题:一个静力平衡问题,如果系统中未知量
的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
q Me A C B F
2a
a 8a
2、静不定问题:一个静力平衡问题,如果系统中未 知量的数目超过独立的平衡方程数目,用刚体静力学 方法就不能解出所有的未知量。
q F
Me
A C 2a 4a a 4a D B
y
A
30°
30°
B
FAB
30°
B
30° F
x
C
P FBC
FT2
T1
解:1.
取滑轮B 连同销钉作为研究对象。 画出受力图
2.
3. 列出平衡方程:
Fx 0 : FBC cos 300 FAB FT 2 sin 300 0
Fy 0 : FBC sin 300 FT 1 FT 2 cos 300 0
例题 3-1 图示简支梁AB,梁的自重及各处摩擦均
不计。试求A和B处的支座约束力。
y q Me
q
Me
A
2a
C a 4a
D
B
A FAx FAy C 2a 4a a D
B x FNB
(a)
(b)
解:
(1)选AB 梁为研究对象。 (2)画受力图如右图所示。
(4) 列平衡方程
Fx 0
FAx 0
A
M1
L
M3
M2
B
L
FB
解:取工件为研究对象、画受力图。 解得 由 Mi=0 FA l M1 M 2 M 3 0
FA FB 200N m
例题 3-9 不计自重的杆AB与DC在C处为光滑接触,
它们分别受力偶矩为M1与M2的力偶作用 ,转向如图。 问M1与M2的比值为多大,结构才能平衡?
A
y q
Fy 0 FAy q 2a FNB 0
M o (F ) 0 q 2a a M e FNB 4a 0 解得 F 0,
Ax
Me FAy
C 2a 4a a D
B x FNB
FAx
(b)
Me 1 FN B qa , 2 4a Me 3 FAy qa . 2 4a
约束反力方位亦可确定,画受力图。
B B C
F′C
C
M2
M1
A 60
o
M2
60o D
A 60o
60o
D
FD
FD = FC = F M2 = 0.5 a F
Mi = 0
(2)
- 0.5a F + M2 = 0
联立(1)(2)两式得:M1/M2=2
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
FAx ql FAy FP
二、平面一般力系平衡方程的其它形式
y F1
A
F2
F4
y
B
F R =0
M (a)
F3
F5 x (b) x
F 0 M ( F ) 0 M ( F ) 0
x A B
二力矩式 (AB不垂直于x轴)
y F1
F2
F4
y
C B A
F R=0
FAy
FB
三、平面汇交力系与平面力偶系的平衡方程
1.平面汇交力系的平衡方程
y y
F4 F5
O
F2 F1
x
FRy
O
FR
F3
FRx
x
FR Fi 0
2 2 Ry
因为
FR FRx F
Fx 0
Fx Fy
2
2
0
Fy 0
平面汇交力系的平衡方程
2.平面力偶系的平衡方程
M
C
a a
1、再以AB梁为研究对象
MA
A B
a
a
FAy
A
q
a
FAx
a
B
F′ By
′ FBx
Fx 0
F 0 M 0
y
FAx FBx 0
FAy qa FBy 0
3a ’ FBy 2a 0 2 3qa M qa M FBy FC 4 2a 4 2a 7qa M FAy M A 3qa2 M 4 2a M A qa
注意:
力偶 M 在任一轴上的投影为零; 力偶对任一点之矩即为M。 选取适当的坐标轴和矩心,注意正负号。
方法二:局部
选局部 为研究 对象画 受力图 ,列平 衡方程
局部 检 查 结 果, 验 算
弄清 题意, 标出 已知 量
再选局部 为研究对 象画受力 图,列平 衡方程求 解。
注意:
力偶 M 在任一轴上的投影为零; 力偶对任一点之矩即为M。 选取适当的坐标轴和矩心,注意正负号。
B
2-4 物体系统平衡问题
例题 3-11 如图所示的三铰拱桥由两部分组成,彼此
用铰链A联结,再用铰链B和C固结在两岸桥墩上。每 一部分的重量P1=40 KN,其重心分别在点D和E点。 桥上载荷P=20KN。求A、B、C 三处的约束力。
1m 3m
P
4m
1m
D 4m
A
E
P1
B
10m
P1
C
1m 3m
P
例题 3-10
图a所示铰接横梁。已知荷载q,力偶矩M
和尺寸a,试求杆的固定端A及可动铰B、C 端约束力。
q
A
M
C
a a
B
a
a
2-4 物体系统平衡问题
研究方法 一: 整体到局部
1.取整体为研究对象
MA
FAy
A
q
B
M
C
FAx
a
a
a
a
FC
F 0 F 0
x
FAx 0
FAy FC 2qa 0
约束反力数 m 独立平衡方程数 n 静不定的次数为: k=m-n
m = n m >n
静定问题 静不定问题
二、刚体系统的平衡问题的特点与解法
1. 刚体系统:由几个刚体通过一定的约束方式联 系在一起的系统。
q
A
M
C
a a
B
a
a
返回
2.求解刚体系统平衡问题的一般方法和步骤 方法一:整体
弄清 题意, 标出 已知 量 选整体 为研究 对象画 受力图 ,列平 衡方程 局部 选局部为 研究对象 画受力图 ,列平衡 方程求解 。 检 查 结 果, 验 算
C
Hale Waihona Puke i 1n Fix 2 Fiy 2
F
i 1
iy
0
M o M o ( Fi ) 0
M
i 1
n
o
( Fi ) 0
F
i 1
n i 1
n
ix
0
0
F
n i 1
iy
平面一般力系的平衡方程 (基本形式)
M
o
( Fi ) 0
为了书写方便,通常将平面一般力系的平衡方程简写为
M A FC 4a 2qa 2a M 0
y
M
A
0
2-4 物体系统平衡问题
q
A B
M
C
a a
a
a
q
M
C
2. BC 梁为研究
F
FBx
x
0
FBx 0
B
FBy
FC
F 0 M 0
y
B
FBy qa Fc 0
a qa M Fc 2a 0 2 qa M 3qa M FC FBy 4 2a 4 2a
M (a)
F3
F5 x (b) x
M M M
(F ) 0 (F ) 0 B ( F ) 0 C
A
三力矩式 (A、B、C三点不共线)
例题 3-4
求图示梁的支座反力。
A
P m a B