可降阶的高阶微分方程,高阶线性微分方程及其通解结构.ppt
第-节 高阶线性微分方程【高等数学PPT课件】
m maxl, n
Rm ( x),Qm ( x) 都是x的m次多项式, 其系数待定.
例4 设 y 5 y 6 y f ( x)
(1) f ( x) sin x 写出 y 的形式.
(2) f ( x) x cos x
Pm ( x) 为x的m次多项式. 其中 为常数,
分析: 设 y Q( x)ex 是原方程的解,则代入
原方程,整理得
Q (2 p)Q (2 p q)Q Pm ( x) ()
综上,对 f ( x) Pm ( x)ex 型
令 y x kQm ( x)ex
y p1( x) y p2 ( x) y f1( x) f2 ( x) 的特解.
定理5 若 y1( x), y2( x) 是方程(10)的两个解, 则 y1( x) y2( x) 是方程(9)的解.
例3 设 y1 x, y2 x 2 , y3 x3 是方程 y p1( x) y p2( x) y f ( x)
定理2 若 y1( x), y2( x)是方程(9)的两个线性无关
( y1 y2
常数) 的解,
则 C1 y1( x) C2 y2( x) 是 (9)的通解.
上述定理可推广到n阶线性齐次方程。
若已知方程 y p1( x) y p2( x) y 0 有一特解 y1( x), 要求其通解, 则只要再求出该方程的另一个与 y1( x) 线性无关的特解 y2 ( x) 即可. 用降阶法求 y2( x) :
第四节 高阶线性微分方程 二、线性齐次微分方程解的结构
二阶线性齐次微分方程:
y p1( x) y p2( x) y 0 ——(9) 定理1 若 y1( x), y2( x) 是方程(9)的两个解, 则
第三节 可降阶的高阶微分方程
例5
求方程 yy′′ − y′2 0 的通解 。 =
dp 解 令 p = y′ ,则 y′′ = p 。 dy dp yp − p2 = 0 。 于是, 于是,原方程化为 dy dy = 0 ,故此时有解 y = C 。 若 p = 0 ,则 dx dp dy = 。 若 p ≠ 0 ,则原方程化为 p y dy p = 0 对应于 C1 = 0 = p = C1 y 。 两边积分,得 两边积分, dx y = C2 eC1x。 运用分离变量法, 运用分离变量法,得此方程的通解为
2 2
(***)
此处取负号是因为物体运动的方向与y轴的正向相反. 在(***)中令 y=R,就得到物体到达地面时的速度为
2 gR(l − R) v=− l
最后求物体落到地面所需的时间. 由(***)式有
1 1 dy = v = −R 2g − , y l dt
分离变量,得
1 l y dt = − dy. R 2g l − y
1 y′′ = 1 + y ′2 a
取原点 O 到点 A 的距离为定值 a ,即 |OA|= a ,则初始条件为:
y x =0 = a, y′ x =0 = 0.
故初值问题为
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
令 y ′ = p,
y′′ = p′ 代入上方程,得
dx = a 1 + p2 dp
1 2 p′ = 1+ p . a
x ln( p + 1 + p ) = + C1 a
一阶线性微分方程,可降阶的高阶微分方程
y = Ce ∫
− P( x)dx
y+ 1. 一阶线性齐次方程 − ∫ P( x )dx ′ P ( x ) y ≡ 0∫ P( x )dx 非齐次方程通解 C + Q( x)e dx 非齐次方程通解 y = e
可分离变量
∫
2.
一阶线性非 一阶线性非齐次方程
y′ + P( x) y = Q( x)
求解
1+ y ′ 2 (1) y′′ = ; 2y dy ′ dz dz dy dz 解:令 y ′ = z ,则 y ′′ = = = =z ,
dx
dx
dy dx
dy
dz 1+ z 2 2 zdz dy z = = , ,即 2 y dy 2 y 1+ z
积分,得 ln(1+ z 2 )= ln y + lnC , 1+ z 2 = C1 y . 积分,
x=e ∫
=e ∫
− P ( y )dy
1 dy y
∫ P( y)dydy] , [C + ∫ Q( y)e
3 −
[∫ y e
∫
1 dy y
故原方程的通解为 x = y + Cy . 3
1 3 dy + C ] = y[ y + C ] , 3 1 4
二 、 Bernoulli(伯努利)方程的解法 ( 伯努利)
(2)
( x 2 + y 2 + 2 x − 2 y )dx + 2( y − 1)dy = 0 ;
y′ + y y ln y = 2 . x x
y y (2) y′ + ln y = 2 . x x 1 1 1 y′ + ln y = 2 , 解: y x x
可降阶的高阶微分方程
三、形如y″=f(y,y′)型的微分方程
【例4】
求微分方程yy″-y′2-y′=0的通解. 解方程不显含自变量x,设y′=p,则
,代入方程得
在y≠0,p≠0时,约去p并整理,得
这是关于p的一阶线性微分方程,利用公式解之得 p=C1y-1,即y′=C1y-1,再分离变量并两端积分,便得方程 的通解为
这是一阶方程,设其通解为
因y′=p(x),于是
p=φ(x,C1),
dydx=φ(x,C1),
两端积分,得
y=∫φ(x,C1) dx+C2.
二、形如y″=f(x,y′)型的微分方程
【例2】
解方程xy″=y′lny′.
解设y′=p(x),则
,方程化为
分离变量,得
为所求方程的通解.
二、形如y″=f(x,y′)型的微分方程
【例3】
三、形如y″=f(y,y′)型的微分方程
方程 y″=f(y,y′)(6-19)
中不显含自变量x.为了求出它的解,我们令y′=p,并利用复合函数 的求导法则把y″化为对y的导数,即
这样,方程(6-19)就成为
这是一个关于y,p变量的一阶微分方程.设它的通解为 y′=p=φ(y,C1),
分离变量并积分,便得方程的通解为
可降阶的高阶 微分方程
一、形如y″=f(x)型的微分方程
对于微分方程
y″=f(x),
其右端仅含自变量x,如分得
y′=∫f(x)dx+C1,
y=∫(∫f(x)dx)dx+C1x +C2. 以此类推,对于n阶微分方程,连续积分n次,便得含
有n个任意常数的通解.
一、形如y″=f(x)型的微分方程
【例1】
高阶常系数线性微分方程
特征方程为 r 2 4r 4 0, r1 r2 2,
则通解为 y (C1 C2 x)e2x .
9
Ⅲ 有一对共轭复根 ( 0)
设特征根为 r1 i , r2 i ,
4
10-5 高阶常系数线性微分方程
定义 在n阶线性方程y(n) P1( x) y(n1) Pn1( x) y Pn( x) y f ( x)中,
如果未知函数y及其各阶导数y, y, , y(n)的系数全都是常数时,
则称该方程为常系数线性微分方程. 一般形式 : y(n) p1 y(n1) p2 y(n2) pn1 y pn y f ( x),
定义 由常系数齐次线性方程的特征方程的根确定其 通解的方法称为特征方程法.
11
例1 求方程 y 2 y y 0的通解.
解 特征方程为 r 2 2r 1 0 ,
解得 r1 r2 1 ,
故所求通解为 y (C1 C2 x)e x .
例2 求方程 y 2 y 5 y 0的通解.
Ⅱ 有两个相等的实根 ( 0)
特征根为 r1 r2
设另一特解为: y
p,
2 u2( x
)e
一特解为
, r1 x
将 y2 ,y2 ,y2代入原方程并化简得
y1 [
y2
e r1x , u( x)]
y1
u (2r1
p)u
(
r2 1
pr1
q)u
0,
知 u 0, 取 u( x) x, 则 y2 xer1x ,
可降阶高阶微分方程
n阶线性非奇次方程
y ( n ) + P1 ( x ) y ( n 1) + P2 ( x ) y ( n 2 ) + + Pn ( x ) y = 0
n阶线性奇次方程 下面以二阶方程为例,讨论高阶线性微分方程解的结构.
一. 二阶线性奇次方程解的结构 一般形式: y ′′ + P ( x ) y ′ + Q ( x ) y = 0, 显然, y = 0 是(2)的解. 讨论非平凡解: 定理1. 如果 y1 ( x), y2 ( x) 是(2)的两个解,则 y = C1 y1 ( x) + C2 y2 ( x) 也是(2)的解,其中 C1 ,C2 为任意常数. 证明: 由于 y1 ( x), y2 ( x)是(2)的两个解, 所以
∴C2 = 1
y = x3 + 3x + 1
三. y′′ = f ( y, y′) 型方程 如果方程不显含 x, dp = f ( y, p) 方程变为: p dy 解出这个以 y 为自变量的一阶方程的通解: 令 y′ = p , 则 y′′ =
dp dp dy dp = =p , dx dy dx dy
二. y′′ = f ( x, y′) 型方程 如果二阶方程不显含 y, 令 y′ = p ,则 y′′ = 方程变为: p′ = f ( x, p ) 解出这个一阶方程的通解: p = ( x, C1 ) 则原方程的通解为: 例:
dp = p′ dx
y = ∫ ( x, C1 ) dx + C2
的特解,则 y1 ( x) + y2 ( x) 是方程
y ′′ + P ( x ) y ′ + Q ( x ) y = f1 ( x ) + f 2 ( x ) ( 4)
可降阶的高阶微分方程
d x dt
3 3
dx dt
y
y,
dy dx ,
2
2
dy dt
dy dx dx dt
d( y dy
d( y
dy dx
)
dx d x dt
)
y(
dy dx
) y
2
2
d y dx
2
2
,
dt
dx
7
F ( x , x , , x
( n)
) 0,
dx dt
y,
dy dx y,
把(3.1.6)代入(3.1.8),并记
得:
X 0 - x at y y
2
把 x 作为自变量,上式两边关于x 求导得:
-1 a dt dx yy - y y
2
,
19
dt dx
dy dt dt dx
yy ay
2
(3.1.9)
dx dt ) (
dp ,
解
设 y p, 则 y p
代入方程, 得
dy 2 p 1 dp 2 C 1 C1 0 , y p -1 2 y dy
dy dx 2 y
2 3
3
3
y
2
3
2x C2 C2
3 2 2
2 1 2 , 3 2 3
c1 ,
x c2e
c1t
(c2 0), 显然x0也是原方程的解.
1
故原方程的解为 x c2e c t .
13
微分方程
y
x0
【高数(下)课件】10-3可降阶的高阶微分方程
可降阶的高阶微分方程
2 y 2 2 x
2 1 2x y dx ln C1 2 2 x 2 2x
再由初始条件 y(1) 2 ,知
C1 2[1 ln( 1 2 )]
故所求解为
1 2x y ln 2[1 ln( 2 1)] 2 2x
可降阶的高阶微分方程
可降阶的高阶微分方程
3 x 2 y y 1 x 3
y
x 0
1, y x0 4
3
dy 4(1 x )dx y x 4 x C2
4
再由初始条件 y x0 1, 知C2 = 1 故所求解为
y x4 4 x 1可降阶的高阶微分方程可降阶的高阶微分方程
求微分方程 y 2 y 1 0 的积分曲线, 使该 1 积分曲线过点 0, , 且在该点的切线斜率为2. 2 解 方程 y 2 y 1 0 属y f ( y, y)型
1 p2 C1 y p C1 y 1
dy 即 C1 y 1 dx
属y f ( y, y)型
可分离变量方程
可降阶的高阶微分方程
dy dy dx C1 y 1 C1 y 1 dx
2 C1 y 1 x C 2 C1
三、y f ( y, y) 型的方程
特点 方程缺自变量x dy p p( y ) 解法 设 y dx 2 d p dp d y dp d y 则 y 2 p , 方程变成 d x dy d x dy dx dp p f ( y , p).这是关于变量y , p 的一阶方程. dy 设它的通解为 y p ( y, C1 ). 分离变量并积分, dy x C2 得通解为 ( y , C1 )
第五节可降阶的高阶微分方程
dy dx dy
代入原方程得到新函数P( y)的一阶方程, dy p( y) f ( y, p), dx 先求出P( y),然后求通解y.
例 4 求方程 yy y2 0 的通解.
解1 设 y p( y), 则 y p dP , dy
代入原方程得 y P dP P 2 0, 即 P( y dP P) 0,
dy
dy
由 y dP P 0, dy
可得 P C1 y,
dy dx
C1
y,
原方程通解为 y C2e c1x .
解2 原方程变为 y y , y y
两边积分,得 ln y ln y ln C1, 即 y C1 y,
当y 0,设y p,
y R2 (x C1 )2 C2 . (x C1 )2 ( y C2 )2 R2 .
四、小结
解法 通过代换将其化成较低阶的方程来求解.
补充题: 求方程 xyy xy2 yy 的通解.
解 xyy xy2 yy 同除以y 2得
yy xy2
x(
y2
)
y y
例 6 求曲线,它在任意点处的曲率都等于常数
K( 0). 解 设曲线y y( x),
当y 0,设y p,
则 | y | [1 ( y)2 ]3/2
K,
代入原方程得
dp (1 p2 )3/2
Kdx,
p
1
p2
K(x C1),
p
x C1
,
R2 (x C1)2
R 1 . K
y R2 (x C1)2 C2 .
5. xy y 2 xy .
练习答案
1. y3 y 1 0 .
可降阶的高阶微分方程
( n) y f ( x ) 型的微分方程 一.
二. y f ( x, y) 型的微分方程
三. y f ( y, y) 型的微分方程
教学目标
1. 掌握三种特殊高阶方程的求解方法.
机动
目录
上页
下页
返回
结束
从本节起,我们将讨论二阶及二阶以上的微分方程,即
y f ( x, y)
令 y p( x ), 则 y
dp dx
3.
y f ( y, y)
令 y p( y ),
dp 则 y p dy
16
机动 目录 上页 下页 返回 结束
2018/7/27
思考练习
1. 方程 y f ( y) 如何代换求解 ? 答: 令 y p( x ) 或 y p( y ) 均可. 一般说, 用前者方便些. 有时用后者方便 . 例如, y e
1 3 C1 ( x x ) C 2 3
以条件 y x0 1 , y x0 3 代入得 C1 3 , C2 1
故所求特解为 y x 3 3 x 1
19
机动 目录 上页 下页 返回 结束
则
p F ( x,C1 )
dy F ( x,C1 ) dx 这是个一阶微分方程,两端进行积分,便可得方程
(10.3.2)的通解为
y F ( x,C1 )dx C2
7
例2 求微分方程 xy y x 2 0 的通解. 解 由于方程中不显含未知函数 y ,是属于 y f ( x, y) 型. 设 y p, 则
y x 0 3 的特解.
解 令
p y 则原方程化为
《可降阶微分方程》课件
非线性微分方程在自然现象和社会现象中广泛存在,如生态学、化学反应 、经济学和气象学等。
微分方程的解与通解
微分方程的解是指满足方程的函数表达式。对于线性微分方程,解的形式通常是多项式函数、三角函 数和指数函数等。
通解是指满足微分方程的任意常数都可以代入得到的解,也称为一般解或全解。对于非线性微分方程, 通解通常很难找到,需要通过数值计算等方法求解。
01
线性微分方程是指方程中未知函数及其导数的项都 是一次的,没有高次项、指数项和幂次项。
02
线性微分方程的解法通常包括分离变量法、变量代 换法、常数变易法和特征根法等。
03
线性微分方程在物理、工程和经济等领域有广泛的 应用,如电路分析、控制系统和人口动态等。
非线性微分方程
非线性微分方程是指方程中含有未知函数的非线性项,如高次项、指数项 和幂次项等。
连续时间投资组合优化
描述投资者在连续时间内调整投资组合的微分方程,以实现最优 收益和风险控制。通过求解该方程,可以得到最优的投资策略。
供需关系模型
描述市场供需关系的微分方程,如商品价格和需求量的变化。 通过求解该方程,可以预测市场价格的走势和供需平衡状态。
生物问题中的应用
要点一
种群动态模型
描述生物种群数量变化的微分方程,如种群的增长率、出 生率和死亡率等。通过求解该方程,可以预测种群数量的 变化趋势和生态平衡状态。
在实际应用中,需要根据具体问题选择合适的解法来求解微分方程,并考虑初始条件和边界条件等因素 。
03
可降阶微分方程的求解方法
变量分离法
总结词
通过将方程转化为易于求解的形式,简化求解过程。
第六章 微分方程第三节 可降阶的高阶 微分方程
2
故所求质点运动规律为
t
3
)
3T
-5-
第三节
可降阶的高阶微分方程
二、
y f ( x , y )
型的微分方程
原方程化为一阶方程
设 y p ( x ) ,
第 十 二 章 微 分 方 程
设其通解为 则得
p ( x , C1 ) y ( x , C1 )
再一次积分, 得原方程的通解
dp p
2 xdx (1 x )
2
2
ln | p | ln( 1 x ) ln | c | p c (1 x ) y c (1 x )
2 2
即
再次积分得通解
y cx
c 3
x c1
3
-7-
第三节
可降阶的高阶微分方程
例4
y 2 x y 2 x 3 求解 y x 0 1, y x 0 1
满足的方程 .
解:
在点 P(x, y) 处的切线倾角为 , 于是
y
S1
1 2
y cot
2
P(x, y)
S2
0
x
y
y( t ) d t
O
S2
S1
x x
y co t
- 16 -
第三节
可降阶的高阶微分方程
利用 两边对 x 求导, 得
第 定解条件为 十 二 令 y p ( y ), 章 微 分 方 程
y ( x , C1 ) d x C 2
-6-
第三节
可降阶的高阶微分方程
例3 求微分方程 ( 1 x 2 ) y 2 x y 的通解。 解 令p
微分方程解法ppt课件
阶段汽车运动规律的函数S=S(t),应满足方程:
4
d 2s
dt2 4
(5)
及条件
S
t0
0, v t0
ds dt
t 0
10
(6)
对(5)式两端积分一次,得
v
ds dt
4t
c1
(7)
在积分一次,得S 2t 2 c1t c2
(8)
将条件v t0 10代入(7)式中,将条件S t0 0代入(8)式,
原方程,经整理得 C(x) ex
y C(x) 代入 x
解得
C(x) ex C
于是原方程的通解为 y 1 (ex C) x
方法二 直接利用非齐次方程的通解公式(5),得
23
y
e
1 x
dx
(
e
x
e
1 x
dx
dx
C
)
x
eln x ( e x eln xdx C) x
1 x
( exdx
b N
N Ceabt bN
于是
N
Cbeabt 1 Ceabt
1
b 1 eabt
C
这就是种群的生长规律 。
15
8.3 一阶线性微分方程
形如
y P(x)y Q(x)
(1)
的方程叫做一阶线性微分方程(linear differential equation of first
Order),它的特点为左端是关于未知函数y及一阶导数
curve).如 y x2 c 是方程(1)的积分曲线族,而 y x2 1只是其中过(1,2)点的一条积分曲线。
10
8.2 可分离变量的一阶微分方程
第十二章微分方程(二)
二、 高阶微分方程1.高阶微分方程的定义:'''()(,,,,)0n F x y y y =2.可降阶的高阶微分方程类型及解法 可降阶的高阶微分方程有三种类型: (1)()()n y f x = 解法:逐次积分(2)),(y x f y '='' 特点:不显含y 的方程解法:设p y =',则p y '='',代入方程中得),(p x f p ='。
已降为一阶。
(2)),(y y f y '='' 特点:显含x 的方程 解法:设p y =',则dydp p dx dy dy dp y =⋅='' 代入方程中得),(p y f dydpp=,已降为一阶。
【例1】求微分方程(1)ln (1)x y y x '''++=+的通解.解:由于不显含y ,令()y p x '=,则y p '''=,代入原方程得(1)ln(1)x p p x '++=+ 即 l n (1)11p x p x x+'+=++ 为一阶线性微分方程 利用公式得11ln(1)ln(1)111111ln(1)ln(1)()()111(ln(1))ln(1)111dxdx x x x x x x p e e dx C e e dx C x x C x dx C x x x--++++++⎰⎰=+=+++=++=+-+++⎰⎰⎰即 1l n (1)11Cy x x'=+-++ 积分得 12()ln(1)2y x C x x C =++-+ 【例2】求微分方程2()0y y y '''-=满足初始条件0011,2x x y y =='==的特解。
解:由于不显含x ,令()y p y '=,所以y pp '''=,代入原方程得 20y p pp '+=所以 0p = 或 0y pp '+= 当0yp p '+=时,此方程为可分离变量的方程,分离变量得dp dy p y=-积分得 1l n ||l n ||l n p y C =-+,所以, 1C p y =, 即 1Cy y'= 将0011,2x x y y =='==代入得112C =,从而 12y y'= 分离变量得 22y x C =+,将01x y ==代入得21C = 所求方程的特解为 21y x =+当0p =时,即0y '=,积分得y C =,特解为1y =,含在21y x =+内。
6-3可降阶的高阶微分方程
故 y C1 y ,
从而通解为
y C 2e
C1 x
. C1 , C2 是任意常数
y y , 两边积分,得 解3: 原方程变为 y y
ln | y | ln | y | ln C1, 即 y C1 y Cy,
C x 原方程通解为 y C 2e 1 . C1 , C 2 是任意常数
第七节 目录
上页
下页
返回
结束
y ( x ln x x C1 )dx
1 2 3 2 x ln x x C1 x C 2 2 4
C1 , C2 是任意常数
机动
目录
上页
下页
返回
结束
二、 y f ( x , y) 型的微分方程
特点:方程不显含 y
解法:令 y P ( x ), 则 y P
1 ln(1 P 2 ) ln | y | ln C1 两边积分得 2
即 (1 P 2 ) y 2 C , C C12
机动 目录 上页 下页 返回 结束
(1 P 2 ) y 2 C ,
1 解得 P y C y2 y y 则 dy dx 2 Cy
机动
目录
上页
下页
返回
结束
y P ( x ) C (1 x 2 ) ,
又 y x0 3
得 C3
即 y P ( x ) 3(1 x 2 )
两边积分得
y 3(1 x 2 )dx 3 x x 3 C
又 y x 0 1
得C 1
故初值问题的解为
由 P 0 , 即 y 0 , 得 y C3 , 也是原方的解,