运用刚体定轴转动定律解题 (2)
大学物理刚体的定轴转动习题及答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。
大学物理习题册及解答_第二版_第四章_刚体的定轴转动
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案
《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
刚体转动习题解答
作业07(刚体转动1)1. 两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为A J 和B J ,则[ ]。
A. B A J J >B. B A J J <C. B A J J =答:[B ]解: 由V m =ρ,B A ρρ> ,B A m m =, B A V V <∴,B A R R <∴ 又:221mR =ρ B A J J <∴ 2. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体[ ]。
A. 必然不会转动B. 转速必然不变C. 转速必然改变D. 转速可能不变,也可能改变答:[D ]解:几个力的矢量和为零,不一定外力矩为零,因此,刚体不一定不转动。
但和外力为零,刚体不会平动。
3. 有两个力作用在一个有固定转轴的刚体上:(1). 这两个力都平行于轴作用时,它们对轴的合力矩一定是零。
(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零。
(3). 这两个力合力为零时,它们对轴的合力矩一定是零。
(4). 这两个力对轴的合力矩为零时,它们的合力一定是零。
在上述说法中是正确的是[ ]。
A. 只有(1)是正确的B. (1)(2)正确(3)(4)错误C. (1)(2)(3)都正确,(4)错误D. (1)(2)(3)(4)都正确答:[B ]解:如图所示(1)由)(a )(b )(c 可见,21//ˆ//F k F ,则它们对轴的力矩0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零。
(1)是正确的。
(2)由)(d )(e )(f 可见,由21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111=⋅⨯=k F r L z ,0ˆ)(222=⋅⨯=k F r L z ,对轴的合力矩为零; 由)(g )(i )(j 可见,21ˆF k F ⊥⊥,则它们对轴的力矩0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,但如果21F F =,对轴的合力矩021=+z z L L 由)(h 可见,21ˆF k F ⊥⊥,则它们对轴的力矩 0ˆ)(111≠⋅⨯=k F r L z ,0ˆ)(222≠⋅⨯=k F r L z ,对轴的合力矩不为零。
第五章刚体定轴转动典型题型
• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。
O
A
质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt
力
F
钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩
M
质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。
r
R
• 5)角动量守恒定律和机械能守恒定律的综 合应用
【大题】工科物理大作业04-刚体定轴转动
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
05刚体的定轴转动习题解答.
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
2.2 刚体定轴转动定律及其应用
R
dS
r
O
- 2 r kv 2 r d r
0
R
m
- 2 r k r 2 r d r
0
R
4 k r 3dr k R 4
0
R
M 随 变化
M J
M J
4
d J dt
M k R
4
1 2 d k R mR 2 dt
mg
0
d
0
d
0
3g cos d 2L
3g sin L
3) 此时,棒中点C的速度和加速度
L v C rC 6
2
3g sin L
竖直位置?
g acn rC sin 2
g act rC cos 4
例:如图,设滑块A,重物B及滑轮C的质量分别为MA, MB,MC。滑轮C是半径为 r 的均匀圆板。滑块A与桌面之 间,滑轮与轴承之间均无摩擦,轻绳与滑轮之间无滑动。 求:(1)滑块A的加速度a (2)滑块A与滑轮C之间绳的张力T1, (3)滑轮C与重物B之间绳的张力T2。
两边积分
2 k R 2 d dt 0 0 m
0
t
d
0
0
0
2 k R 2 d m
2 k R 2 0 m m0 m 0 N 2 2 2 k R 2 2 4 kR
例. 将一根质量为M,长为L的匀质细杆两端A、B用 等长的线水平地悬挂在天花板上,若突然剪断其中一 根,求此瞬间另一根绳内的张力有多大。 解: 突然剪断B线,棒AB受重力和A线对它的拉力作用 AB绕A点在竖直面内转动。 A线的拉力对A点的力矩为零 重力对A点的力矩为 转动定律
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
第2章刚体定轴转动
第2章 刚体定轴转动2.28 质量为M 的空心圆柱体,质量均匀分布,其内外半径为R 1和R 2,求对通过其中心轴的转动惯量.解:设圆柱体的高为H ,其体积为V = π(R 22 – R 12)h ,体密度为ρ = M/V .在圆柱体中取一面积为S = 2πRH ,厚度为d r 的薄圆壳,体积元为d V = S d r = 2πrH d r ,其质量为d m = ρd V ,绕中心轴的转动惯量为d I = r 2d m = 2πρHr 3d r , 总转动惯量为213442112d ()2R R I Hr r H R R πρπρ==-⎰22211()2m R R =+.2.29 一矩形均匀薄板,边长为a 和b ,质量为M ,中心O 取为原点,坐标系OXYZ 如图所示.试证明:(1)薄板对OX 轴的转动惯量为2112OX I Mb =; (2)薄板对OZ 轴的转动惯量为221()12OZI M a b =+. 证: 薄板的面积为S = ab ,质量面密度为σ = M/S .(1)在板上取一长为a ,宽为d y 的矩形元,其面积为d S = a d y , 其质量为d m =σd S ,绕X 轴的转动惯量为d I OX = y 2d m = σay 2d y , 积分得薄板对OX 轴的转动惯量为/2/223/2/21d 3b b OXb b I a y y a y σσ--==⎰32111212ab Mb σ==. 同理可得薄板对OY 轴的转动惯量为2112OY I Ma =. (2)方法一:平行轴定理.在板上取一长为b ,宽为d x 的矩形元,其面积为d S = b d x ,质量为d m = σd S , 绕过质心的O`Z`轴的转动惯量等于绕OX 轴的转动惯量d I O`Z` = b 2d m /12. 根据平行轴定理,矩形元对OZ 轴的转动惯量为 d I OZ = x 2d m + d I O`Z ` = σbx 2d x + b 2d m /12, 积分得薄板对OZ 轴的转动惯量为/222/21d d 12a M OZa Ib x x b m σ-=+⎰⎰/232/211312a ab x b M σ-=+221()12M a b =+.方法二:垂直轴定理.在板上取一质量元d m ,绕OZ 轴的转动惯量为d I OZ = r 2d m .由于r 2 = x 2 + y 2,所以d I OZ = (x 2 + y 2)d m = d I OY + d I OX , 因此板绕OZ 轴的转动惯量为221()12OZ OY OX I I I M a b =+=+.2.30 一半圆形细杆,半径为R ,质量为M ,求对过细杆二端AA `轴的转动惯量.解:半圆的长度为C = πR ,质量的线密度为λ = M/C .在半圆上取图2.28一弧元d s = R d θ,其质量为d m = λd s ,到AA `轴的距离为r = R sin θ, 绕此轴的转动惯量为d I = r 2d m = λR 3sin 2θd θ,半圆绕AA `轴的转动惯量为32sin d I R λθθ=⎰π31(1cos 2)d 2Rλθθ=-⎰π32122R MR λ==π2.31 如图所示,在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔.圆孔中心在圆盘半径的中点.求剩余部分对大圆盘中心且与盘面垂直的轴线的转动惯量.解:大圆的面积为S = πR 2,质量的面密度为σ = M/S .大圆绕过圆心且与盘面垂直的轴线的转动惯量为I M = MR 2/2.小圆的面积为s = πr 2,质量为m = σs ,绕过自己圆心且垂直圆面的轴的转动惯量为I C = mr 2/2, 根据平行轴定理,绕大圆轴的转动惯量为I m = I C + m (R/2)2.2221()(2)24m C R I I m m r R =+=+2221(2)4r r R σπ=+22221(2)4r M r R R =+,剩余部分的转动惯量为4222122()2M m r I I I M R r R=-=--.2.32 飞轮质量m = 60kg ,半径R = 0.25m ,绕水平中心轴O 转动,转速为900r·min -1.现利用一制动用的轻质闸瓦,在剖杆一端加竖直方向的制动力F ,可使飞轮减速.闸杆尺寸如图所示,闸瓦与飞轮之间的摩擦因数μ = 0.4,飞轮的转动惯量可按匀质圆盘计算.(1)设F = 100N ,问可使飞轮在多长时间内停止转动?这段时间飞轮转了多少转?(2)若要在2s 内使飞轮转速减为一半,需加多大的制动力F ?解:设飞轮对闸瓦的支持力为N`,以左端为转动轴,在力矩平衡时有0.5N` – 1.25F = 0, 所以N`=2.5F = 250(N).闸瓦对飞轮的压力为N = N`= 250(N), 与飞轮之间摩擦力为f = μN = 100(N), 摩擦力产生的力矩为M = fR .飞轮的转动惯量为I = mR 2/2,角加速度大小为β = -M/I = -2f/mR = -40/3(rad·s -2), 负号表示其方向与角速度的方向相反.飞轮的初角速度为ω0 = 30π(rad·s -1).根据公式ω = ω0 + βt ,当ω = 0时,t = -ω0/β = 7.07(s).再根据公式ω2 = ω02 + 2βθ,可得飞轮转过的角度为θ = -ω02/2β = 333(rad), 转过的圈数为n = θ/2π = 53r .[注意]圈数等于角度的弧度数除以2π.(2)当t = 2s ,ω = ω0/2时,角加速度为β = -ω0/2t = -7.5π. 力矩为M = -Iβ,摩擦力为f = M/R = -mRβ/2 = (7.5)2π. 闸瓦对飞轮的压力为N = f /μ,需要的制动力为F = N /2.5 = (7.5)2π = 176.7(N).OrR r图2.31图2.322.33 一轻绳绕于r = 0.2m 的飞轮边缘,以恒力F = 98N 拉绳,如图(a )所示.已知飞轮的转动惯量I = 0.5kg·m 2,轴承无摩擦.求 (1)飞轮的角加速度.(2)绳子拉下5m 时,飞轮的角速度和动能.(3)将重力P = 98N 的物体挂在绳端,如图(b )所示,再求上面的结果.解:(1)恒力的力矩为M = Fr = 19.6(N·m), 对飞轮产生角加速度为β = M/I = 39.2(rad·s -2).(2)方法一:用运动学公式.飞轮转过的角度为θ = s/r = 25(rad), 由于飞轮开始静止,根据公式ω2 = 2βθ,可得角速度为ω=s -1); 飞轮的转动动能为E k = Iω2/2 = 490(J).方法二:用动力学定理.拉力的功为W = Fs = 490(J), 根据动能定理,这就是飞轮的转动动能E k .根据公式E k = Iω2/2,得角速度为ω=s -1). (3)物体的质量为m = P/g = 10(kg).设绳子的张力为T ,则P – T = ma ,T r = Iβ. 由于a = βr ,可得Pr = mr 2β + Iβ, 解得角加速度为2Prmr I β=+= 21.8(rad·s -2). 绳子的张力为2I IPT r mr Iβ==+= 54.4(N). 张力所做的功为W` = Ts = 272.2(J),这就是飞轮此时的转动动能E`k .飞轮的角速度为`ω=s -1).2.34 质量为m ,半径为R 的均匀圆盘在水平面上绕中心轴转动,如图所示.盘与水平面的摩擦因数为μ,圆盘从初角速度为ω0到停止转动,共转了多少圈?解:圆盘对水平面的压力为N = mg ,压在水平面上的面积为S = πR 2, 压强为p = N /S = mg /πR 2.当圆盘滑动时,在盘上取一半径为r 、对应角为d θ面积元,其面积为d S = r d θd r , 对水平面的压力为d N = p d S = pr d r d θ, 所受的摩擦力为d f = μd N = μpr d r d θ,其方向与半径垂直,摩擦力产生的力矩为d M = r d f = μpr 2d r d θ,总力矩为220d d RM pr r πμθ=⎰⎰312π3p R μ=23mgR μ=.圆盘的转动惯量为I = mR 2/2, 角加速度大小为43M gI Rμβ=-=-,负号表示其方向与角速度的方向相反. 根据转动公式ω2 = ω02 + 2βθ,当圆盘停止下来时ω = 0,所以圆盘转过的角度为2200328R g ωωθβμ=-=,转过的圈数为 203216R n gωθππμ==.F=98N P=98N(a)(b) (图2.33)图2.34[注意]在圆盘上取一个细圆环,其面积为d s = 2πr d r ,这样计算力矩等更简单。
运用刚体定轴转动定律解题(2)
运⽤刚体定轴转动定律解题(2)运⽤刚体定轴转动定律解题转动定律描述刚体定轴转动中的瞬时关系,常常⽤来求解⾓加速度,⼀般步骤为:1) 隔离物体:即明确研究对象。
2) 具体分析:分析所选定的定轴刚体的受⼒情况和运动情况,画出受⼒图。
3) 选定坐标:在惯性系中建⽴⼀维坐标,即在转轴上选择正⽅向。
4) 建⽴⽅程:⽤转动定律列出定轴刚体的运动微分⽅程。
5) 要特别注意⽅程中的⼒矩、转动惯量必须对同⼀轴⽽⾔。
还要注意此⽅程是标量式,式中各量均为代数量,与所选正⽅向同向的⼒矩和⾓速度为正,反之为负。
6) 求解讨论:求解⽅程,理解和讨论结果的物理意义。
请注意常常与转动定律相联系的综合性问题:与刚体定轴转动或质点圆周运动的运动学问题相联系。
刚体定轴转动与质点平动相联系(例如滑轮两边悬挂物体)。
处理⽅法仍然是隔离法,对定轴刚体⽤转动定律列⽅程,对平动质点⽤⽜顿第⼆定律列⽅程,⼆者之间⽤⾓量与线量的关系联系起来,求解⽅程组。
运⽤⾓动量定理或⾓动量守恒定律解题因为对定轴转动的刚体,其总动量往往并⽆实际意义(例如定轴转动滑轮的总动量为零),所以只能⽤⾓动量对其整体机械运动量进⾏量度。
在⼒矩持续作⽤⼀段时间的问题中,则⽤⾓动量定理取代平动问题中的动量定理。
对于平动质点和定轴刚体组成的系统,既可以对于系统整体运⽤⾓动量定理,也可以分别对平动质点运⽤动量定理,对定轴刚体运⽤⾓动量定理,再⽤⼒矩表达式将⼆者联系起来。
运⽤⾓动量定理或⾓动量守恒定律解题的⼀般步骤与运⽤动量定理或动量守恒定律求解平动问题类似,只不过⽤⾓量取代相应的线量:1. 选系统:即确定研究对象。
2. 建坐标:选取惯性系,确定参考点或转轴。
3. 选过程:即选取⼀定的时间间隔,确定系统的初、末态。
对于综合性问题,可以划分为⼏个互相衔接的阶段处理。
4. 算⼒矩:画出对所选定的参考点或转轴⼒矩不为零的外⼒,⽆须分析系统内⼒和对参考点或转轴⼒矩为零的外⼒。
5. 列⽅程:如果不满⾜⾓动量守恒条件,运⽤⾓动量定理列⽅程:对固定点:对定轴:如果满⾜⾓动量守恒条件,运⽤⾓动量守恒定律列⽅程:对固定点:对定轴:6. 求解并讨论:求解⽅程,理解和讨论结果的物理意义。
[分享]第四章刚体的转动问题与习题解答
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
刚体的定轴转动(带答案)
欢迎阅读页脚内容刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C(D 2、(本题静止开的? [ A ](A (B (C (D 3. (A ) (B ) (C )页脚内容(D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题设A (A )βA (C )βA 6、(本题(A (B (C (D 7、(本题现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ C ](A)只有机械能守恒。
(B)只有动量守恒。
(C)只有对转轴O的角动量守恒。
(D)机械能、动量和角动量均守量。
8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,(A9、(本题(A)ω(C)ω10、ω[ C ](A(C)减少(D)不能确定11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML2,一质量为m,速率为v的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V,则此时棒的角速度应为 [B ](A(312、中心(A(C13、(A(B(C14、页脚内容有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。
03刚体的定轴转动
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM
阻
0l
gxdx
1 2
gl 2
1 2
mgl
24
转动中的功和能
一. 力矩的功
设刚体上P点受到外力 F 的作用, z
位移为 d
r,
dW F ds
功为 d
三. 匀变速转动公式
当刚体绕定轴转动的角加速度为恒量时,刚
体做匀变速转动 .
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
x
x0
v0t
1 2
at 2
0 t
0
0t
1 2
t 2
v2 v02 2a(x x0 )
2 02 2 ( 0 )
5
定轴转动刚体的 转动定律 力矩 角动量 转动惯量
Li
质元mi对转轴Z的角动量为:
x
Liz
Li
cos( π 2
)
mi Riv i
sin
mi ri vi
对组成刚体的所有质元的角动量求和
z
vi
mi
ri Li
Ri
O
y
Lz Liz (rimivi) (miri2)ω
9
Lz Liz miri2 ( miri2 )
i
i
i
令 J miri2
刚体绕OZ轴转动的转动惯量
i
Lz Jω
刚体绕OZ轴转动的角动量
注意:
转动惯量、角动量都是相对量,都必须指明它们是
§3-3 定轴转动刚体的角动量守恒定律 (2)
m1 g T1 m1a T2 m2 g m2 a
转动:分析力矩
1 2 T1 R1 T3 R1 M 1 R 1 1 2 1 T3 R2 T2 R2 M 2 R 22 2 2
六个未知数,六个方
程,可求解T1,T2, T3,a, β1, β2
线量与角量关系:
19
l
r
P
的角动量的大小是相等的,即
向所形成的角才是 角。
l z l rmv sin x 注意: 面对 z 轴观察, 由 r 方向沿逆时针转向 m v的方
3
y
§3-3 定轴转动刚体的角动量守恒定律
一、刚体对转轴的角动量 (Angular momentum ) 设刚体绕z轴作定轴转动, 体元mi对轴的角动量
l m
①
(2) 杆物相碰
(L守恒) ②
M
1 2 1 2 ml 0 M l ml 3 3
21
0
1 2 1 2 ml 0 m l ml 3 3
3g l
① ②
l m
(3) 碰后物体滑动 (动能定理)
M 1 2 Mgs 0 M 2 m 3gl 3M 2 gs ③ 2 gs
子弹射入棒后,以子弹、棒、地 球为一系统,则机械能守恒
m v
11 l 2 2 2 m0l m a m ga1 cos m0 g 1 cos 23 2 1 2 3 m0l 2ma m0l 2 3ma g / 6 14 初速度 v ma
2mg a M 2m
m
0 at 0 M 2m
a 2mg
mg
0
3-2 刚体的定轴转动定理
一个质量为M、半径为R的定滑轮 例1、一个质量为 、半径为 的定滑轮 (当作均匀圆盘)上面绕有细绳,绳的一 当作均匀圆盘)上面绕有细绳, 端固定在滑轮边上,另一端挂一质量为m的 定轴O 端固定在滑轮边上,另一端挂一质量为 的 定轴 物体而下垂。忽略轴处摩擦,求物体m由静 物体而下垂。忽略轴处摩擦,求物体 由静 止下落高度h时的速度和此时滑轮的角速度 时的速度和此时滑轮的角速度。 止下落高度 时的速度和此时滑轮的角速度。 · m t R 绳 v0=0 h
R
角加速度为常量,且与 的方向相反, 角加速度为常量,且与ω0的方向相反,表明圆盘作匀减速转动
ω = ω 0 + αt
当圆盘停止转动时, 当圆盘停止转动时,ω=0,则得 ,
t=
− ω0
α
3 Rω 0 = 4 µg
二、刚体定轴转动的转动定律的应用 题目类型 1.已知转动惯量和力矩,求角加速度; 已知转动惯量和力矩, 已知转动惯量和力矩 求角加速度; 2.已知转动惯量和角加速度,求力矩; 已知转动惯量和角加速度, 已知转动惯量和角加速度 求力矩; 3.已知力矩和角加速度,求转动惯量。 已知力矩和角加速度, 已知力矩和角加速度 求转动惯量。 解题步骤 1.确定研究对象; 确定研究对象; 确定研究对象 2.受力分析; 受力分析; 受力分析 3.选择参考系与坐标系; 选择参考系与坐标系; 选择参考系与坐标系 4.列运动方程; 列运动方程; 列运动方程 5.解方程; 解方程; 解方程 6.必要时进行讨论。 必要时进行讨论。 必要时进行讨论
05刚体的定轴转动习题解答
05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。
简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。
刚体定轴转动定律
F ma
(2) 列方程: 对于刚体:定轴转动定律 M J
线量与角量的关系:at R
(3) 解方程.
例题. 一轻绳跨过一轴承光滑的定滑轮,滑轮可视为
圆 盘 , 绳 的 两 端 分 别 悬 有 质 量 为 m1 和 m2 的 物 块 , 且 m1<m2. 设滑轮的质量为M,半径为R,绳与轮之间无 相对滑动,求物块的加速度和绳中张力.
本次课所讲知识点是刚体力学这部分内容的重点, 希望大家课后好好复习,多多练习,熟练掌握。
切向分量式: Fit fit miait
ait ri Fit fit miri
ri
作圆周运动. z
o
f Fit
i fit
ri mi
Fir
Fi
上式两端同乘以ri再对所有质点求和:
Fit ri fit ri miri2
i
i
i
合外力矩M 内力矩之和 =0 转动惯量J
M J
刚体所受的对某一固定转轴的合外力矩等于刚体 对此转轴的转动惯量与刚体在此合外力矩作用下所 获得的角加速度的乘积.
二、 刚体定轴转动定律与牛顿第二定律的比较
定律方程
牛顿第二定律 F ma
促使运动状态发 生变化的因素
合外力:F
阻碍运动状态发 生变化的因素
产生的物理量
质量:m
加速度:a
刚体定轴转动定律
M J
合外力矩:M
ห้องสมุดไป่ตู้转动惯量:J
角加速度:
三、 刚体定轴转动定律的应用
解题思路:
(1) 受力分析;
对于质点:牛顿第二定律
刚体定轴转动定律
一、 刚体定轴转动定律的证明
刚体可看成是由n个质点组成的连续质点系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用刚体定轴转动定律解题转动定律描述刚体定轴转动中的瞬时关系,常常用来求解角加速度,一般步骤为:1) 隔离物体:即明确研究对象。
2) 具体分析:分析所选定的定轴刚体的受力情况和运动情况,画出受力图。
3) 选定坐标:在惯性系中建立一维坐标,即在转轴上选择正方向。
4) 建立方程:用转动定律列出定轴刚体的运动微分方程。
5) 要特别注意方程中的力矩、转动惯量必须对同一轴而言。
还要注意此方程是标量式,式中各量均为代数量,与所选正方向同向的力矩和角速度为正,反之为负。
6) 求解讨论:求解方程,理解和讨论结果的物理意义。
请注意常常与转动定律相联系的综合性问题:与刚体定轴转动或质点圆周运动的运动学问题相联系。
刚体定轴转动与质点平动相联系(例如滑轮两边悬挂物体)。
处理方法仍然是隔离法,对定轴刚体用转动定律列方程,对平动质点用牛顿第二定律列方程,二者之间用角量与线量的关系联系起来,求解方程组。
运用角动量定理或角动量守恒定律解题因为对定轴转动的刚体,其总动量往往并无实际意义(例如定轴转动滑轮的总动量为零),所以只能用角动量对其整体机械运动量进行量度。
在力矩持续作用一段时间的问题中,则用角动量定理取代平动问题中的动量定理。
对于平动质点和定轴刚体组成的系统,既可以对于系统整体运用角动量定理,也可以分别对平动质点运用动量定理,对定轴刚体运用角动量定理,再用力矩表达式将二者联系起来。
运用角动量定理或角动量守恒定律解题的一般步骤与运用动量定理或动量守恒定律求解平动问题类似,只不过用角量取代相应的线量:1. 选系统:即确定研究对象。
2. 建坐标:选取惯性系,确定参考点或转轴。
3. 选过程:即选取一定的时间间隔,确定系统的初、末态。
对于综合性问题,可以划分为几个互相衔接的阶段处理。
4. 算力矩:画出对所选定的参考点或转轴力矩不为零的外力,无须分析系统内力和对参考点或转轴力矩为零的外力。
5. 列方程:如果不满足角动量守恒条件,运用角动量定理列方程:对固定点:对定轴:如果满足角动量守恒条件,运用角动量守恒定律列方程:对固定点:对定轴:6. 求解并讨论:求解方程,理解和讨论结果的物理意义。
请特别注意:请注意在某一过程中角动量守恒,不仅指该过程始、末状态的角动量相等,而且要求整个过程中任意两个瞬间系统角动量的大小、方向都不变。
所以,角动量守恒条件是系统所受的合外力矩为零,而不是合外力矩的角冲量为零。
请注意方程中的力矩、角动量均应该对同一参考点或转轴而言。
在对固定点的方程中要注意其矢量性,在对定轴的方程中要注意其正、负号。
请特别注意区分系统动量守恒和角动量守恒的条件。
例如,区分图5.4中的两种不同的冲击摆:在图5.4(a)中,m、M系统的动量及对O的角动量均守恒。
而在图5.4(b)中,轴O对系统的约束力不能忽略,但该约束力对O轴的力矩为零,所以,系统所受合外力不为零,系统总动量不守恒;系统所受对O轴的合外力矩为零,对O轴的角动量守恒。
角动量守恒定律[典型例题]例7-1. 如图所示,质点P 的质量为2kg ,位置矢量为r,速度为v ,它受到力F 的作用这三个矢量均在OXY 面内,且r=3.0m,v=4.0m/s, F=2N , 则该质点对原点O 的角动量L = __________。
作用在质点上的力对原点的力矩M =____________。
解:v m L ⨯=γ⇒s m kg mv L /1230sin 20⋅==γ F M ⨯=γ⇒ m N F M ⋅==0.330sin 0γ例7-2.一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6m 。
先让人体同5rad/s 的角速度随转椅旋转. 此后,人将哑铃拉回使与转轴距离为0.2m ,人体和转椅对轴的转动惯量为5kg ·m 2,并视为不变. 每一哑铃的质量为5kg 可视为质点人体的角速度ω=_______.解:角动量守恒 ωω)()(20010J J J J +=+这里, 205m kg J ⋅=,218.1m kg J ⋅=,222.0m kg J ⋅= s rad /82.558.6=⨯=∴ω例7-3.长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为 M l 2/3,开始时杆竖直下垂,如图所示。
有一质量为m 的子弹以水平速度0v 射入杆上A 点,并嵌在杆中,OA=2l /3,则子弹射入后瞬间杆的角速度ω=____.解:角动量守恒 ωω)(2101J J J +=这里, 2321)(l m J =,2312Ml J =, ∴ l v m M M 0436⋅+=ω例7-4.如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为 [ ] (A) ML m v . (B) ML m 23v . (C) ML m 35v. (D) ML m 47v .v俯视图解:角动量守恒 L m ML mvL v 2231+=ω, ML m 2v3=ω, ∴ 选(D )例7-5.在一光滑水平上,有一轻弹簧,一端固定,一端连接一质量m=1kg 的滑块,如图所示。
弹簧自然长度l 0=0.2m ,倔强系数k=100N ·m -1。
设t=0时,弹簧长度为0l ,滑块速度v 0=5m ·s -1,方向与弹簧垂直。
在某一时刻,弹簧位于与初始位置垂直的位置,长度l=0.5m 。
求该时刻滑块速度v 的大小和方向。
解: θsin 00 mv mv =0202030,/4)(==--=θs m v v m k解得例7-6.一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 圆盘转动时所受到摩擦力的力矩(3) 经过多少圈后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为MR 2/2,忽略子弹重力造成的摩擦阻力矩)提示:(1) R vM m m MR mR R mv 0002202/)2/(+=⇒+=ωω (2) MgR g rdr R Mr Mg d r M Rf μππμμ⋅==⋅=⎰⎰3/2)2()(02 (3)2022121)(0ωθMR M f -=∆-g R μωθ2083=∆∴==∆=∴g R n πμωπθ16322练习七一、选择题:7-1.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为w 0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为 [ ](A) w 0/3. (B) ()3/1 w 0. (C) 3 w 0. (D) 3 w 0.提示:角动量守恒:0003II ωω= 03ωω∴= (选D )20212212021)( -+=k mv mv7-2.质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针 (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.[ ]提示:人台系统角动量守恒:0=J ω+mvR2()mR v J R ω∴= (选A)7-3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒. (D) 角动量不守恒,动量也不守恒. [ ]提示:卫星所受唯一外力为万有引力,是“有心力”,故角动量守恒;该外力不做功,故动能守恒。
7-4.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] (A)02ωmR J J +. (B)()02ωR m J J +. (C)02ωmR J . (D)0ω.提示:人台系统角动量守恒:0J mvR J ωω=+,其中v R ω=,(选A )二、填空题:7-5.定轴转动刚体的角动量(动量矩)定理的内容是______ _____________________,其数学表达式可写成______________________ _.动量矩守恒的条件是___________ . 提示:数学表达式2121t t Mdt L L =-⎰;条件:和外力矩为零7-6.有一长度为l ,质量为m 1的均匀细棒,静止平放在光滑水平桌面上,它可绕通过其端点O ,且与桌面垂直的固定光滑轴转动,转动惯量J =m 1l 2/3.另有一质量为m 2、水平运动的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,碰撞时间极短.已知小滑块与细棒碰撞前后的速率分别为v 和u ,则碰撞后棒绕O 轴转动的角速度w =________________.提示:滑块与棒角动量守恒:22m vl m ul J ω=-+ 213()m v u m l ω+∴=7-7.若作用于一力学系统上外力的合力为零,则外力的合力矩____________(填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 ____________. 提示:反例如:合力为0,但合力矩不为0,此时动量一定守恒。
7-8.一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h .使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线.当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能E K 与初动能E K 0的比值E K / E K 0 = _______________ .提示:小球运动过程角动量守恒:0mv h mvh =⇒ 0v h v l = ⇒ 22220v h v l =三、计算题7-9.如图所示,在中间有一小孔O 的水平光滑桌面上放置一个用绳子连结的、质量m = 4 kg 的小块物体.绳的另一端穿过小孔下垂且用手拉住.开始时物体以半径R 0 = 0.5 m 在桌面上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.而绳最多只能承受 600 N 的拉力.求绳刚被拉断时,物体的转动半径R 等于多少?提示:N 、G 合力矩为0,T 为有心力,故物体角动量守恒:00mv R mvR = ①又有拉力提供向心力:2mv T R = ② 联立①②可解7-10.有两位滑冰运动员,质量均为50 kg ,沿着距离为3.0 m 的两条平行路径相互滑近.他们具有10 m/s 的等值反向的速度.第一个运动员手握住一根3.0 m 长的刚性轻杆的一端,当第二个运动员与他相距3m 时,就抓住杆的另一端.(假设冰面无摩擦)(1) 试定量地描述两人被杆连在一起以后的运动.(2) 两人通过拉杆而将距离减小为1.0m ,问这以后他们怎样运动?提示:(1)、抓杆后两人绕杆中心作圆周运动,角速度为101.5v r ω==(m/s )(2)、两人各自受G 、N ,力矩总和为0,故两人所成系统角动量守恒;两人通过拉杆将距离减小时,手与杆间摩擦力为有心力,不引入外力矩,故角动量仍守恒。