初中数学竞赛专题选讲-配方法(含答案)

合集下载

最全最新初中数学竞赛——配方法

最全最新初中数学竞赛——配方法

初中数学竞赛专题讲解配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。

配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。

运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。

熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++;3.[]222222)()()(21a c c b b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 一、基础过关:1.因式分解:44x +=________________________________________2.=_______________________________3.代数式222a a +-的最小值为多少?4.求方程222450x y x y ++-+=的解,x y5.已知20172018a x =+,20172019b x =+,20172020c x =+,则多项式 222a b c ab bc ca ++---的值为多少?6.若12123y z x +--==,则222x y z ++的最小值为多少? 二、例题讲解例1.因式分解:222241a b a ab b -+-+练习1:在ABC ∆中,,,a b c 为ABC ∆的三条边,且满足444222212a b c a c b c ++=+,试判断ABC ∆的形状练习2:因式分解 ①4224x x y y ++ ; ②222669x xy y x y -+-++; ③42221x x ax a +--+例2.化简下列二次根式: ①347+; ②32-; ③223410+-.练习2:(1)化简: (2练习3:如果a =45x <<时,求a 的值练习4:若152a b c +-=-,则a b c ++的值为多少?例3.求下列代数式的最大或最小值:①22101x x ++; ②2112x x -+-练习1:已知y x ,实数满足0332=-++y x x ,则y x +的最大值为练习2:设,a b 为实数,那么222a ab b a b ++--的最小值是多少?练习3:若,,a b c 满足2229a b c ++=,代数式()()()222a b b c c a -+-+-的最大值是 多少?练习4:正实数,,x y z 满足10xy yz +=,则22254x y z ++的最小值为多少练习5:已知实数,,x y z 满足2623x y z x y z +-=⎧⎨-+=⎩求222x y z ++的最小值例4.解下列方程:①422210x x xy y -+++=; ②222624100x xy x y y +++++=练习1:已知24,40a b ab c -=++=,则a b c ++的值为多少?练习2:已知,,,a b c d 都为正数,且满足44444a b c d abcd +++=,求证:a b c d ===练习3:已知实数,,x y z 满足25,9x y z xy y +==+-,求23x y z ++的值练习4:已知,,a b c 是ABC ∆的三边长,且满足222222222,,111a b c b c a a b c ===+++,试求ABC ∆的面积练习5:已知,x y 为实数,且22422y x xy y ++≤+,求x y +的值练习6:已知0a b >>,且226a b ab +=,则a b a b+-的值为多少?例5:求方程22410160x y x y +-++=的整数解练习1:已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第08章-二次方程与方程组

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第08章-二次方程与方程组

第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。

例1、利用直接开平方法解下列关于x 的方程。

(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。

(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。

(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。

例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。

求ab ab b a b a --++的值。

例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。

求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。

数学培优竞赛新方法(九年级)-配方法

数学培优竞赛新方法(九年级)-配方法

配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。

配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。

运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。

熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++; 3.[]222222)()()(21a c cb b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 【例1】已知y x ,实数满足0332=-++y x x ,则y x +的最大值为(镇江市中考题)思路点拨 把y 用x 的式子表示,通过配方法求出y x +的最大值。

【例2】已知c b a 、、,满足722=+b a ,122-=-c b , 1762-=-a c ,则c b a ++的值等于( )A.2B.3C.4D.5(河北省竞赛题)思路点拨 由条件等式的特点,从整体叠加配方入手【例3】已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。

(北京市竞赛题)思路点拨 设222004m a a =+(m 为正整数),解题的关键是把等式左边配成完全平方式。

【例4】已知c b a 、、是整数,且01,422=-+=-c ab b a ,求c b a ++的值(浙江省竞赛题)【例5】若y x 、是实数,且y x y xy x m 446422--+-=,确定m 的最小值(北京市竞赛题)分析与解 选择x 为主元,将条件等式重新整理成x 的二次三项式,利用配方求m 的最小值。

练习1.设mn n m n m 4,022=+>>,则mnn m 22-的值等于( )A.32B.3C.6D.3(2011年南通市中考题)2.已知m m Q m P 158,15172-=-=(m 为任意实数),则Q P 、的大小关系为( ) A.Q P > B.Q P = C.Q P < D.不能确定(泰州市中考题)3.若实数z y x 、、,满足0))((4)(2=----z y y x z x ,则下列式子一定成立的是( )A.0=++z y xB.02=-+z y xC.D.02=-+y x z(2011年天津市中考题)4.化简2121722321217223---++的结果是( ) A.2 B.2- C.2 D.2-(2011年江西省竞赛题)5.已知实数c b a 、、满足016,72=++++=+-c b bc ab c b a ,则ab的值等于 (天津市竞赛题)6.当2>x 时,化简代数式1212--+-+x x x x 得(“希望杯”邀请赛试题)7.已知z y x 、、为实数,且满足52,352-=--=-+z y x z y x ,则222z y x ++的最小值为 。

配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)以下是网友分享的关于配方法的题及其答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一配方法及其应用初一()班学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。

配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b ) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:222a 2+b 2=(a +b ) 2-2ab =(a -b ) 2+2ab ;b 2⎛3⎫2⎛a +ab +b =(a +b ) -ab =(a -b ) +3ab =a ++ b ⎪;⎝2⎭⎝2⎭2222a 2+b 2+c 2+ab +bc +ca =[(a +b ) 2+(b +c ) 2+(c +a ) 2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a +2b -2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式, 从而求出两个未知数的值. 解:∵a +2b -2ab -2b +1=0,∴a +b -2ab +b -2b +1=0,∴(a -b ) +(b -1) =0.∵(a -b ) ≥0,(b -1) ≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知x 2y 2+x 2+4xy +13=6x , 则x,y 的值分别为[1**********]122、已知a +b +4a -2b +5=0,则3a +5b -4的值为___ ___.4. 已知x 2+2xy +y 2-6x -6y +9=0,则x +y 的值为5、若a 、b 为有理数,且2a 2-2ab +b 2+4a +4=0,则a 2b +ab 2的值为___ ___.6、已知a 、b 、c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值为______.7、已知a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 的值为___ ___.228. 已知a +b +1=ab +a +b ,则3a -4b 的值为___ ___. 2222二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -ac =0, ,判断这个三角形的形状.分析:等式两边乘以2, 得2a 2+2b 2+2c 2-2ab -2bc -2ac =0, 配方,得(a 2-2ab +b 2)+(b 2-2bc +c 2)+(c 2-2ca +a 2)=0,即(a -b )+(b -c )+(c -a )=0. 222由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知3a 2+b 2+c 2=(a +b +c ),求证:a =b =c 2()44442、已知:a +b +c +d =4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d。

九年级数学解一元二次方程--配方法(基础)(含答案)

九年级数学解一元二次方程--配方法(基础)(含答案)

解一元二次方程--配方法(基础)一、单选题(共10道,每道10分)1.已知关于x的一元二次方程有实数根,则m的取值范围为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元二次方程的根的判别式2.一元二次方程的根为( )A.x=3B.C. D.答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法3.一元二次方程可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4答案:D解题思路:略试题难度:三颗星知识点:解一元二次方程——配方法4.用配方法解一元二次方程,下列变形正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法5.用配方法解下列方程,其中应在等号左右两边同时加上16的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:解一元二次方程——配方法6.一元二次方程配方法可化为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:解一元二次方程——配方法7.已知方程可以配方成,则2019(m-n)的值为( )A.2019B.-2019C.4038D.-4038答案:B解题思路:试题难度:三颗星知识点:解一元二次方程——配方法8.一元二次方程的解是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解一元二次方程——配方法9.一元二次方程的解是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解一元二次方程——配方法10.若一元二次方程的两根为a,b,且a>b,则2a-b的值为( )A.-57B.63C.179D.181答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法。

配方法的应用含答案

配方法的应用含答案
的形式是解题的关键.
(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出 x、y 的值,然后代入代数式计算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出 a、b 的值, 然后利用三角形的三边关系即可求解.
第 3页,共 3页
=(a+2)2-9.故选 D.
3. 设 A=2a+3,B=a2-a+7,则 A 与 B 的大小关系是( )
A. A>B
B. A<B
C. A≥B
D. A≤B
【答案】B
【解析】【分析】
本题考查了配方法的应用,非负数的性质以及整式的加减,配方法的理论依据是公式
a2±2ab+b2=(a±b)2,通过作差法和配方法比较 A 与 B 的大小.
D. (a+2)2-9
【答案】D
【解析】【分析】
此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改
变式子的值.若二次项系数为 1,则常数项是一次项系数的一半的平方,若二次项系数
不为 1,则可先提取二次项系数,将其化为 1 后再计算.
【解答】
解:a2+4a-5
=a2+4a+4-4-5
配方法的应用
一、选择题
1. 不论 x、y 为什么实数,代数式
的值( )
A. 总不小于 2 B. 总不小于 7 C. 可为任何实数 D. 可能为负数
【答案】A
【解析】[分析]
把代数式 x2+y2+2x-4y+7 根据完全平方公式化成几个完全平方和的形式,再进行求解.
[详解]
x2+y2+2x-4y+7=(x+1)2+(y-2)2+2≥2,

人教版 初二数学 竞赛专题:配方法(包含答案)

人教版 初二数学 竞赛专题:配方法(包含答案)

人教版 初二数学 竞赛专题:配方法(含答案)【例1】 已知实数x ,y ,z 满足25,z 9x y xy y +==+- ,那么23x y z ++=_____ 【例2】 若实数a ,b , c 满足2229a b c ++= ,则代数式222()()()a b b c c a -+-+- 的最大值是 ( )A 、27B 、18C 、15D 、12【例3】 已知152a b c +-=-, 求a + b + c 的值.【例4】 证明数列49,4489, 444889,44448889,…的每一项都是一个完全平方数.【例5】 一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).【例6】 已知自然数n 使得21991n n -+ 为完全平方数,求n 的值.能力训练1=_________.2、已知2222()30a b c a b c ++-+++= ,则3333_________a b c abc ++-=.3、x ,y 为实数,且22422y x xy y ++≤+ ,则x + y 的值为__________.4、当x >2,得___________.5、已知224121049m x xy y y =-+++ ,当x =________,y =______时,m 的值最小. 6、若22221076,51M a b a N a b a =+-+=+++ ,则M -N 的值 ( )A 、负数B 、正数C 、非负数D 、可正可负7的值为 ( )A 、1 BC、 D、8、设a ,b , c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,则x ,y ,z 中至少有一个值 ( )A 、大于零B 、等于零C 、不大于零D 、小于零9、下列代数式表示的数一定不是某个自然数的平方(其中n 为自然数)的是( )A 、2333n n -+B 、2444n n ++C 、2555n n -+ D 、2777n n -+ E 、2111111n n -+10、已知实数a ,b , c 满足22227,21,617a b b c c a +=-=--=- ,则a + b + c 的值等于 ( )A 、2B 、3C 、4D 、5 解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:设x 1,x 2,x 3,… x n 为实数.(1) 若120n x x x ⋅⋅⋅=L 则x 1,x 2,x 3,… x n 中至少有(或存在)一个为零; (2) 若120n x x x +++>L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个大于零; (3) 若120n x x x +++<L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个小于零.11、解方程组222222212121z x z x y x y z y⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩12、能使2256n+ 是完全平方数的正整数n 的值为多少?13、已知b a >,且()()243aa b a ab b b+++-+= ,a ,b 为自然数,求a ,b 的值.13、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ ,求a ,b 的值.14、某宾馆经市场调研发现,每周该宾馆入住的房间数y 与房间单价x 之间存在如图所示的一次函数关系.(1) 根据图象求y 与x 之间的函数关系式(0<x <160);(2) 从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元?间数(个)yx0 50 100540990 单价(元)答案例 1 10 提示:x =5-y 代入z 2=xy +y −9,然后配方.例2 A 提示:原式=3(a 2+b 2+c 2)−(a 2+b 2+c 2+2ab +2bc +2ac ).例 3 a+b+c =20 提示:将等式整理,得(a −1−2√a −1+1)+(b −2−4√b −2+4)+12(c −3−6√c −3+9)=0即(√a −1−1)2+(√b −2−2)2+12(√c −3−3)2=0例 4 原式=44⋯44 ⏟ n+188⋯88⏟ n+1+1=44⋯44 ⏟ n+100⋯00⏟ n+1+88⋯88⏟ n+1+1=4×11⋯11 ⏟ ×n+110n+1 +8×11⋯11 ⏟n+1+1=4()2211111111119111118111113611111211111611111n n n n n n ++++++⎛⎫⎛⎫⨯⨯⨯++⨯+=⨯+⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭L L L L L L 12312312312312314243 例5 已知,这32个人恰好是第2至第33层各住1人,对于每个乘电梯上、的人,他所住的层数一定不小于直接上楼的人所住的层数,事实上,设住S 层的人乘电梯,而住t 层的人直接上楼,S <t ,交换两人的上楼方式,其余的人不变,则不满意总分减少.设电梯停在第x 层,在第一层有y 人没有乘电梯而直接上楼,那么不满意总分为: ()()()31233312122S x y x y =+++-++++++++--⎡⎤⎡⎤⎣⎦⎣⎦L L L=()()()()()333343121222x x y y x y x y ⨯--+----++=()222102231684x y x y y -++++ =()221021215180306848y x y y +⎛⎫-+-+ ⎪⎝⎭=()2210212631631648y x y +⎛⎫-+-+≥ ⎪⎝⎭又当x=27,y=6时,=316S 最小值.故当电梯停在第27层时,总分最小,最小值为316分.例6 若2n 19n 91-+为完全平方数,则()24n 19n 91-+也是完全平方数.设()224n 19n 91=m -+(m 为自然数)配方得()222n 193=m -+,0 50 100单价(元)∴(m+2n-19)(m-2n+19)=3于是219=3219=1219=1219=3m n m n m n m n +-+--+-+⎧⎧⎨⎨⎩⎩或 解得:=2=2=10=10m m n n ⎧⎧⎨⎨⎩⎩或故当n=9或10时2n 19n 91-+是完全平方数. 能力训练1.4+ 2. 0 3. 6 4.5. -3,-2, 56. B7. C8. A 提示:()()()222x y z=a 1b 1c 13π++-+-+-+-大于0 . 9. B 提示:取n=2和3可否定A 、C 、D 、E ,而()224n 4n 4=4n n 1++++,()222n n n 11n <++<+,故2n n 1++不是完全平方数. 10. B11. (x ,y ,z )=(0,0,0)或(1,1,1) 提示:取倒数. 12. 提示:当n<8时,(22222=01+ab a b =m--,若它是完全平方数,则n 必为偶数.若n=2,则22256265n +=⨯;若n=4,则42256217n +=⨯;若n=6,则6225625n +=⨯;若n=8,则8225622n +=⨯.所以当n ≤8时,2256n +都不是完全平方数.当n>8时,8n 822562(21)n -+=+,若它是完全平方数,则n 821-+为一奇数的平方,设()2n 82121k -+=+(k 为自然数),则()n 10211k k -+=+,由于k 和k+1一奇一偶,∴k=1,于是n 1022-=,故n=11.13. 提示:设a=kb (k 为正整数),则()222124327339k b +==⨯=⨯,解得542428a a b b ==⎧⎧⎨⎨==⎩⎩或 14. 由()222292a b =5093k +⨯,得到2a+b=509k ,b=509k-2a ,代入原式得()224a 511509k 2a =5093k +-⨯,()k 5119k a=2-,因为a 为质数,故有以下情况:⑴当k=1时,5119a==2512-,为质数,b=509k-2a=7. ⑵当k=2时,a=511-18=493=17×29,不为质数,舍去. ⑶当k>2且k 为奇数时,5119k a=k 2-•为质数且k>2,则5119k=12-,此方程无整数解,舍去.⑷当k>2且k 为偶数时,()k a=5119k 2-为质数,且k12>,则511-9k=1,此方程无整数解,舍去.综上所述,a=251,b=7.15. 提示:⑴ y=-9x+1440 (0<x<160).⑵每周的住宿收入是S 元,则()()22914409144098057600S x x x x x =-+=-+=--+ 当x=80时,57600S =最大元.。

【华东师大版】九年级数学上册:22.2.2《配方法教案(含答案)

【华东师大版】九年级数学上册:22.2.2《配方法教案(含答案)

2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x 2+6x+9=25(3)x 2+6x=16(4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2 (2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax 2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x 2-4x-8=0(2)x 2-4x+2=0(3)x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求(xy )z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.。

七年级下册配方法竞赛题

七年级下册配方法竞赛题

七年级下册配方法竞赛题配方法是把一个代数式经过变化成一个完全平方式或含有完全平方式的代数式形式。

这种变化的手段在解决初中数学问题时有着广泛的应用。

1. 用配方法分解因式例1. 分解因式分析:观察题目发现中间项系数如果为2时,即符合公式。

由此可考虑使用配方法解决。

解:原式2. 用配方法化简求值例2. 已知。

求的值。

分析:本题若把x,y直接代入较为复杂。

但用配方法将代数式适当变形,则可简化运算。

解:原式3. 用配方法确定代数式的最值例3. 当x变化时,分式的最小值是_________。

分析:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值。

解:原式故当时,原式有最小值4。

4. 用配方法证明等式例4. 已知。

求证。

分析:初看本试题较为复杂,若将已知方程左边拆开重组,进行配方变形,然后由非负数性质,便可找出其中奥妙。

证明:由非负数的性质,得且,5. 用配方法解方程有关问题例5. 已知,在斜边为10的直角三角形中,两直角边a、b是方程的两个根。

求m的值。

分析:本题可由一元二次方程根与系数的关系及勾股定理得出相应的关系式,进行配方变形后整体代入即可。

解:依题意,得由(3),得,将(1)、(2)代入(4),则解得(不合题意,舍去),6. 用配方法解决二次函数有关问题例6. 某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多销售2件,问:每件衬衫降价多少元时,商场平均每天盈利最多?分析:实际生活中的问题,往往可以通过建立适当的函数关系式,求函数的最值来解决。

而求函数最值是通过配方法来完成的。

本试题中“平均每日盈利”是“每件衬衫售价”的函数,故考虑用函数来解决。

解:设每件衬衫降价x元时,商场平均每天盈利y元。

则当5时,答:略。

思考与练习:1. 在实数范围内解方程。

(完整版)初中数学竞赛专题选讲-配方法(含答案)

(完整版)初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。

九上 一元二次方程 4.2.2 配方法含答案

九上 一元二次方程 4.2.2 配方法含答案

第2课时配方法1.(1)x2+_______=(x+)2;(2)x2-5x+_______=(x-_______)2.2.用配方法解一元二次方程x2-4x-3=0,配方后得到的方程是( )A.(x-2)2=1 B.(x-2)2=4 C.(x-2)2=7 D.(x-3)2=33.一元二次方程x2-ax+b=0,配方后为(x-3)2=b,则a=_______,b=_______ 4.在二项式4x2+1后面加上一个单项式,使它成为一个完全平方式,加上的这个单项式可以是_______.(写出所有情况)5.解方程:x2+x-1=0.6.解方程:-12x2+x-2=0.7.解方程:2(x+1)2-8(x+1)+1=0.8.用配方法解方程:2x2-x-3=0.9.若a,b,c是△ABC的三边,且a2+b2+c2-ab-ac-bc=0,则△ABC的形状是_______.思考过程:10.(2012.湖北荆门)已知多项式x2-kx+1是一个完全平方式,求反比例函数y=1 kx的解析式.11.求-3x2+4x+1的最大值.12.(2013.兰州)用配方法解方程x 2﹣2x ﹣1=0时,配方后得的方程为( )A .(x +1)2=0B .(x ﹣1)2=0C .(x +1)2=2D .(x ﹣1)2=213.(2013.广州)解方程:09102=+-x x .14.(2013.日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计正确的是( )A .121-<<-xB .231-<<-xC .321<<xD .011<<-x 15.若,28,1422=++=++x xy y y xy x 则y x +的值为 .16.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是 . 17.实数c b a ,,满足,142,238,176222=+-=+-=+a c c b b a 则=++c b a . 18.若y x ,是实数,且y x y xy x m 446422--+-=,则m 的最小值为 . 19.已知b a ,是实数,),2(4,2022a b y b a x -=++=则y x ,的大小关系是( )A.y x ≤B.y x ≥C.y x 〈D.y x 〉20.已知实数y x ,满足,3,3242424=+=-y y x x 则444y x+的值为 ( ) A.7 B.2131+ C.2137+ D.5 21.若a 是整数,且a a 20042+是一个正整数的平方,求a 的最大值.22.已知a 、b 、c 均为实数,且,10342,42-=-=+c ab c b a 求ab 的值.参考答案1.(1)134 2 (2)25452 2.C3.6 34.±4x 或4x 45.x 1=2,x 2=-26.无解7. x 1=22+,x 2=228. x 1=32,x 2=-1 9.等边三角形10.y =1x 或y =-3x11.7312.D 13.将方程09102=+-x x 变形为:9102-=-x x 配方, 25925102+-=+-x x整理,得16)5(2=-x解得,121,9x x ==14.A15.-7或616.0.117.-818.-2219.B20.A。

部编数学九年级上册专题03《配方法解一元二次方程》重难点题型分类(解析版)含答案

部编数学九年级上册专题03《配方法解一元二次方程》重难点题型分类(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题03 《配方法解一元二次方程》重难点题型分类专题简介:本份资料专攻《配方法解一元二次方程》中“用配方法解二次项系数为1的一元二次方程”、“用配方法解二次项系数不为1的一元二次方程”、“利用一元二次方程的配方求字母的值”、“利用一元二次方程的配方法解新定义问题”、“配方法的应用”、“一元二次方程的几何解法”、重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:用配方法解二次项系数为1的一元二次方程方法点拨:二次项系数为1时配方法的步骤:(1)找出一次项系数;(2)加一次项系数一半的平方,减一次项系数一半的平方,常数项不管(加了就要减,不改变原式的大小);(3)配方处理,合并常数项,写成完全平方的形式。

15年八年级数学同步培优竞赛详附答案:第二十四讲 配方法的解题功能

15年八年级数学同步培优竞赛详附答案:第二十四讲 配方法的解题功能

名师第二十四讲 配方法的解题功能 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.运用配方法解题的关键是恰当地“配凑”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.例题求解【例1】已知有理数x ,y ,z 满足)(2121z y x z y x ++=-+-+,那么(x —yz)2的值为 . (北京市竞赛题) 思路点拨 三元不定方程,尝试从配方法人手.【例2】 若32211-=+=-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .1459 C .29 D .6 (武汉市选拔赛试题)思路点拨 通过引参,设k z y x =-=+=-32211,把x ,y ,z 用k 的代数式表示,则222z y x ++转化为关于k 的二次三项式,运用配方法求其最小值.【例3】怎样的整数a 、b 、c 满足不等式:c b ab c b a 233222++<+++.(匈牙利数学奥林匹克试题)思路点拨 一个不等式涉及三个未知量,运用配方法试一试.【例4】 求方程m 2-2mn+14n 2=217的自然数解. (上海市竞赛题)思路点拨 本例是个复杂的不定方程,由等式左边的特点,不难想到配方法.【例5】求实数 x 、y 的值,使得(y -1)2+(x+y -3)2+(2x+y -6)2达到最小值.(全国初中数学联赛试题)思路点拨 展开整理成关于x(或y)的二次三项式,从配方的角度探求式子的最小值,并求出最小值存在时的x 、y 的值.【例6】 为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD ,AB=10m ,BC=20m)上进行绿化,中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个直角三角形)上铺设草坪,并要求AC =AH=CF=CG ,那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH (中间种花的一块)面积最大?若存在,请求出该设计中AE 的长和四边形EFGH 的面积;若不存在,请说明理由.(2温州市中考题)思路点拨 这是一道探索性几何应用题,解题的关键是代数化.设AE=AH=CF=CG=xm ,则BE=DG=(20-x)m ,四边形E FGH 的面积可用x 的代数式表示,利用配方法求该代数式的最大值.注 配方的对象具有多样性,数,字母、等式、不等式都可以配方;同一个式于可以有不同的配方结果,可以配一个平方式,也可以配多个平方式.配方法的实质在于揭示式子的非负性,而非负数有以下重要性质:(1)若有限个非负数的和为0,则每一个非负数都为零;(2)非负教的最小值为零.学历训练1.若03)(2222=+++-++c b a c b a ,则=-++abc c b a 3333 .(2江西省中考题)2.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 . ( “希望杯”邀请赛试题)3.分解因式:32422+++-b a b a = .4,已知实数 x 、y 、z 满足5=+y x ,92-+=y xy z ,那么z y x 32++= . (“祖冲之杯”邀请赛试题)5.若实数x 、y 满足052422=+--+y x y x ,则xy y x 23-+的值是( ) A .1 B .223+ C .223+ D .2326.已知20001999+=x a ,20011999+=x b ,20021999+=x c ,则多项式ac bc ab c b a ---++222的值为( )A .0B .1C . 2D .3(全国初中数学竞赛题)7.整数x 、y 满足不等式y x y x 22122+≤++,则x+y 的值有( )A .1个B .2个C .3个D .4个 ( “希望杯”邀请赛试题)8.化简312213242--+为( )A .5-43B . 43-lC .5D . 1 (2003年天津市竞赛题)9.已知正整数 a 、b 、c 满足不等式c b ab c b a 8942222++<+++,求a 、b 、c 的值.(江苏省竞赛题)10.已知x 、y 、z 为实数,且满足⎩⎨⎧=+-=-+3262z y x z y x ,求222z y x ++的最小值. (第12届“希望杯”邀请赛试题)11.实数x 、y 、z 满足⎩⎨⎧=+-+-=0223362z xy y x y x ,则z y x +2的值为 . 12.若521332412---=----+c c b a b a ,则a+b+c 的值为 . 13.x 、y 为实数,且y xy y x 24222+≤++,则x 、y 的值为x= ,y= . 14.已知941012422+++-=y y xy x M ,那么当x= ,y= 时,M 的值最小,M 的最小值为 .15.已知4=-b a ,042=++c ab ,则a+b =( )A .4B .0C .2D .-2(重庆市竞赛题)16.设0.>>b a ,ab b a 322=+,则ba b a -+的值为( ) A .2 B .3 C .2 D .5 (江苏省竞赛题)17.若 a 、b 、c 、d 是乘积为l 的4个正数,则代数式cd bd bc ad ac ab d c b a +++++++++2222 的最小值为( )A .0B .4C .8D .1018.若实数a 、b 、c 满足9222=++c b a ,代数式222)()()(a c c b b a -+-+-的最大值是( )A .27 D .18 C .15 D .1219.已知x+y+z=1,求证:31222≥++z y x . (苏奥尔德莱尼基市竞赛题)20.已知a>b ,且243)()(=+-+++ba b ab a b a ,a 、b 为自然数,求a 、b 的值. 21.已知a 、b 、c 是△ABC 的三边长,且满足b a a =+2212,c b b =+2212,a c c =+2212,试求 △ABC 的面积. 22.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产晶是第k 档次(最低档次为第一档次,档次依次随质量增加),求k 的值. (山东省竞赛题)。

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。

【例3】 解关于x 的方程02)1(2=+--a ax x a 。

思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。

【例4】设方程04122=---x x ,求满足该方程的所有根之和。

思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。

【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。

思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知二次函数y=x 2﹣6x+m 的最小值是﹣3,那么m 的值等于( )A .10B .4C .5D .62.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .中位数C .平均数D .方差3.已知命题“关于x 的一元二次方程x 2+bx+1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A .b=﹣1B .b="2"C .b=﹣2D .b=04.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60°,如果⊙O 的半径为2,则结论错误的是( )A .AD="DB"B .C .OD="1"D .AB=5.如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .136.如图,▱ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E=36°,则∠ADC 的度数是( )A .44°B .54°C .72°D .53°7.已知点P (a ,a+3)在抛物线y=x 2﹣7x+19图象上,则点P 关于原点O 的对称点P′的坐标是( )A .(4,7)B .(﹣4,﹣7)C .(4,﹣7)D .(﹣4,7)8.若A (﹣,y 1),B (,y 2),C (,y 3)为二次函数y=x 2+4x ﹣5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 29.下列图形中阴影部分面积相等的是( )A .①②B .②③C .①④D .③④10.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )A .B .C .D .11.如图,抛物线y=﹣2x 2﹣8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴交于点B ,D .若直线y=﹣x+m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .﹣3<m <﹣B .C .﹣2<m <D .﹣3<m <﹣2二、填空题1.如图,点A 是反比例函数y=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC ,若△ABC 的面积为3,则k 的值是 .2.如图,⊙O 的半径为4,OA=8,AB 切⊙O 于B ,弦BC ∥OA ,连接AC ,则图中阴影部分的面积为 .3.对于实数a ,b ,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣6x+8=0的两个根,则x 1⊗x 2= .4.如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D ,过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE ,对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③=;④AE 为⊙O 的切线,一定正确的结论选项是 . 三、解答题 1.如图,直线y=x+m 与反比例函数相交于点A (6,2),与x 轴交于B 点,点C 在直线AB 上且.过B 、C 分别作y 轴的平行线交双曲线于D 、E 两点.(1)求m 、k 的值;(2)求点D 、E 坐标.2.阅读下面的材料:解方程x 4﹣7x 2+12=0这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,则x 4=y 2,∴原方程可化为:y 2﹣7y+12=0,解得y 1=3,y 2=4,当y=3时,x 2=3,x=±,当y=4时,x 2=4,x=±2.∴原方程有四个根是:x 1=,x 2=﹣,x 3=2,x 4=﹣2,以上方法叫换元法,达到了降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.(1)解方程:(x 2+x )2﹣5(x 2+x )+4=0;(2)已知实数a ,b 满足(a 2+b 2)2﹣3(a 2+b 2)﹣10=0,试求a 2+b 2的值.3.如图,⊙O 的直径为10,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA=4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:AC•CD=PC•BC ;(2)当点P 运动到AB 弧中点时,求CD 的长.4.如图,在一块正方形ABCD 木板上要贴三种不同的墙纸,正方形EFCG 部分贴A 型墙纸,△ABE 部分贴B 型墙纸,其余部分贴C 型墙纸.A 型、B 型、C 型三种墙纸的单价分别为每平方米60元、80元、40元.探究1:如果木板边长为1米,FC=米,则一块木板用墙纸的费用需 元;探究2:如果木板边长为2米,正方形EFCG 的边长为x 米,一块木板需用墙纸的费用为y 元,(1)用含x 的代数式表示y (写过程).(2)如果一块木板需用墙纸的费用为225元,求正方形EFCG 的边长为多少米?5.某数学兴趣小组开展了一次活动,过程如下:如图1,等腰直角△ABC 中,AB=AC ,∠BAC=90°,小敏将三角板中含45°角的顶点放在A 上,斜边从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);请你从中任选一种方法进行证明.(3)小敏继续旋转三角板,请你继续研究:当135°<α<180°时(如图4),等量BD2+CE2=DE2是否仍然成立?请作出判断,不需要证明.6.如图,在平面直角坐标系中,顶点为(2,﹣1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3),连接AB.(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.山东初三初中数学竞赛测试答案及解析一、选择题1.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10B.4C.5D.6【答案】D【解析】解:原式可化为:y=(x﹣3)2﹣9+m,∵函数的最小值是﹣3,∴﹣9+m=﹣3,m=6.故选:D.【点评】考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差【答案】B【解析】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1B.b="2"C.b=﹣2D.b=0【答案】A【解析】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.4.如图,⊙O是△ABC的外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,如果⊙O的半径为2,则结论错误的是()A.AD="DB"B.C.OD="1"D.AB=【答案】D【解析】解:连接OA,OB.∵OD⊥AB,∴由垂径定理和圆周角定理知,OD是AB的中垂线,有AD=BD,∠AOD=∠BOD=∠C=60°.∴AD=AOsin60°=,OD=OAsin∠AOD=OAsin60°=1.∴AB=2.∴A,B,C均正确,D错误.故选D.【点评】本题利用了垂径定理和圆周角定理,直角三角形的性质,锐角三角函数的概念求解.5.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.12C.14D.13【答案】C【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD ⊥BC ,CD=BD=BC=4,∵点E 为AC 的中点,∴DE=CE=AC=5,∴△CDE 的周长=CD+DE+CE=4+5+5=14.故选:C .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.如图,▱ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E=36°,则∠ADC 的度数是( )A .44°B .54°C .72°D .53°【答案】B【解析】解:∵BE 是直径,∴∠BAE=90°, ∵四边形ABCD 是平行四边形,∠E=36°, ∴∠BEA=∠DAE=36°, ∴∠BAD=126°, ∴∠ADC=54°,故选:B .【点评】本题考查了圆周角定理及平行四边形的性质,解题的关键是认真审题,发现图形中的圆周角.7.已知点P (a ,a+3)在抛物线y=x 2﹣7x+19图象上,则点P 关于原点O 的对称点P′的坐标是( )A .(4,7)B .(﹣4,﹣7)C .(4,﹣7)D .(﹣4,7)【答案】B【解析】解:把点P (a ,a+3)代入函数y=x 2﹣7x+19得:a+3=a 2﹣7a+19,解得:a=4,∴点P 的坐标是(4,7), ∴点A 关于原点的对称点A′的坐标为(﹣4,﹣7).故选B .【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于原点对称的点坐标之间的关系.8.若A (﹣,y 1),B (,y 2),C (,y 3)为二次函数y=x 2+4x ﹣5的图象上的三点,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】解:∵y=x 2+4x ﹣5=(x+2)2﹣9,∴对称轴是x=﹣2,开口向上,距离对称轴越近,函数值越小,比较可知,B (,y 2)离对称轴最近,C (,y 3)离对称轴最远,即y 2<y 1<y 3.故选:B .【点评】主要考查了二次函数的图象性质及单调性的规律.9.下列图形中阴影部分面积相等的是( )A .①②B .②③C .①④D .③④【答案】D【解析】解:①中直线y=x+2与坐标轴的交点为(0,2)、(2,0).∴三角形的底边长和高都为2则三角形的面积为×2×2=2;②中三角形的底边长为1,当x=1时,y=3 ∴三角形的高为3则面积为×1×3=;③中三角形的高为1,底边长正好为抛物线与x 轴两交点之间的距离∴底边长=|x 1﹣x 2|==2 则面积为×2×1=1;④设A 的坐标是(x ,y ),代入解析式得:xy=2,则面积为×2=1∴阴影部分面积相等的是③④.故选D .【点评】本题综合考查二次函数、一次函数、反比例函数、正比例函数的性质,是一道难度中等的题目.10.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )A .B .C .D .【答案】B【解析】解:连接AF ,EF ,AE ,过点F 作FN ⊥AE 于点N ,∵点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点, ∴AF=EF=1,∠AFE=120°, ∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=, 故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况, 则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故选:B .【点评】此题主要考查了正多边形和圆,正确利用正六边形的性质得出AE 的长是解题关键.11.如图,抛物线y=﹣2x 2﹣8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴交于点B ,D .若直线y=﹣x+m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .﹣3<m <﹣B .C .﹣2<m <D .﹣3<m <﹣2【答案】A【解析】解:令y=﹣2x 2﹣8x ﹣6=0,即x 2+4x+3=0,解得x=﹣1或﹣3,则点A (﹣1,0),B (﹣3,0),由于将C 1向左平移2个长度单位得C 2,则C 2解析式为y=﹣2(x+4)2+2(﹣5≤x≤﹣3),当y=﹣x+m 1与C 2相切时,令y=﹣x+m 1=y=﹣2(x+4)2+2,即2x 2+15x+30+m 1=0,△=﹣8m 1﹣15=0,解得m 1=﹣,当y=﹣x+m 2过点B 时,即0=3+m 2,m 2=﹣3,当﹣3<m <﹣时直线y=﹣x+m 与C 1、C 2共有3个不同的交点,故选:A .【点评】本题主要考查抛物线与x 轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题1.如图,点A 是反比例函数y=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC ,若△ABC 的面积为3,则k 的值是 .【答案】﹣6【解析】解:连结OA ,如图,∵AB ⊥x 轴, ∴OC ∥AB , ∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k<0,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如图,⊙O的半径为4,OA=8,AB切⊙O于B,弦BC∥OA,连接AC,则图中阴影部分的面积为.【答案】π【解析】解:连接OB、OCOB是半径,AB是切线,∵OB⊥AB,∴∠ABO=90°,∴sinA==,∴∠A=30°,∵OC=OB,BC∥OA,∴∠OBC=∠BOA=60°,∴△OBC是等边三角形,因此S阴影=S扇形CBO==π.故答案为π.【点评】本题利用了平行线的性质,同底等高的三角形面积相等,切线的概念,正弦的概念,扇形的面积公式求解.3.对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x 2是一元二次方程x2﹣6x+8=0的两个根,则x1⊗x2= .【答案】±4【解析】解:x2﹣6x+8=0,解得:x=4或2,当x1=2,x2=4时,x1⊗x2=22﹣2×4=﹣4;当x1=4,x2=2时,x1⊗x2=4×2﹣22=4;故答案为:±4.【点评】本题考查了解一元二次方程的应用,能求出符合的所有情况是解此题的关键.4.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论选项是.【答案】①②④【解析】解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴和不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故答案为①②④.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.三、解答题1.如图,直线y=x+m与反比例函数相交于点A(6,2),与x轴交于B点,点C在直线AB上且.过B、C分别作y轴的平行线交双曲线于D、E两点.(1)求m、k的值;(2)求点D 、E 坐标.【答案】(1)m=﹣4,k=12(2)D (4,3) E (1,12)【解析】解:(1)把A (6,2)代入y=x+m 与y=,得m=﹣4,k=12;(2)过A 作AM ⊥x 轴于M ,由(1)可得,直线解析式为y=x ﹣4,y=,当y=0时,x ﹣4=0,x=4,∴B (4,0), ∴BM=2,当x=4时,y==3, ∴D (4,3).又=,∴BN=3, ∴点C 的横坐标是1,又直线AB 的解析式是y=x ﹣4,∴点C 的纵坐标是﹣3,又CE ∥y 轴,∴点E 的横坐标是1,再根据反比例函数的解析式求得点E 的纵坐标是12, 则E (1,12).【点评】此题考查了待定系数法求函数解析式的方法,能够借助平行求点的坐标.2.阅读下面的材料:解方程x 4﹣7x 2+12=0这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,则x 4=y 2,∴原方程可化为:y 2﹣7y+12=0,解得y 1=3,y 2=4,当y=3时,x 2=3,x=±,当y=4时,x 2=4,x=±2.∴原方程有四个根是:x 1=,x 2=﹣,x 3=2,x 4=﹣2,以上方法叫换元法,达到了降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.(1)解方程:(x 2+x )2﹣5(x 2+x )+4=0;(2)已知实数a ,b 满足(a 2+b 2)2﹣3(a 2+b 2)﹣10=0,试求a 2+b 2的值.【答案】见解析【解析】解:(1)设y=x 2+x ,则y 2﹣5y+4=0,整理,得(y ﹣1)(y ﹣4)=0,解得y 1=1,y 2=4,当x 2+x=1即x 2+x ﹣1=0时,解得:x=; 当当x 2+x=4即x 2+x ﹣4=0时,解得:x=; 综上所述,原方程的解为x 1,2=,x 3,4=;(2)设x=a 2+b 2,则x 2﹣3x ﹣10=0,整理,得(x ﹣5)(x+2)=0,解得y 1=5,y 2=﹣2(舍去),故a 2+b 2=5.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.3.如图,⊙O 的直径为10,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA=4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:AC•CD=PC•BC ;(2)当点P 运动到AB 弧中点时,求CD 的长.【答案】见解析【解析】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∵CD ⊥CP , ∴∠PCD=90°, ∴∠ACB=∠PCD , ∵∠A 与∠P 是对的圆周角,∴∠A=∠P , ∴△ABC ∽△PDC ,∴,∴AC•CD=PC•BC ;(2)解:当点P 运动到的中点时,过点B 作BE ⊥PC 于E ,∵BC :CA=4:3,AB=10, ∴BC=8,AC=6, ∵点P 是的中点,∴∠PCB=∠ACB=45°,∴BE=CE=BC•sin45°=8×=4,在Rt △EPB 中,tan ∠P=tan ∠A===, ∴PE=BE=3, ∴PC=PE+CE=7,∴CD=PC•tan ∠P=×7=.【点评】此题考查了相似三角形的判定与性质、圆周角定理、勾股定理以及锐角三角函数的知识.此题难度适中,解题的关键是注意数形结合思想与转化思想的应用.4.如图,在一块正方形ABCD 木板上要贴三种不同的墙纸,正方形EFCG 部分贴A 型墙纸,△ABE 部分贴B 型墙纸,其余部分贴C 型墙纸.A 型、B 型、C 型三种墙纸的单价分别为每平方米60元、80元、40元.探究1:如果木板边长为1米,FC=米,则一块木板用墙纸的费用需 元; 探究2:如果木板边长为2米,正方形EFCG 的边长为x 米,一块木板需用墙纸的费用为y 元, (1)用含x 的代数式表示y (写过程).(2)如果一块木板需用墙纸的费用为225元,求正方形EFCG 的边长为多少米?【答案】(1)55 y=20x 2﹣40x+240(2)正方形EFCG 的边长为或米【解析】解:探究1:∵四边形ABCD 是正方形,∴AB=BC=CD=DA=1, ∴S 正方形ABCD =1,∵四边形EFCG 是正方形,∴EF=CF=,∴S 正方形EFCG =,BF=,∴S △ABE ==∴空白部分的面积为:1﹣﹣=,∴这块木板用墙纸的费用为:+80+40×=55元.故答案为:55.探究2:(1)∵木板边长为2米,∴木板的面积为:4平方米. ∵正方形EFCG 的边长为x 米, ∴S 正方形EFCG =x 2,S △ABE =2﹣x ,∴空白的面积为:4﹣x 2﹣(2﹣x )=2﹣x 2+x ,y=60x 2+80(2﹣x )+40(2﹣x 2+x ),y=20x 2﹣40x+240.(2)当y=225时,225=20x 2﹣40x+240,解得:x 1=,x 2=∴正方形EFCG 的边长为或米.【点评】本题考查了正方形的性质,平面几何图形的面积公式的计算,抛物线的解析式的求法.5.某数学兴趣小组开展了一次活动,过程如下:如图1,等腰直角△ABC 中,AB=AC ,∠BAC=90°,小敏将三角板中含45°角的顶点放在A 上,斜边从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E .(1)小敏在线段BC 上取一点M ,连接AM ,旋转中发现:若AD 平分∠BAM ,则AE 也平分∠MAC .请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD 、CE 、DE 之间存在如下等量关系:BD 2+CE 2=DE 2.同组的小颖和小亮随后想出了两种不同的方法进行解决:小颖的想法:将△ABD 沿AD 所在的直线对折得到△ADF ,连接EF (如图2);小亮的想法:将△ABD 绕点A 逆时针旋转90°得到△ACG ,连接EG (如图3);请你从中任选一种方法进行证明.(3)小敏继续旋转三角板,请你继续研究:当135°<α<180°时(如图4),等量BD 2+CE 2=DE 2是否仍然成立?请作出判断,不需要证明.【答案】见解析【解析】 (1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°. ∵∠DAE=45°, ∴∠BAD+∠EAC=45°. ∵∠BAD=∠DAM , ∴∠BAD+∠EAC=∠DAM+∠EAC=45°, ∴∠BAD+∠MAE=∠DAM+∠EAC , ∴∠MAE=∠EAC ,即AE 平分∠MAC ;(2)选择小颖的方法.证明:如图2,连接EF .由折叠可知,∠BAD=∠FAD ,AB=AF ,BD=DF ,∵∠BAD=∠FAD , ∴由(1)可知,∠CAE=∠FAE .在△AEF 和△AEC 中,,∴△AEF≌△AEC(SAS),∴CE=FE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.选择小亮的方法,证明:∵将△ABD绕点A逆时针旋转90°得到△ACG,∴△ADB≌△AGC,∴∠B=∠ACG=45°,AD=AG,BD=CG,∵∠BAC=∠DAG=90°,∠DAE=45°,∴∠EAG=45°,在△DAE和△GAE中,,∴△DAE≌△GAE(SAS),∴DE=EG,∵∠ACB=90°,∴∠ECG=∠ACB+∠ACG=45°+45°=90°μ,∴△ECG是直角三角形,∴CG2+CE2=EG2,即BD2+CE2=DE2;(3)当135°<α<180°时,等量关系BD2+CE2=DE2仍然成立.证明如下:如图4,按小颖的方法作图,设AB与EF相交于点G.∵将△ABD沿AD所在的直线对折得到△ADF,∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.又∵AC=AB,∴AF=AC.又∵∠CAE=90°﹣∠BAE=90°﹣(45°﹣∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.∴∠CAE=∠FAE.在△AEF和△AEC中,∵,∴△AEF≌△AEC(SAS),∴CE=FE,∠AFE=∠C=45°.∴∠DFE=∠AFD﹣∠AFE=∠135°﹣∠C=135°﹣45°=90°.∴∠DFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2【点评】本题考查了几何变换综合性题目,用到的知识点有角平分线的定义,等腰直角三角形的性质,旋转的性质,折叠对称的性质,全等三角形的判定和性质等,题目的综合性较强,难度较大,正确做出图形的辅助线是解题的关键.6.如图,在平面直角坐标系中,顶点为(2,﹣1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3),连接AB.(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,△PAC 的面积最大?并求出此时P 点的坐标和△PAC 的最大面积.【答案】(1)y=x 2﹣4x+3(2)抛物线的对称轴与⊙C 相离(3)p (,﹣),则S △PAC 的最大值=【解析】解:(1)设抛物线的解析式为y=a (x ﹣2)2﹣1把A (0,3)代入得:3=4a ﹣1解得:a=1,故 y=(x ﹣2)2﹣1=x 2﹣4x+3;(2)抛物线的对称轴与⊙C 相离理由如下:如图1,过点C 作CE ⊥BD 于E令y=0,则x 2﹣4x+3=0解得:x 1=1,x 2=3则B (1,0),C (3,0),A (0,3),故AB=,∵∠1+∠2=90°,∠1+∠3=90°, ∴∠2=∠3, ∴△AOB ~△BEC∴=, ∴=, ∴CE=,∴BF=CE=1>, ∴抛物线的对称轴与⊙C 相离;(3)设P (m ,m 2﹣4m+3),如图2,过点P 作作PQ ∥y 轴交AC 于点Q ,设AC 的解析式为:y=kx+b ,故, 解得:,故AC 的解析式为:y=﹣x+3,则Q (m ,﹣m+3),则PQ=﹣m+3﹣(m 2﹣4m+3)=﹣m 2+3m ,S △PAC =S △AQP +S △CQP=×3(﹣m 2+3m ),=﹣m 2+m ,则m=﹣=÷3=,把m=代入得:﹣×+×=, 故p (,﹣),则S △PAC 的最大值=.【点评】此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识,正确表示出S △PAC =S △AQP +S △CQP 是解题关键.。

初中数学竞赛辅导讲义及习题解答第3讲充满活力的韦达定理

初中数学竞赛辅导讲义及习题解答第3讲充满活力的韦达定理

第三讲充满活力的韦达定理一元二次方程的根与系数的关系,往常也称为韦达定理,这是因为该定理是由16 世纪法国最优秀的数学家韦达发现的。

韦达定理简单的形式中包括了丰富的数学内容,应用宽泛,主要表此刻: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;利用韦达定理并联合根的鉴别式,议论根的符号特点; 利用韦达定理逆定理,结构一元二次方程协助解题等。

韦达定理拥有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中很多知识可有机联合,生成丰富多彩的数学识题,而解这 类问题常用到对称剖析、结构等数学思想方法。

【例题求解】【例 1】 已知 、 是方程 x 2x 1 0的两个实数根,则代数式 2( 2 2) 的值为 。

思路点拨: 所求代数式为 、 的非对称式,经过根的定义、一元二次方程的变形转变为 ( 例 【例 2】假如 a 、 b 都是质数,且 a213a m 0 , b213b m0 ,那么b a的值为 ()a bA 、 123B 、125或 2C 、 125D 、123或 222222222思路点拨 :可将两个等式相减,获取 a 、 b 的关系,因为两个等式结构同样,可视a 、b 为方程x 2 13x m 0 的两实根,这样就为根与系数关系的应用创建了条件。

注:应用韦达定理的代数式的值,一般是对于 x 1 、 x 2 的对称式, 这种问题可经过变形用 x 1 + x 2 、 x 1 x 2 表示求解,而非对称式的求值常用到以下技巧:(1) 适合组合; (2) 依据根的定义降次; (3)结构对称式。

【例 3】 已知对于 x 的方程: x 2(m 2) x m 24 (1)求证:不论 m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根 x 1 、 x 2 知足 x 2 x 1 2,求 m 的值及相应的 x 1 、 x 2 。

思路点拨 :对于 (2) ,先判断 x 1 、 x 2 的符号特点,并从分类议论下手。

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。

当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。

2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。

解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法一.选择题(共1小题)1.(2013春•奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数二.填空题(共8小题)2.(2013秋•湖里区校级月考)用配方法解一元二次方程x2+8x+7=0,则方程可化为.3.(2013秋•曲阜市期中)用配方法解一元二次方程x2﹣4x+2=0时,可配方得.4.用配方法解一元二次方程﹣3x2+4x+1=0的第一步是把方程的两边同时除以.5.(2006秋•仙桃期末)用配方法解一元二次方程x2+8x﹣9=0时,当配成完全平方后,原方程可变为.6.(2014春•莱州市期末)用配方法解一元二次方程x2﹣x=1时,应先两边都加上.7.(2010秋•宜城市期中)用配方法解一元二次方程x2﹣8x+1=0,把右边配成完全平方后为(x﹣)2=.8.(2006秋•西城区校级月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=,k=.9.(2013秋•鼓楼区期中)将一元二次方程x2﹣4x﹣7=0用配方法化成(x+h)2=k的形式为.三.解答题(共11小题)10.(2008•青岛)用配方法解一元二次方程:x2﹣2x﹣2=0.11.用配方法解一元二次方程:x2+3x+1=0.12.(2010秋•上海校级月考)(1)化简:(2)用配方法解一元二次方程:x2﹣2x﹣2=013.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.14.(2012春•威海期末)已知三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0的一个根.请用配方法解此方程,并计算出三角形的面积.15.(1)解一元二次方程:(x﹣3)2+2x(x﹣3)=0(2)用配方法解一元二次方程:2x2+1=3x.16.(2013秋•大理市校级月考)解一元二次方程:(1)4x2﹣1=12x(用配方法解);(2)2x2﹣2=3x(用公式法解).17.用公式法解一元二次方程:3x2+5x﹣2=0.18.(2010秋•岳池县期末)已知关于x的一元二次方程x2+kx﹣5=0 (1)求证:不论k为任何实数,方程总有两个不相等的实数根;(2)当k=4时,用配方法解此一元二次方程.19.用配方法解下列关于x的一元二次方程:9x2﹣12x=1.20.(2012春•兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x﹣12=0(2)3(x﹣5)2=2(x﹣5)初三数学解一元二次方程——配方法参考答案与试题解析一.选择题(共1小题)1.(2013春•奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数y=1y+=1+,y=1,两边应同时加上的数是二.填空题(共8小题)2.(2013秋•湖里区校级月考)用配方法解一元二次方程x2+8x+7=0,则方程可化为(x+4)2=9.3.(2013秋•曲阜市期中)用配方法解一元二次方程x2﹣4x+2=0时,可配方得(x﹣2)2=2.4.用配方法解一元二次方程﹣3x2+4x+1=0的第一步是把方程的两边同时除以﹣3.x=05.(2006秋•仙桃期末)用配方法解一元二次方程x2+8x﹣9=0时,当配成完全平方后,原方程可变为(x+4)2=25.6.(2014春•莱州市期末)用配方法解一元二次方程x2﹣x=1时,应先两边都加上()2.﹣()).故答案为()7.(2010秋•宜城市期中)用配方法解一元二次方程x2﹣8x+1=0,把右边配成完全平方后为(x﹣4)2=15.8.(2006秋•西城区校级月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=,k=.x=,x++)比较对应系数,有:故答案是:、.9.(2013秋•鼓楼区期中)将一元二次方程x2﹣4x﹣7=0用配方法化成(x+h)2=k的形式为(x﹣2)2=11.三.解答题(共11小题)10.(2008•青岛)用配方法解一元二次方程:x2﹣2x﹣2=0.1=,11.用配方法解一元二次方程:x2+3x+1=0.()x+=x+±12.(2010秋•上海校级月考)(1)化简:(2)用配方法解一元二次方程:x2﹣2x﹣2=0==,=1+﹣13.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.x=,等式的两边都加上x++)﹣=±=,﹣14.(2012春•威海期末)已知三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0的一个根.请用配方法解此方程,并计算出三角形的面积.×=×2.15.(1)解一元二次方程:(x﹣3)2+2x(x﹣3)=0 (2)用配方法解一元二次方程:2x2+1=3x.﹣﹣x+)﹣.﹣=±,.16.(2013秋•大理市校级月考)解一元二次方程:(1)4x2﹣1=12x(用配方法解);(2)2x2﹣2=3x(用公式法解).x=求解即3x=3x++,),=±,+,﹣===﹣17.用公式法解一元二次方程:3x2+5x﹣2=0.,进行计算即可.===,=18.(2010秋•岳池县期末)已知关于x的一元二次方程x2+kx﹣5=0 (1)求证:不论k为任何实数,方程总有两个不相等的实数根;(2)当k=4时,用配方法解此一元二次方程.19.用配方法解下列关于x的一元二次方程:9x2﹣12x=1.x=,x+=﹣==±,20.(2012春•兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x﹣12=0(2)3(x﹣5)2=2(x﹣5).。

配方法(答案)

配方法(答案)

2.2 配方法(一)A 卷答案 1.(1) 93,42 (2)9x 2, 12- (3)12x,+3 (4) 2,42p p (5) 22,42b b a a2.(1)1,4 (2)0.2,0.46 (3) 17,33- (4) 149,424-3.c4.BB 卷答案: 5.(1) 1227,27x x =-+=-- (2) 3172x -±= (3) 226x ±=(4) 62x =±+6.(1)原式=2318042x ⎛⎫-+> ⎪⎝⎭ (2)原式= 2112022y ⎛⎫---< ⎪⎝⎭ 7.(1)2秒或5秒 (2)7秒8.∵a+b+c=322,∴(a+b+c)2=92 即a 2+b 2+c 2+2(ab+bc+ac)=92, ∴ab+bc+ac=32∴a 2+b 2+c 2=ab+bc+ac,∴ 12[(a-b)2+(b-c)2+(a-c)2]=0, ∴a=b=c,∴△ABC 为等边三角形配方法(二)【基础练习】一、1. 16,4; 94 , 32 ; 2. 34 , 916 ; 3. x 1 = 1, x 2 = -5; 4. x = 351±. 二、1. D ; 2. C ; 3. B. 三、1.(1)6, -12; (2)233±; 2. (1)-1, 5; (2)- m +22n m +, - m -22n m +.【综合练习】提示:把多项式a 2b 2 +b 2 -6ab -4b +14进行配方.配方法(三)【基础练习】一、1. - 16 , - 3518 ; 2. 1±22; 3. - 52 , 3; 4. m m 2411+±. 二、1.C ; 2. C. 三、1. (1)221±,(2)3,27 ; 2. 2304±-. 【综合练习】提示:证明二次项系数k 2 -6k +12≠0.【探究练习】a 3 - 2a 2 - 4a = 0.配方法(四)练习【基础练习】一、1. (x -5)2 = 36; 2. 26,27; 3. 12,15. 二、1. C ; 2. D. 三、1.5米. 2. a = 28米, b = 14米.【综合练习】(1)当a <15时,问题无解;当15≤a<20时,长为15米,宽为10米;当a ≥20时,长为15米,宽为10米或长为20米,宽为7.5米;(2)a 对问题的解起着限制作用;a 的长度至少要有20配方法(五)一、1.①9 ②2 ③4 2 2.①x 1=3,x 2=1 ②x 1=1,x 2=5 ③x 1=-1,x 2=3 3.x 2-6x =6 9 x 2-6x +9=15 (x -3)2=15 3+15 3-15 4.21 5.34 cm 6.3 7.2 二、8.D 9.A 10.C三、11.15元 12.16 cm 12 cm 13.x 1=40 x 2=24 14.1或5配方法(六)一、1.4 -42.15 -153.0 24.2 25.35 35 6.2 -27.无实数根8.x 1=214,x 2=-214 9.x 1=x 2=010.方程无实根 方程有两个相等实根为x 1=x 2=0 方程有两个不等的实根二、1.D 2.C 3.D 4.C 5.B 6.B 7.A三、解:1.x 2=0,x =0,∴x 1=x 2=02.3x 2=3x 2=1,x =±1,∴x 1=1,x 2=-13.2x 2=6,x 2=3,x =±3∴x 1=3,x 2=-34.x 2+2x =0 x (x +2)=0x =0或x +2=0 x =0或x =-2 ∴x 1=0,x 2=-2 5.21(2x +1)2=3 (2x +1)2=6 2x +1=±6 ∴2x +1=6或2x +1=-6∴x =21(6-1)或x =21(-6-1) ∴x 1=21(6-1),x 2=21(-6-1) 6.(x +1)2-144=0 (x +1)2=144 x +1=±12∴x +1=12或x +1=-12 ∴x =11或x =-13 ∴x 1=11,x 2=-13.。

初中数学竞赛专题选讲 最大、最小值含答案)

初中数学竞赛专题选讲 最大、最小值含答案)

初中数学竞赛专题选讲(初三.20)最大 最小值一、内容提要1. 求二次函数y=ax 2+bx+c(a ≠0),的最大、最小值常用两种方法:①配方法:原函数可化为y=a(x+ab 2)2+a b ac 442-.∵在实数范围内(x+ab 2)2≥0, ∴若a>0时,当x=-a b2 时, y 最小值=a b ac 442-;若a<0时,当x=-ab2 时, y 最大值=a b ac 442-.②判别式法:原函数可化为关于x 的二次方程ax 2+bx+c -y=0. ∵x 在全体实数取值时, ∴ △≥0即b 2-4a(c -y)≥0, 4ay ≥4ac -b 2.若a>0,y ≥a b ac 442-,这时取等号,则y 为最小值a b ac 442-;若a<0,y ≤a b ac 442-,这时取等号,则y 为最大值ab ac 442-.有时自变量x 定在某个区间内取值,求最大、最小值时,要用到临界点,一般用配方法方便.2. 用上述两种方法,可推出如下两个定理:定理一:两个正数的和为定值时,当两数相等时,其积最大. 最大值是定值平方的四分之一.例如:两正数x 和y , 如果x+y=10, 那么xy 的积有最大值,最大值是25. 定理二:两个正数的积为定值时,当两数相等时,其和最小. 最小值是定值的算术平方根的2倍.例如:两正数x 和y ,如果xy=16, 那么 x+y 有最小值,最小值是8. 证明定理一,可用配方法,也叫构造函数法.设a>0, b>0, a+b=k . (k 为定值).那么ab=a(k -a)=-a 2+ka=-(a -21k)2+42k .当a=2k时,ab 有最大值42k .证明定理二,用判别式法,也叫构造方程法. 设a>0, b>0, ab=k (k 为定值),再设 y=a+b. 那么y=a+ak , a 2-ya+k=0.(这是关于a 的二次议程方程) ∵ a 为正实数,∴△≥0. 即(-y)2-4k ≥0, y 2-4k ≥0. ∴y ≤-2k (不合题意舍去); y ≥2k . ∴ y 最小值=2k . 解方程组⎩⎨⎧==+.2k ab k b a , 得a=b=k .∴当a=b=k 时,a+b 有最小值 2 k . 3. 在几何中,求最大、最小值还有下列定理:定理三:一条边和它的对角都有定值的三角形,其他两边的和有最大值. 当这两边相等时,其和的值最大.定理四:一条边和这边上的高都有定值的三角形,其他两边的和有最小值. 当这两边相等时,其和的值最小.定理五:周长相等的正多边形,边数较多的面积较大;任何正多边形的面积都小于同周长的圆面积.二、例题例1. 已知:3x 2+2y 2=6x, x 和y 都是实数,求:x 2+y 2的最大、最小值.解:由已知y 2=2362x x -, ∵y 是实数, ∴y 2≥0.即2362x x -≥0, 6x -3x 2 ≥0, x 2-2x ≤0.解得 0≤x ≤2.这是在区间内求最大、最小值,一般用配方法,x 2+y 2=x 2+2362x x -=-21( x -3)2+29在区间0≤x ≤2中,当x=2 时,x 2+y 2有最大值 4. ∴当x=0时,x 2+y 2=0是最小值 .例2. 已知:一个矩形周长的数值与它面积的数值相等. 求:这个矩形周长、面积的最小值. 解:用构造方程法.设矩形的长,宽分别为 a, b 其周长、面积的数值为k. 那么2(a+b)=ab=k.即 ⎪⎩⎪⎨⎧==+.21k ab k b a ,∴a 和b 是方程 x 2-21kx+k=0 的两个实数根. ∵a, b 都是正实数,∴△≥0. 即(-2k )2-4k ≥0. 解得k ≥16;或k ≤0 . k ≤0不合题意舍去. ∴当k ≥16取等号时,a+b, ab 的值最小,最小值是16. 即这个矩形周长、面积的最小值是16.例3. 如图△ABC 的边BC=a, 高AD=h, 要剪下一个 矩形EFGH ,问EH 取多少长时,矩形的面积最大? 最大面积是多少?解:用构造函数法 设EH=x, S 矩形=y, 则GH=xy . ∵△AHG ∽△ABC ,∴hxh a x y-= . ∴ y=4)2()(2ahh x h a h x h ax +--=-. aCEF∴当x=2h 时,y 最大值 =4ah . 即当EH=2h 时,矩形面积的最大值是4ah.例4. 如图已知:直线m ∥n ,A ,B ,C 都是定点,AB=a, AC=b, 点P 在AC 上,BP 的延长线交直线m 于D.问:点P 在什么位置时,S △PAB +S △PCD 最小? 解:设∠BAC=α,PA=x, 则PC=b -x.∵m ∥n ,∴PA PCAB CD =. ∴CD=x x b a )(-S △PAB +S △PCD =21axSin α+21xx b a )(-(b -x) Sin α=21aSin α()222x x bx b x +-+=21aSin α(2x+)22b x b -. ∵2x ×x b 2=2b 2(定值), 根据定理二,2x +x b 2有最小值.∴ 当2x =x b 2, x=b 221时,S △PAB +S △PCD 的最小值是 (2-1)abSin α. 例5.已知:Rt △ABC 中, 内切圆O 的半径 r=1. 求:S △ABC 的最小值.解:∵S △ABC =21ab ∴ab =2S △.∵2r=a+b -c, ∴c=a+b -2r. ∴a+b -2r=22b a + .两边平方,得 a 2+b 2+4r 2+2ab -4(a+b)r= a 2+b 2. 4r 2+2ab -4(a+b)r=0. 用r=1, ab=2S △ 代入, 得 4+4S △-4(a+b) =0. a+b=S △+1. ∵ab=2S △ 且a+b=S △+1.∴a, b 是方程x 2-(S △+1)x+2S △=0 的两个根.nmDa∵a,b 是正实数, ∴△≥0,即 [-(S △+1)]2-4×2S △ ≥0, S △2-6S △+1≥0 .解得 S △≥3+22或S △≤3-22. S △≤3-22不合题意舍去. ∴S △ABC 的最小值是3+22. 例6.已知:.如图△ABC 中,AB=26+,∠C=30 . 求:a+b 的最大值.解:设 a+b=y , 则b=y -a. 根据余弦定理,得 (26+)2=a 2+(y -a)2-2a(y -a)Cos30写成关于a 的二次方程: (2+3)a 2-(2+3)ya+y 2-(8+43)=0.∵a 是实数, ∴△≥0.即(2+3)2y 2-4(2+3)[y 2-(8+43)]≥0,y 2-(8+43)2≤0 .∴ -(8+43)≤y ≤(8+43). ∴a+b 的最大值是8+43.又解:根据定理三 ∵AB 和∠C 都有定值. ∴当a=b 时,a+b 的值最大.由余弦定理,(26+)2=a 2+b 2-2abCos30可求出 a=b=4+23. ……… 三、练习1. x 1,x 2,x 3,x 4,x 5 满足. x 1+x 2+x 3+x 4+x 5=. x 1x 2x 3x 4x 5,那么. x 5的最大值是______.2. 若矩形周长是定值20cm,那么当长和宽分别为____,____时,其面积最大,最大面积是______.3. 面积为100cm 2的矩形周长的最大值是________. 4. a, b 均为正数且a+b=ab,那么 a+b 的最小值 是________.5. 若x>0, 则x+x9的最小值是________. 6.如图直线上有A 、B 、C 、D 四个点.那么到A ,B ,C ,D 距离之和为最小值的点,位于_________,其和的最小值等于定线段___________..7. 如右图△ABC 中,AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ是 以AB ,BC ,CA 为边的正方形,则阴影部份的面积的和的最大值是____________. 8. 下列四个数中最大的是 ( )(A ) tan48 +cot48 ..(B)sin48 +cos48 . (C) tan48 +cos48 . (D)cot48 +sin48 .9.已知抛物线y=-x 2+2x+8与横轴交于B ,C 两点,点D 平分BC ,若在横轴上侧的点A 为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是__________10. 如图△ABC 中,∠C=Rt ∠,CA=CB=1,点P 在AB 上,PQ ⊥BC 于Q.问当P 在AB 上什么位置时,S △APQ 最大? 11. △ABC 中,AB=AC=a ,以BC 为边向外作等边 三角形BDC ,问当∠BAC 取什么度数时AD 最长?12. 已知x 2+2y 2=1, x,y 都是实数,求2x+5y 2的最大值、最小值. 13. △ABC 中∠B=60,AC=1,求BA+BC 的最大值及这时三角形的形状. 14. 直角三角形的面积有定值k,求它的内切圆半径的最大值.15. D ,E ,F 分别在△ABC 的边BC 、AC 、AB 上,若BD ∶DC=CE ∶EA=AF ∶FA =k ∶(1-k) (0<k<1). 问k 取何值时,S △DEF 的值最小?16.△ABC 中,BC=2,高AD=1,点P ,E ,F 分别在边BC ,AC ,AB 上,且四边形PEAF 是平行四边形.问点P 在BC 的什么位置时,S PEAF 的值最大?C DA B AB参考答案1. 5.2. 5,5 25.3. 40cm4. 45. 66.BC 上,BC+AD.7. 最大值是9,∵S △=21×3×2×SinBAC, ∠BAC=90度时值最大. 8. (A). 9. 3<AD ≤9 10. P 在AB 中点时,S △最大值=81, S △=222x x -⋅x 与2-x 的和有定值, 当x=2-x 时,S △值最大.11. 当∠BAC=120度时,AD 最大,在△ABD 中,设∠BAD=α由正弦定理a Sin ain 230)30180(S AD ==--α,当150 -α=90 时, AD 最大. 12. 当x=52时,有最大值1029;当x=-1时,有最小值-2 (仿例3). 13. 当a=c 时,a+c 有最大值2,这时是等边三角形. 14. 内切圆半径的最大值r=(2-1)△S (仿例6).15. 当 k=21时,S △DEF =41S △ABC ,16.当PB=1时,S 有最大值21. 16. 当点P 是BC 中点时,面积最大值是12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:方程 x2+y2+2x-4y+1+4=0.
配方的可化为 (x+1)2+(y-2)2=0.
x 1 0
要使等式成立,必须且只需
y
2
0
.
解得
x
y
1 2
此外在解二次方程中应用根的判别式,或在证明等式、 不等式时,也常要有配方的知识和技巧.
-3-
二、例题 例1. 因式分解:a2b2-a2+4ab-b2+1.

由 a2±2ab 配上 b2.
2. 运用配方法解题,初中阶段主要有:
① 用完全平方式来因式分解
例如:把 x4+4 因式分解.
原式=x4+4+4x2-4x2=(x2+2)2-4x2=……
这是由 a2+b2 配上 2ab.
② 二次根式化简常用公式: a2 a ,这就需要把被开方
数写成完全平方式.
① 74 3; ② 2 3; ③
10 4 3 2 2 . 解:化简的关键是把被开方数配方
① 7 4 3 = 4 2 2 3 3 = (2 3)2 = 2 3 =2+ 3 .
② 2 3 = 2 2 3 = 4 2 3 = ( 3 1)2
2
2
2
= 2( 3 1) =. 6 2
例如:求代数式 a2+2a-2 的最值. ∵a2+2a-2= a2+2a+1-3=(a+1)2-3 当 a=-1 时, a2+2a-2 有最小值-3. 这是由 a2±2ab 配上 b2 ④ 有一类方程的解是运用几个非负数的和等于零,则每 一个非负数都是零,有时就需要配方. 例如::求方程 x2+y2+2x-4y+5=0 的解 x, y.
初中数学竞赛专题选讲-配方法 (含答案)
初中数学竞赛专题[配方法]
一、内容提要
1. 配方:这里指的是在代数式恒等变形中,把二次三项式 a2
±2ab+b2 写成完全平方式
(a±b)2. 有时需要在代数式中添项、折项、分组才能
写成完全平方式.
常用的有以下三种:
①由 a2+b2 配上 2ab, ②由 2 ab 配上 a2+b2,

x
y
y 1
3 0
0

x
y
4 1
例5. 已知:a, b, c, d 都是整数且 m=a2+b2, n=c2+d2,
则 mn 也可以表示为两个整数的平方和,试写出其形式.
解:mn=( a2+b2)( c2+d2)= a2c2+ +a2d2 +b2 c2+ b2 d2
= a2c2+ b2 d2+2abcd+ a2d2 +b2 c2-2abcd
205或((
x y
4) 2 5) 2
205或(( yx
4)2 5)2
196或((
x y
4) 5)
2 2
16 9
-6-

x
y
4 5
0 5

x
y
4 0
同理,共有
12
个解
x
y
4 10
x
y
9 -5
x
y
1 5
……
三、练习
1. 因式分解:
①x4+x2y2+y4 ; ②x2-2xy+y2-6x+6y+9 ; ③
-5-
根据“几个非负数的和等于零,则每一个非负数都应等
于零”.

x
2
1
0
x y 0

x
y
1, 1

x 1
y
1
②x2+2xy+y2+6x+6y+9+y2-2y+1=0 . (折项,分组)
(x+y)2+6(x+y)+9+y2-2y+1=0.
(x+y+3)2+(y-1)2=0. (配方)
例如:化简 5 2 6 .
我们把 5-2 6 写成 2-2 2 3 +3
= ( 2)2 -2 2 3 + ( 3)2
=( 2 - 3 )2.
这是由 2 ab 配上 a2+b2.
-2-
③ 求代数式的最大或最小值,方法之一是运用实数的平 方是非负数,零就是最小值.即∵a2≥0, ∴当 a=0 时, a2 的值为 0 是最小值.
(分
组,添项)
=(ac+bd)2+(ad-bc)2
例6. 求方程 x2+y2-4x+10y+16=0 的整数解
解:x2-4x+16+y2+10y+25=25
(添项)
(x-4)2+(y+5)2=25 (配方)
∵25 折成两个整数的平方和,只能是 0 和 25;9 和 16.

( x ( y
4) 2 5) 2
`2 2 4
=(x+ 5 )2- 21 .
2
4
∵(x+ 5 )2≥0,其中 0 是最小值.
2
即当 x= 5 时,x2+5x+1 有最小值- 21 .
2
4Байду номын сангаас
②-2x2-6x+1 =-2(x2+3x- 1 )
2
=-2(x2+2× 3 x+ 9 9 - 1 )
2 44 2
=-2(x+ 3 )2+ 11
2
2
③ 10 4 3 2 2 = 10 4 ( 2 1)2
= 10 (4 2+1)
-4-
= 64 2 = 422 2 2 =
(2 2)2 =2- 2 .
=
例3. 求下列代数式的最大或最小值:
① x2+5x+1; ② -2x2-6x+1 .
解:①x2+5x+1=x2+2× 5 x+ 5 2 - 25 +1
x4+x2-2ax-a2+1.
2. 化简下列二次根式:
① 4x2 12x 9 4x2 20x 25 (- 3 <x< 5 );
2
2
② x2 4 x x3 3x 2 (1<x<2);
4
x2
③ 17 12 2 ; ④ 3 5 ;
⑤ 11 4 4 2 3 ; ⑥ 3 5 3 5 ; ⑦ ( 14 + 6 5 ) ÷ ( 3 + 5 ); ⑧ ( 3 x ) 2 +
解:a2b2-a2+4ab-b2+1=a2b2+2ab+1+(-a2+2ab-b2) (折项,分组)
= ( ab+1 ) 2 - (a - b)2 (配方)
= ( ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)
本题的关鍵是用折项,分组,树立配方的思想.
例2. 化简下列二次根式:
2
2
∵-2(x+ 3 )2≤0,其中 0 是最大值,
2
∴当 x=- 3 时,-2x2-6x+1 有最大值 11.
2
2
例4. 解下列方程:
①x4-x2+2xy+y2+1=0 ; ②x2+2xy+6x+2y2+4y+10=0.
解:①(x4-2x2+1)+(x2+2xy+y2)=0 . (折项,分组) (x2-1)2+(x+y)2=0. (配方)
相关文档
最新文档