光伏并网逆变器硬件设计以及拓扑结构

合集下载

光伏逆变器的拓扑结构与性能优化

光伏逆变器的拓扑结构与性能优化

光伏逆变器的拓扑结构与性能优化光伏逆变器是太阳能发电系统的重要组成部分,它可以将直流电转换为交流电,以满足电网接入或独立电力供应的需求。

在设计和优化光伏逆变器的拓扑结构和性能时,需要考虑多种因素,包括效率、功率因数、谐波失真、电磁干扰等。

本文将介绍光伏逆变器的常见拓扑结构,以及在实际应用中如何优化其性能。

光伏逆变器的拓扑结构主要有单相桥式逆变器、三相桥式逆变器和多电平逆变器等。

其中,单相桥式逆变器适用于单相光伏系统,拓扑简单、成本低廉。

三相桥式逆变器适用于三相光伏系统,能够提供更高的功率密度和更低的谐波失真。

而多电平逆变器则可以有效减小输出波形的谐波失真,提高系统的效率和可靠性。

在光伏逆变器的性能优化方面,首先要考虑的是其效率。

逆变器的效率直接影响到太阳能发电系统的整体效能。

为了提高逆变器的效率,可以采用高效的功率开关器件,如硅碳化物(SiC)器件,其开关速度快、导通压降低。

此外,还可以采用最大功率点追踪(MPPT)算法,在不同光照条件下,调整逆变器的工作点,以获得最大的输出功率。

其次,功率因数也是光伏逆变器性能优化的重要指标之一。

功率因数反映了电流和电压之间的相位差,功率因数越接近1,说明逆变器对电网的负载更加合适。

为了提高功率因数,可以采用电容滤波器或无源滤波器,将逆变器输出的谐波成分滤除,减小谐波失真,进而提高功率因数。

此外,光伏逆变器的谐波失真也需要得到重视和优化。

逆变器输出波形中存在的谐波成分会对电网和其他电气设备造成干扰,并增加能量损耗。

为了降低谐波失真,可以采用多电平逆变器拓扑结构,通过增加电平数来调整逆变器输出波形,减小谐波成分。

此外,还可以采用滤波器来滤除高次谐波,以获得更纯净的输出波形。

另外,光伏逆变器在工作过程中还会产生一定的电磁干扰。

为了减小电磁干扰,可以采用屏蔽器件、优化线路布局和地线设计,以提高光伏逆变器的抗干扰能力。

此外,还可以采用PWM调制技术,调整开关频率,减小高频谐波传输,从而降低电磁干扰的程度。

微型光伏逆变器设计要素及拓扑结构

微型光伏逆变器设计要素及拓扑结构

微型光伏逆变器设计要素及拓扑结构1.微型逆变器设计要素与整个系统使用一个逆变器相比,为系统内每个太阳能电池组件都配备一个微型逆变器会再次提升整个系统的转换效率。

微型逆变器拓扑的主要好处是,即便其中一个逆变器消失故障,能量转换仍能进行。

设计微型逆变器需要考虑的要素如下:1)变换效率高。

并网逆变器的变换效率直接影响整个发电系统的效率,为了保证整个系统较高的发电效率,要求并网微型逆变器具有较高的变换效率。

2)牢靠性高。

由于微型逆变器直接与太阳能电池组件集成,一般与太阳能电池组件一起放于室外,其工作环境恶劣,要求微型逆变器具有较高的牢靠性3)寿命长。

太阳能电池组件的寿命一般为二十年,微型逆变器的使用寿命应当与太阳能电池组件的寿命相当。

4)体积小。

微型逆变器直接与太阳能电池组件集成在一起,其体积越小越简单与太阳能电池组件集成。

5)成本低。

低成本是产品进展的必定趋势,也是微型逆变器市场化的需求。

认真权衡这些高层次要求是确定MCU需要哪些功能的最好方法,例如,当并联太阳能电池组件时需要负载平衡掌握。

所选MCU 必需能检测负载电流以及能通过开/关掌握MOSFET上升或降低输出电压,这需要一个高速片上ADC来采样电压和电流。

对于针对光伏逆变器应用所设计的MCU,一个极具价值的特性是双片上振荡器,可用于时钟故障检测以提高牢靠性。

能够同时运行两个系统时钟的力量也有助于削减太阳能电池组件安装时消失的问题。

由于在微型逆变器设计中分散了如此多的创新,对MCU来说,其最重要的特性或许就是软件编程力量,该特性使得在电源电路设计和掌握中拥有最高的敏捷性。

片上集成恰当的掌握外设以及高模拟集成度是保证系统低成本的两个基本要素,为执行针对优化转换、系统监控和能量存储各环节中的效率所开发出的算法,高性能也是必需的。

2.微型逆变器拓扑结构微型逆变器的特别应用需求,打算了其不能采纳传统的降压型逆变器拓扑结构,如全桥、半桥等拓扑,而应当选择能够同时实现升降压变换功能的变换器拓扑,除能够实现升降压变换功能外,还应实现电气隔离;另一方面,高效率、小体积的要求打算了其不能采纳工频变压器实现电气隔离,需要采纳高频变压器。

光伏并网逆变器拓扑结构的研究

光伏并网逆变器拓扑结构的研究

光伏并网逆变器拓扑结构的研究刘 凯* 丁竹青 黄 勇 山东化工职业学院 潍坊 261108摘要 本文主要对光伏发电的核心部分——逆变器的拓扑结构进行介绍,在传统拓扑构造的基础上,分析几种新型的拓扑结构,对其工作原理进行理论分析,并通过仿真验证理论分析的合理性。

关键词 光伏并网 逆变器 拓扑结构 理论分析*刘 凯:讲师。

2013年毕业于中国石油大学(华东)动力工程及工程热物理专业获硕士学位。

现从事职业教育工作。

联系电话:133****7766, E-mail :****************。

太阳能作为一种新能源,已经广泛应用于人类社会生活中,其中太阳能发电技术比较成熟,运营成本较低,更是解决能源短缺和环境污染的有效途径之一。

光伏并网发电系统中,光伏并网逆变器作为发电系统的核心部分,将太阳能组件与电网进行了有效的连接,对电力系统的安全稳定运行起着非常重要的作用。

1 传统电压逆变器光伏并网发电,是将光伏阵列产生的直流电转变为符合市电电网要求的工频交流电,并将其接入电网的过程。

逆变器则是可将直流电转换为交流电的电力变换设备,由于太阳能组件发出的是直流电,一般的负载多数为交流负载,因此,逆变器是太阳能发电技术中必不可少的一部分。

逆变器作为发电系统的重要组成,其太阳能发电的效率与逆变器的性能息息相关。

传统的光伏并网发电系统见图1,该系统是由太阳能组件、去耦大电容、传统逆变器、滤波电感部分和电网构成,其核心为传统电压源逆变器,通过驱动信号控制六个开关管的导通和关断而得到正弦规律变化的平均电压。

传统电压源逆变器结构简单,元器件少,但存在一些固有缺点:①由于直流侧并联大电容,相当于电压源,回路不允许短路,交流侧要求接感性负载或串接电感,以保证电压源逆变器可靠工作;②传统电压源型逆变器只可实现降压,其输出的交流电压低于直流母线上的电压,若希望得到较高的输出电压,需通过升压变换器将直流侧电压升高,从而满足电网电压的要求,增加升压变换器的发电系统可称为两级式并网发电系统,控制电路为级间控制,控制复杂,而且效率降低,成本较高;③逆变桥同一桥臂的上下两只开关管不允许同时导通,否则会工作在直通短路状态,为防止直通,需要加入死区时间,造成能量转换效率低,投入成本较高等。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构首先,光伏并网逆变器的拓扑结构有很多种,常用的有串联逆变器、并联逆变器以及单相桥式逆变器等。

1.串联逆变器串联逆变器是将多个逆变单元串联在一起,通过分时工作的方式实现高电压输出。

它能够实现更高的输出功率和电压,适用于大容量的光伏发电系统。

2.并联逆变器并联逆变器是将多个逆变单元并联在一起,实现总输出功率的叠加。

它具有输出功率分散、可靠性高的特点,适用于小功率的光伏发电系统。

3.单相桥式逆变器单相桥式逆变器是采用单相桥式整流电路和逆变电路,能够实现交流输出。

它结构简单,适用于小功率的光伏发电系统。

选取逆变器的拓扑结构时,需要考虑光伏电池板的输出电压和功率以及电网的要求。

不同的拓扑结构有不同的特点和适用场景,设计者需要根据具体需求选择最合适的拓扑结构。

在硬件设计中,光伏并网逆变器的主要电路包括:整流电路、滤波电路、逆变电路和控制电路等。

1.整流电路:用于将光伏板输出的直流电转换为交流电。

常见的整流电路包括单相全波桥式整流电路和三相全波桥式整流电路等。

2.滤波电路:用于去除转换过程中产生的谐波和噪声,保证逆变器输出的电流和电压的纯净度。

常见的滤波电路有LC滤波电路和LCL滤波电路等。

3.逆变电路:用于将直流电转换为交流电,并注入电网。

常见的逆变电路有全桥逆变电路和半桥逆变电路等。

4.控制电路:用于控制逆变器的输出电流和电压,以及保护逆变器的安全运行。

控制电路通常包括微控制器、驱动电路、保护电路等。

在硬件设计过程中,需要选取合适的元器件和电路参数。

如选择功率器件时需要考虑功率损耗、开关速度等因素;选择电容和电感时需要考虑峰值电流和谐振频率等因素。

同时,还需要设计合理的散热系统来保证逆变器的温度和性能稳定。

总而言之,光伏并网逆变器的硬件设计和拓扑结构是实现光伏发电系统有效注入电网的关键。

合理的硬件设计和拓扑结构能够提高逆变器的效率和可靠性,从而提高光伏发电系统的整体性能。

光伏并网逆变器硬件电路的设计

光伏并网逆变器硬件电路的设计

光伏并网逆变器硬件电路的设计光伏并网逆变器硬件电路的设计包括直流输入电路、逆变器电路、滤波器电路、控制保护电路等几个方面。

首先是直流输入电路,其主要功能是将光伏组件输出的直流电能输入到逆变器电路中。

直流输入电路一般采用串联电感、滤波电容、电流采样和限流保护等元件,保证直流输入电压稳定,并对电流进行监测和保护。

接下来是逆变器电路,其主要功能是将直流电能转换为交流电能。

逆变器电路一般采用全桥式电路,通过控制开关管的导通和断路,实现直流电能的逆变。

逆变器电路中包含开关管、滤波电容、谐振电感等元件,通过合理的设计,可以实现高效率的逆变效果,并保证逆变后的交流电能质量。

在逆变器电路的输出端,还需要设计滤波器电路,以提高逆变器输出电能的纯度和稳定性。

滤波器电路一般采用LC滤波器,通过合理的选择电感和电容值,可以滤除逆变器输出中的高次谐波成分,并减小交流输出电压的波动,提高并网逆变器的输出电能质量。

最后是控制保护电路的设计,主要用于监测逆变器电路的工作状态,实现对逆变器的控制和保护。

控制保护电路一般包括微控制器、电流、电压传感器等元件,通过采集逆变器输入输出电流和电压等参数,实时监测逆变器工作状态,并根据需要进行调整和保护。

光伏并网逆变器硬件电路的设计需要兼顾效率、性能和可靠性等多个方面的要求。

在设计过程中,需要合理选择电路元件的参数,进行电路优化和选型,以提高逆变器电路的效率和稳定性。

此外,还需要进行实际电路的布局和连接,确保电路的连接可靠和电磁兼容性良好,以保证光伏并网逆变器的长期可靠运行。

综上所述,光伏并网逆变器硬件电路的设计是光伏逆变器工作的基础和核心,在光伏逆变器系统中具有重要的作用。

通过合理的设计,可以实现光伏逆变器稳定高效的工作,提高光伏发电系统的电能质量和经济效益。

三相光伏并网逆变器拓扑结构和其控制方案

三相光伏并网逆变器拓扑结构和其控制方案
三相光伏并网逆变器拓扑结构及其控制方案
袁同浩 13721244
主要内容
一 三相并网光伏逆变器基本拓扑及其控制方案 二 中点钳位式逆变器拓扑结构及其控制方案 三 H桥级联式逆变器拓扑结构及其控制方案 四 直流母线式逆变器拓扑结构及其控制方案
三相并网光伏逆变器基本拓扑及其控制方案
L1
VD1
V1 V3 V5
C1
C2
V7
PV
V1
V3 V5
L
V4
V2 V6
C
直流母线式三相光伏并网逆变器
谢 谢!
H桥级联式逆变器拓扑结构及其控制方案
另一种H桥级联式三相光伏并网逆变器
H桥级联式逆变器拓扑结构及其控制方案
阶梯波控制的SPWM
H桥级联式逆变器拓扑结构及其控制方案
混合H桥级联式三相光伏并网逆变器
直流母线式逆变器拓扑结构及其控制方案
L1
VD1
C1
C2
V7
PV
L1
VD1
C1
C2
V7
PV
L1
VD1
U/V
环境参数不变时
光照变化时变化时
三相并网光伏逆变器基本拓扑及其控制方案
输入控制 输出控制
采用电压源型控制
若以电流源方式控 制逆变器,需要在 直流侧串联大电感。 导致系统响应变慢。
采用电流源型控制
输出电压被电网电 压钳位住,控制复
杂精度低。
中点钳位式逆变器拓扑结构及其控制方案
L1 VD13
V1
L
C1
C2
V7
PV
V4 V2 V6
C
三相光伏并网逆变器基本拓扑
三相并网光伏逆变器基本拓扑及其控制方案

光伏逆变器的设计与控制

光伏逆变器的设计与控制

光伏逆变器的设计与控制光伏逆变器是在光伏发电系统中至关重要的一部分,它负责将由光伏组件产生的直流电转变为交流电供应给电网或负载。

在光伏逆变器的设计与控制过程中,需要考虑电流、电压、频率等多个因素,以确保逆变器的高效运行和安全性。

本文将详细介绍光伏逆变器的设计和控制方法。

一、光伏逆变器的设计1. 逆变器拓扑结构设计逆变器的拓扑结构决定了其工作性能和效率。

典型的逆变器结构包括单相桥式逆变器、三相桥式逆变器、多级逆变器等。

在选择逆变器拓扑时,需要考虑系统的功率要求、设计成本、效率等因素。

2. 开关器件选择逆变器的开关器件是实现电能转换的核心组件,常用的有IGBT、MOSFET等。

在选择开关器件时,需要考虑其导通压降、开关速度、损耗等因素,以确保逆变器的性能和效率。

3. 控制电路设计逆变器的控制电路决定了其电流与电压的调节性能。

常用的控制电路有电压闭环控制和电流闭环控制。

其中,电压闭环控制通过反馈系统控制输出电压,电流闭环控制通过反馈系统控制输出电流,可以实现更精确的电流控制。

4. 滤波器设计在光伏逆变器的输出端需要加入滤波器来滤除谐波和噪声。

滤波器的设计应考虑其频率特性和衰减特性,以确保逆变器输出的交流电质量良好。

二、光伏逆变器的控制1. MPPT算法最大功率点追踪(MPPT)是光伏逆变器控制的重要环节。

光伏组件的输出功率与光照强度、温度等因素相关,MPPT算法通过不断调整逆变器的工作状态,追踪出光伏组件的最大功率点,从而提高光伏系统的整体效率。

2. 电网连接控制光伏逆变器通常需要与电网连接,与电网进行同步运行。

在电网连接控制中,需要考虑电压频率、相位等因素,确保逆变器输出的交流电与电网保持同步,并满足电网的电压、频率等要求。

3. 故障保护光伏逆变器的故障保护是确保逆变器安全运行的重要环节。

常见的故障包括过压、过流、短路等,逆变器应具备对这些故障进行检测和保护的能力,同时及时发出警报并停机,以避免损坏设备或危害人身安全。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。

但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。

因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。

欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。

它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。

欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。

因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。

图 1: 欧洲效率计算比重1、功率器件的选型在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。

因为IGBT导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。

从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。

但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。

因为欧洲效率主要和逆变器不同轻载情况下效率的有关。

在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。

相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。

另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。

为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。

典型的电路是通过一个boost电路来实现。

然后再通过逆变器把直流电逆变为可并网的正弦交流电。

光伏并网逆变器硬件电路的设计

光伏并网逆变器硬件电路的设计

光伏并网逆变器硬件电路的设计
光伏并网逆变器是将光伏发电产生的直流电能转换为交流电能供应到公共电网的设备。

光伏逆变器的核心部分是逆变电路,该电路负责将直流电源转换为交流电源,并满足电网对交流电能的要求。

在设计光伏并网逆变器的硬件电路时,需要考虑以下几个方面:
1.逆变器的输入电路设计:光伏电池的输出电压通常为较高的直流电压。

在逆变电路中,需要使用电容、电感等元器件来进行滤波和降压,将电压调整为适合逆变器工作的范围。

2.逆变器的输出电路设计:逆变器的输出需要连接到公共电网中,因此需要满足电网对交流电源的要求。

输出电路通常包括滤波电路和功率放大电路,用于将逆变器输出的交流电能调整为电网标称电压、频率下的交流电能。

3.控制电路设计:逆变器的工作需要通过控制电路来实现。

控制电路包括信号采集、信号处理、PWM控制等功能。

采用微处理器或者单片机作为控制单元,可以实现对逆变器的控制和管理。

4.保护电路设计:逆变器在工作过程中可能会遭受各种故障,例如过压、过流、短路等。

因此,保护电路的设计非常重要,用于保护逆变器的安全运行。

保护电路通常包括过压保护、过流保护、短路保护等功能。

在设计光伏并网逆变器的硬件电路时,需要考虑到上述各个方面,确保逆变器的性能稳定、安全可靠。

同时,还需要根据光伏发电系统的具体要求,选择合适的元器件和电路结构,以提高逆变器的能效和可靠性。

总之,光伏并网逆变器硬件电路的设计是一个复杂而重要的工作,需要综合考虑多个因素并进行合理的设计和优化。

第五章 光伏并网逆变器的电路拓扑总结

第五章 光伏并网逆变器的电路拓扑总结

5-25Βιβλιοθήκη 5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-20 多支路高频链光伏并网逆变器结构
5-26
5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-21 多支路高频链光伏并网逆变器系统整体控制框图
5-27
5.4 多支路光伏并网逆变器
5.4.2 非隔离型多支路光伏并网逆变器
图5-7 三相工频隔离型结构 a) 三相两电平 b) 三相三电平
5-10
5.2 隔离光伏并网逆变器
5.2.2 高频隔离型光伏并网逆变器
DC/DC变换型高频链光伏并网逆变器,单级容量一般在 几个千瓦以内,整机工作效率大约在93%以上。
图5-8 DC/DC变换型高频链光伏并网系统一 a) 电路组成 b) 波形变换模式
第五章
5.1 5.2 5.3 5.4 5.5
光伏并网逆变器的电路拓扑
光伏并网逆变器的分类 隔离型光伏并网逆变器 非隔离型光伏并网逆变器 多支路光伏并网逆变器 微型光伏并网逆变器
5-1
第五章 光伏并网逆变器的电路拓扑
光伏并网逆变器将太阳能电池输出的直流电转换成 符合电网要求的交流电再输入电网,是光伏并网系 统能量转换与控制的核心。 光伏并网逆变器的性能影响和决定整个光伏系统是 否能够稳定、安全、可靠、高效地运行,同时也是 影响整个系统使用寿命的主要因素。 本章将对光伏并网逆变器进行分类讨论。
5.2.1 工频隔离型光伏并网逆变器
优点:结构简单、可靠性高、抗冲击性能好、安全性高、无直流电 流问题。 缺点:体积大、质量重、噪声高、效率低。
图5-5 工频隔离变压器对系统效率的影响
5-8
5.2 隔离光伏并网逆变器

光伏并网逆变器拓扑结构分析

光伏并网逆变器拓扑结构分析

光伏并网逆变器拓扑结构分析(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--光伏并网逆变器拓扑结构分析太阳能并网发电技术日益成为研究热点,并网逆变器作为光伏阵列与电网的接口设备,其拓扑结构决定着整个光伏并网发电系统的效率和成本,是影响系统经济可靠运行的关键因素。

由于光伏并网逆变器的结构拓扑种类众多、性能特点各异,其原理分析和性能比较:对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。

1.按有无变压器分类根据系统中有无变压器,光伏并网逆变器可分为无变压器型(Transformerless)、工频变压器型(Line-Frequency Transformer, LFT)和高频变压器型(High-Frequency Transformer, HFT)三种.图1是采用工频变压器型的拓扑结构,变压器置于工频电网侧,可有效阻止电流直流分量注入电网.高频变压器型中的变压器一般可放置在两个地方,如图2所示.图2(a)是把高频变压器置于DC-AC变换器内;图2(b)是把高频变压器置于DC-DC变换器内,两种方式均可实现隔离功能。

图工频电压器型拓扑结构图图 a图 b图2 高频变压器型的两种拓扑结构图工频变压器(LFT)与高频变压器(HFT)相比,体积大、重量重、价格上也无优势,因此,在有变压器拓扑方案的选择中,一般倾向于采用HFT来实现升压和隔离的功能.为了尽可能地提高光伏并网系统的效率和降低成本,在直流母线电压足够高时,也可采用不隔离的无变压器型拓扑方案。

由于输入与输出之间无电气隔离,无变压器型拓扑产生的对地漏电流成为一个需要解决的技术难题光伏模块存在一个随外部环境变化而变化且范围很大的对地寄生电容,其容值在~10 nF之间,所以由许多光伏模块串并联构成的光伏阵列对地寄生电容变得更大,从而可能导致相当大的对地漏电流.较大的对地漏电流一方面会严重影响变流器的工作模式;另一方面也会给人身安全带来威胁。

可再生能源之光伏发电逆变器拓扑及关键技术设计详解

可再生能源之光伏发电逆变器拓扑及关键技术设计详解

可再生能源之光伏发电逆变器拓扑及关键技术设计详解光伏发电逆变器是可再生能源系统中的核心设备,负责将太阳能电池板所产生的直流电转换为交流电以供家庭和工业用电。

在逆变器的设计中,拓扑结构和关键技术起着重要的作用。

本文将详细解释光伏发电逆变器的拓扑和关键技术设计。

首先,我们需要了解光伏发电逆变器的拓扑结构。

常见的光伏发电逆变器拓扑结构有单相桥式、全桥式和半桥式。

单相桥式逆变器适用于小功率应用,具有简单的拓扑结构,但输出功率质量较低。

全桥式逆变器适用于高功率应用,但其电路复杂度和成本较高。

半桥式逆变器综合了单相桥式逆变器和全桥式逆变器的优势,成为常用的选择。

其次,关键技术设计在光伏发电逆变器的性能和效率方面起着决定性的作用。

其中,PWM调制技术是常用的一种方法,通过调整逆变器开关管的开关频率和占空比,控制输出电压和电流的波形,从而实现直流到交流的转换。

另外,电流注入控制技术也是重要的技术之一,它通过注入一定电流信号到逆变器输出电流中,控制输出波形的谐波失真和功率因数。

此外,采用高效的电力电子器件和智能控制算法也是关键技术设计的重要内容。

在关键技术设计过程中,还需要考虑电池组的容量和并网电路的稳定性。

逆变器的电流和功率输出要与电池组的容量匹配,以保证能量的高效利用。

并网电路的稳定性包括对电网电压和频率的响应能力,以及对电力质量的保护和改善。

因此,在设计过程中,需要根据实际需求和环境条件合理选择逆变器的容量和参数,以达到最佳的发电效果和电力质量。

综上所述,光伏发电逆变器的拓扑结构和关键技术设计是确保光伏发电系统正常运行和高效发电的关键因素。

通过合理选择拓扑结构,采用高效的调制技术和控制策略,以及合适的电力电子器件和智能控制算法,可以提高逆变器的转换效率和电力质量,进而推动可再生能源的发展。

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑5.1 光伏并网逆变器的分类5.2 隔离型光伏并网逆变器5.3 非隔离型光伏并网逆变器5.4 多支路光伏并网逆变器5.5 微型光伏并网逆变器第五章光伏并网逆变器的电路拓扑光伏并网逆变器将太阳能电池输出的直流电转换成符合电网要求的交流电再输入电网,是光伏并网系统能量转换与控制的核心。

光伏并网逆变器的性能影响和决定整个光伏系统是否能够稳定、安全、可靠、高效地运行,同时也是影响整个系统使用寿命的主要因素。

本章将对光伏并网逆变器进行分类讨论。

5.1 光伏并网逆变器的分类根据光伏并网逆变器与电网的连接有无隔离变压器,可将光伏并网逆变器分为隔离型和非隔离型两大类,详细分类如图5-1所示。

图5-1 光伏并网逆变器分类5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构工频隔离型特点:主电路和控制电路相对简单,光伏阵列直流输入电压的匹配范围较大,可有效防止电网电流通过桥臂与人体在直流侧形成回路造成的人体伤害事故,保证系统不会向电网注入直流分量,有效的防止了配电变压器的饱和。

但体积大、质量重,增加了系统损耗及成本。

5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构高频隔离型特点:相比工频隔离型,具有较小的体积和质量,克服了工频隔离型的主要缺点。

图5-3 高频隔离型光伏并网逆变器结构a) DC/DC变换型 b) 周波变换型5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构与隔离型相比,省去了笨重的隔离变压器,体统结构简单、质量变轻、成本降低并提高了效率,将成为今后主要的光伏并网逆变器结构。

包括单级非隔离型和多级非隔离型。

图5-4 非隔离型光伏并网逆变器结构5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构非隔离型的光伏并网系统中,光伏阵列与电网电压直接连接。

大面积的光伏阵列与大地之间存在较大的分布电容,因此会产生光伏阵列对地的共模漏电流。

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究一、本文概述随着全球对可再生能源需求的持续增长,光伏发电技术因其清洁、可再生、无污染的特性,受到了广泛关注。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接影响到整个系统的运行效率和电能质量。

传统的光伏并网逆变器通常采用变压器结构,虽然这种结构在一定程度上能够实现电气隔离和电压匹配,但也存在体积大、成本高、效率低等问题。

因此,研究无变压器结构的光伏并网逆变器拓扑及其控制策略,对于提高光伏系统的整体性能、降低成本、推动光伏发电技术的广泛应用具有重要意义。

本文首先介绍了光伏发电系统的基本原理和并网逆变器的功能要求,阐述了无变压器结构光伏并网逆变器的研究背景和必要性。

随后,文章详细介绍了无变压器结构光伏并网逆变器的拓扑结构,包括其基本原理、电路构成以及与传统变压器结构逆变器的区别。

在此基础上,文章重点研究了无变压器结构光伏并网逆变器的控制策略,包括最大功率点跟踪控制、并网电流控制、孤岛效应检测与保护等方面。

通过理论分析和仿真实验,验证了所提控制策略的有效性和优越性。

文章对无变压器结构光伏并网逆变器的应用前景进行了展望,并指出了进一步研究的方向和可能的挑战。

本文的研究成果将为光伏发电技术的发展提供新的思路和方法,有助于推动可再生能源技术的快速发展和应用。

二、无变压器结构光伏并网逆变器拓扑随着可再生能源的日益普及,光伏(PV)技术已成为一种重要的清洁能源解决方案。

光伏并网逆变器是光伏系统的核心组成部分,其设计对于提高系统的效率和可靠性至关重要。

传统的光伏并网逆变器通常采用变压器结构,但近年来,无变压器结构的光伏并网逆变器因其高效率、低成本和紧凑的设计而受到了广泛关注。

无变压器结构光伏并网逆变器拓扑主要基于直接功率转换技术,省去了传统的工频变压器,从而降低了系统的体积和重量。

这种拓扑结构的关键在于使用高效的电力电子开关器件和先进的控制策略,实现直流(DC)到交流(AC)的直接转换。

光伏逆变器中的电路拓扑结构设计与研究

光伏逆变器中的电路拓扑结构设计与研究

光伏逆变器中的电路拓扑结构设计与研究随着太阳能光伏发电技术的迅速发展,光伏逆变器作为太阳能发电的重要组成部分,具有着越来越重要的作用。

光伏逆变器的作用是将太阳能电池模块发出的直流电转换为交流电,以供给电网使用。

电路拓扑结构是光伏逆变器设计中的重要部分,能够影响系统的性能和稳定性。

因此,本文将针对光伏逆变器中的电路拓扑结构进行设计与研究。

一、光伏逆变器电路拓扑结构的分类根据拓扑结构的不同,光伏逆变器可以分为单相桥式逆变器、三相桥式逆变器和多电平逆变器。

其中,单相桥式逆变器是一种简单的电路结构,适用于小型光伏发电系统;三相桥式逆变器更适合于较大规模的光伏发电系统;而多电平逆变器的逆变效率更高,也更加稳定,适用于大型光伏发电系统。

二、单相桥式光伏逆变器电路拓扑结构设计单相桥式光伏逆变器的电路结构简单,它将太阳能电池组成的直流电源通过开关管进行逆变,从而使得输出电压为交流电。

单相桥式光伏逆变器的设计中,采用了电感和电容进行过滤,以减小输出电压的波动度。

同时,为了保持输出电压的稳定性,还需要采用频率稳定器,通过调节频率来保持输出电压的稳定。

三、三相桥式光伏逆变器电路拓扑结构设计三相桥式光伏逆变器的电路结构比单相桥式光伏逆变器更为复杂,但是在大型光伏发电系统中,其性能和稳定性更加优越。

在三相桥式光伏逆变器的设计中,需要采用三相桥式整流器,将太阳能电池组成的直流电源变换为交流电。

然后,通过三相桥式逆变器将交流电转换为输出电压。

为了保证三相桥式光伏逆变器的稳定性,需要采用滤波器来减小输出电压的波动度。

此外,频率稳定器的设计中也十分重要,以保持输出电压的稳定性。

四、多电平光伏逆变器电路拓扑结构设计多电平光伏逆变器相比于单相桥式光伏逆变器和三相桥式光伏逆变器更加复杂,但是其逆变效率更高,输出电压波动度更小,稳定性更好。

在多电平光伏逆变器的设计中,我们需要采用多个桥式电路,并将其串联起来,以实现多电平输出。

多电平光伏逆变器的设计需要采用多个电感和电容进行过滤,同时还需要将频率稳定器进行升级,以保证输出电压的稳定性。

光伏逆变器电路拓扑优化设计与实现

光伏逆变器电路拓扑优化设计与实现

光伏逆变器电路拓扑优化设计与实现光伏逆变器是将太阳能电池板输出的直流电转换为交流电的关键设备。

在光伏逆变器的电路设计中,合适的拓扑结构对于提高系统的功率密度、效率和可靠性至关重要。

本文将介绍光伏逆变器电路拓扑的优化设计和实现。

一、光伏逆变器的拓扑结构光伏逆变器常用的拓扑结构有单相桥式逆变器、升压逆变器、降压逆变器和多电平逆变器等。

每种拓扑结构有其适用的应用场景和性能特点。

在进行拓扑优化设计时,需要综合考虑功率密度、效率、可靠性和成本等因素。

二、拓扑结构优化设计1. 单相桥式逆变器单相桥式逆变器是最常用的拓扑结构之一。

它具有简单的电路结构和较高的效率,适用于小功率的应用。

在优化设计中,可以采用全桥式逆变器替代半桥式逆变器,提高系统功率密度和效率。

2. 升压逆变器升压逆变器适用于需要将光伏发电系统的输出电压提高到更高水平的应用。

在优化设计中,可以采用多级升压逆变器结构,以降低每级开关器件的电压压力,提高系统的效率和可靠性。

3. 降压逆变器降压逆变器适用于需要将光伏发电系统的输出电压降低到更低水平的应用。

在优化设计中,可以采用多级降压逆变器结构,以降低每级开关器件的电流负载和损耗,提高系统的效率和可靠性。

4. 多电平逆变器多电平逆变器具有更高的输出质量和效率,适用于高功率应用。

在优化设计中,可以采用多电平逆变器的结构,通过增加电压级数和控制技术来减小电路中开关器件的开关损耗,提高系统的效率和可靠性。

三、拓扑优化设计的方法1. 基于数学建模的优化设计方法可以通过建立逆变器电路的数学模型,利用数学优化方法对电路参数进行优化设计。

例如,可以使用遗传算法、粒子群算法等进行参数寻优。

2. 基于仿真和实验验证的优化设计方法可以利用电路仿真软件对不同拓扑结构进行性能评估和比较。

通过调整电路参数和拓扑结构,找到最佳的设计方案。

同时,还需通过实验验证来验证仿真结果的准确性。

3. 基于先进控制技术的优化设计方法可以采用先进的控制技术(如最大功率点跟踪、预测控制、谐振控制等)来提高光伏逆变器的效率和稳定性。

三相光伏并网逆变器拓扑结构及其控制方案

三相光伏并网逆变器拓扑结构及其控制方案

C2
V7
PV
V4 V2 V6
C
三相光伏并网逆变器基本拓扑
4
三相并网光伏逆变器基本拓扑及其控制方案
1 最大功率点跟踪 (Maximum Power Point Tracking,MPPT)
P/W P/W
100
光照增强
75
50
25
0
5
10 15 20 25
30U/V
光照对U-P曲线的影响
100 75
V1
V5
V9
C1 VD1
V2 VD3
V6 VD5
V10L
L
C3 V13
PV
VD2
VD4
VD6
C2
V3
Байду номын сангаас
V7
V11
C
V4
V8
V12
二极管钳位式(Neutral Point Clamping,NPC)
9
H桥级联式逆变器拓扑结构及其控制方案
一种H桥级联式三相光伏并网逆变器
10
H桥级联式逆变器拓扑结构及其控制方案
50
温度升高
25
0
5 10 15 20 25 30
温度对U-P曲线的影响
5
三相并网光伏逆变器基本拓扑及其控制方案
6
三相并网光伏逆变器基本拓扑及其控制方案
P/W P/W
50
40
30
20 P1
10
P0
0
5
Pn
P3
P2
P4
10 15 25
30 35
U/V
50
40
P0
30
Pn
P2
P1

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路光伏逆变器是一种将直流电转换为交流电的装置,在光伏发电系统中起到重要作用。

它的主要功能是将光伏电池板产生的直流电转换为交流电,以满足电网的要求。

同时,逆变器还需要具备稳定可靠、高效节能等特点。

本文将介绍光伏逆变器的拓扑结构及设计思路。

光伏逆变器的拓扑结构主要有单相桥式、三相桥式、多电平桥式、谐振桥式等。

其中,单相桥式是应用最广泛的一种拓扑结构,主要由四个IGBT(绝缘栅双极性晶体管)和四个二极管组成,用于将直流电转换为交流电。

相位控制是单相桥式逆变器的主要控制策略,它可以通过改变IGBT的通断来控制输出交流电的相位和频率。

三相桥式逆变器类似于单相桥式逆变器,但是它由六个IGBT和六个二极管组成,可以实现三相交流电的输出。

多电平桥式逆变器可以通过增加IGBT和二极管的数量,来实现更精确的逆变控制,从而提高逆变器的输出质量。

谐振桥式逆变器是一种利用谐振原理工作的逆变器,具有高效、低开关损耗等优点。

在光伏逆变器的设计过程中,需要考虑以下几个方面。

首先是功率选择,即根据光伏电池板的额定功率和输出功率需求,确定逆变器的额定功率。

其次是控制策略选择,即确定逆变器的工作方式和控制算法,可以选择PWM控制或者谐振控制等方式。

同时,还要考虑逆变器的效率、稳定性等性能指标,尽量提高逆变器的工作效率,并通过合理的电路设计和控制策略来提高逆变器的稳定性。

最后是滤波和保护电路的设计,逆变器输出的交流电需要进行滤波处理,以去除谐波和杂波成分,并且需要设计相应的保护电路,以提高逆变器的安全性和可靠性。

总之,光伏逆变器的拓扑结构和设计思路需要根据具体的应用需求进行选择和确定。

在设计过程中,需要考虑功率选择、控制策略选择、效率和稳定性等方面的问题,并通过合理的电路设计和控制策略来提高逆变器的性能和可靠性。

光伏逆变器的发展将进一步推动光伏发电技术的应用,为可持续能源的开发和利用做出贡献。

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路

光伏逆变器拓扑结构及设计思路光伏逆变器是将直流电能转换为交流电能的关键设备,在光伏发电系统中起着非常重要的作用。

光伏逆变器的拓扑结构和设计思路决定了其转换效率、稳定性、可靠性以及成本等关键性能指标。

本文将对光伏逆变器的拓扑结构和设计思路进行详细阐述。

串联式逆变器是指将光伏电池组的单个电池串联连接,然后通过逆变器进行电流和电压的转换。

串联式逆变器的主要特点是输出电压和频率稳定,但若其中一个电池损坏,整个电池组的发电效能将受到影响。

并联式逆变器是指将光伏电池组的单个电池并联连接,然后通过逆变器进行电流和电压的转换。

并联式逆变器的主要特点是每个电池单独工作,一个电池损坏不会影响整个电池组的发电效能,但输出电压和频率可能不稳定。

混联式逆变器是串联式逆变器与并联式逆变器的结合,兼具两者的优点。

混联式逆变器的特点是稳定性好,充分利用多个电池组发电效能,但设计和调试难度较大。

在光伏逆变器的设计中,需要考虑以下几个关键因素:1.输出电压和频率控制:逆变器需要将直流电转换为交流电,因此需要精确控制输出电压和频率。

在设计中,可以采用PWM调制技术或者全桥逆变技术等方法来实现输出电压和频率的控制。

2.功率因数控制:光伏逆变器应力求实现高功率因数,以提高系统的整体效能。

在设计中,可以采用谐振技术、电容补偿技术等方法来实现功率因数的控制。

3.可靠性设计:光伏逆变器需要在各种恶劣环境条件下稳定运行,因此需要进行可靠性设计。

在设计中,可以采用多重保护技术、过温保护技术等方法来提高逆变器的可靠性。

4.效率优化:光伏逆变器的转换效率直接影响到光伏发电系统的发电效果。

在设计中,需要优化逆变器的转换效率,减小能量损耗,提高系统的发电效率。

总结而言,光伏逆变器的拓扑结构和设计思路直接影响到逆变器的性能指标。

通过选择合适的逆变器拓扑结构和采用适当的设计思路,可以提高逆变器的转换效率、稳定性和可靠性,从而提高整个光伏发电系统的发电效能。

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑光伏并网逆变器的主电路拓扑摘要:光伏并网逆变器是光伏发电系统的核心设备,其主电路拓扑与变换效率和安全性等主要指标密切相关。

本文讨论了光伏并网逆变器主电路拓扑的分类,重点介绍了作者所在实验室使用的三种拓扑。

1 引言跨入21世纪之后,全球正在面临能源危机,新能源已经成为世界经济发展中最具决定力的五大技术领域之一。

太阳能光伏发电技术作为新能源的重要一员得到了持续的发展。

太阳能光伏发电系统可区分为两大类:一是独立系统,二是并网系统。

独立系统是由太阳能电池直接给负载提供功率,多用于偏远的电网未到达地区的局部供电,易受到诸如时间和季节的影响。

独立系统结构图如图1所示。

其中,PV表示由光伏电池组成的光伏组件或光伏组件阵列。

光伏并网发电系统已经成为太阳能利用的主要形式。

并网发电系统的特点是通过控制逆变器,直接将太阳能电池阵列发出的直流电转换为交流电,输向电网,如图2所示。

其中,us表示电网电压。

寻求高性能、低造价的光伏材料和器件以减小光伏发电系统的自身损耗是其研究热点之一。

作为光伏阵列与电网系统间进行能量变换的并网逆变器,其安全性、可靠性、逆变效率、制造成本等因素对发电系统的整体投资和收益具有举足轻重的作用。

因此,对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。

2 光伏并网逆变器主电路拓分类并网逆变器的电路拓扑很多。

根据直流侧电源性质的不同可分为电压型逆变器和电流型逆变器,结构如图3。

当前,光伏并网逆变器主要采用直流侧以电压源形式的电压型逆变器。

根据逆变器的输入端和输出端是否隔离,可将逆变器分为隔离型和非隔离型。

隔离型逆变器又可分为高频变压器型和工频变压器型[4]。

工频变压器隔离型逆变器的变压器置于逆变器与电网之间,如图4所示。

这种方式可有效阻止逆变器输出波形中的直流分量注入电网,减小对电网的污染,并提高系统的安全性。

但是工频变压器会使系统成本明显升高。

高频变压器隔离型逆变器采用两级或多级变换,图5是一个例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏并网逆变器及其拓扑结构的设计
对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。

但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。

因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。

欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。

它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。

欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。

因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。

图1: 欧洲效率计算比重
1、功率器件的选型
在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。

因为IGBT 导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。

从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。

但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。

因为欧洲效率主要和逆变器不同轻载情况下效率的有关。

在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。

相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。

另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。

为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。

典型的电路是通过一个boost电路来实现。

然后再通过逆变器把直流电逆变为可并网的正弦交流电。

2、单相无变压器式光伏逆变器拓扑结构的设计:
拓扑结构的选择和光伏逆变器额定输出功率有关。

对于4kw以下的光伏逆变器,通常选用直流母线不超过500V,单相输出的拓扑结构,如图2所示:
图2: 单相无变压器式光伏逆变器功能图
这个功能可以通过以下的原理图实现(图3)
600V
图3: 单相无变压器式光伏逆变器原理图
Boost电路通过对输入电压的调整实现最大功率点跟踪。

H桥逆变器把直流电逆变为正弦交流电注入电网。

上半桥的IGBT作为极性控制器,工作在50HZ,从而降低总损耗和逆变器的输出电磁干扰。

下半桥的IGBT或者MOSFET进行PWM高频切换,为了尽量减小Boost电感和输出滤波器的大小,切换频率要求尽量高一些,如16KHz。

本研究使用功率模块来设计光伏逆变器,因为把图3拓扑结构上的所有器件集成到一个模块里面,可以使安装简单、可靠,同时研发设计周期短,可以更快地把产品推向市场,并使设备具有更好的电气性能。

对于功率模块的设计,我们需要注意以下几点:
(1)直流母线环路低电感设计
为了实现这个目标,我们必须同时降低模块内部和外部的寄生电感。

为了降低模块内部的寄生电感,必须优化模块内部的绑定线,管脚布置以及内部走线。

为了降低模块外部寄生电感,我们必须保证在满足安全间距的前提下,Boost电路和逆变桥电路的直流母线正负两端尽量靠近。

(2)给快速开关管配置专有的驱动管脚
开关管在开关过程中,绑定线的寄生电感会造成驱动电压的降低。

从而导致开关损耗的增加,甚至开关波形的震荡。

在模块内部,通过给每个开关管配置专有的驱动管脚(直接从芯片上引出),这样就可以保证在驱动环路中不会有大电流流过,从而保证驱动回路的稳定可靠。

这种解决方案目前只有功率模块可以实现,单管IGBT还做不到。

图4显示了Vincotech公司最新推出的光伏逆变器专用模块flowSOL-BI(P896-E01),它集成了上面所说的优点:
图4: flowSOL-BI –boost 电路和全桥逆变电路
技术参数:
Boost 电路由MOSFET(600V/45mΩ)和SiC 二极管组成,旁路二极管主要是当输入超过额定负载时,旁路Boost 电路,从而改善逆变器整体效率。

H 桥电路上半桥由75A/600V IGBT 和SiC 二极管组成,下半桥由MOSFET(600V/45mΩ)组成,此模块集成了温度检测电阻。

单相无变压器光伏逆变器专用模块flowSOL0-BI 的效率计算:
这里我们主要考虑功率半导体的损耗,其他的无源器件,如Boost 电感,输出滤波电感的损耗不计算在内。

基于这个电路的相关参数,仿真结果如下: 仿真条件:
2in P kw =
16PWM f kHz = 300PV nominal V V -= 400DC V =
图 5: boost 电路效率仿真结果 EE=99.6%
图6 flowSOL-BI 逆变电路效率仿真结果EE=99.2%
标准IGBT全桥EE=97.2% (虚线)
根据仿真结果我们可以看到,模块的效率几乎不随负载的降低而下降。

模块总的欧洲效率(Boost+Inverter)可以达到98.8%。

即使加上无源器件的损耗,总的光伏逆变器的效率仍然可以达到98%。

图6虚线显示了使用常规功率器件,逆变器的效率变化。

可以明显看到,在低负载时,逆变器效率下降很快。

3、三相无变压器光伏逆变器拓扑结构的设计
大功率光伏逆变器需要使用更多的光伏电池组和三相逆变输出(图7),最大直流母线电压会达到1000V。

图7 三相无变压器式光伏逆变器功能图
这里标准的应用是使用三相全桥电路。

考虑到直流母线电压会达到1000V,那开关器件就必须使用1200V的。

而我们知道,1200V功率器件的开关速度会比600V器件慢很多,这就会增加损耗,影响效率。

对于这种应用,一个比较好的替代方案是使用中心点钳位(NPC=neutral point clamped)的拓扑结构(图8)。

这样就可以使用600V的器件取代1200V 的器件。

Boost inductor
SiC3600V
600V MOS4
IGBT3
600V trench
line inductor
220v
Boost inductor
400V
400V
SiC3600V
125-430v
125-430v
600V MOS3
SiC3 600V
SiC3 600V
CoolMOS2600V
CoolMOS1600V
400V
400V
IGBT4
600V trench 图 8: 三相无变压器 NPC 光伏逆变器原理图
为了尽量降低回路中的寄生电感,最好是把对称的双Boost 电路和NPC 逆变桥各自集成在一个模块里。

(1)双Boost 模块技术参数(图9):
双Boost 电路都是由MOSFET(600V/45mΩ)和SiC 二极管组成,旁路二极管主要是当输入超过额定负载时,旁路Boost 电路,从而改善逆变器整体效率模块内部集成温度检测电阻。

图9:flowSOL-NPB 对称双boost 电路
(2)NPC 逆变桥模块的技术参数(图10):
中间换向环节由75A/600V 的IGBT 和快恢复二极管组成,上下高频切换环节由MOSFET(600V/45m Ω)组成,中心点钳位二极管由SiC 肖特基二极管组成,模块内部集成温度检测电阻。

图10: flowSOL-NPI – NPC 逆变桥
对于这种拓扑结构,关于模块的设计要求基本类似于前文提到的单相逆变模块,唯一需要额外注意的是,无论是双Boost 电路还是NPC 逆变桥,都必须保证DC+,DC-和中心点之间的低电感设计。

有了这两个模块,就很容易设计更高功率输出光伏逆变器。

例如使用两个双Boost 电路并联和三相NPC 逆变桥就可以得到一个高效率的10kW 的光伏逆变器。

而且这两个模块的管脚设计充分考虑了并联的需求,并联使用非常方便。

图11:双boost模块并联和三相NPC逆变输出模块布局图
针对1000V直流母线电压的光伏逆变器,NPC拓扑结构逆变器是目前市场上效率最高的。

图12比较了NPC模块(MOSFET+IGBT)和使用1200V的IGBT 半桥模块的效率。

图12:NPC逆变桥输出效率(实线)和半桥逆变效率(虚线)比较
根据仿真结果,NPC逆变器的欧效可以达到99.2%,而后者的效率只有96.4%.。

NPC拓扑结构的优势是显而易见的。

相关文档
最新文档