GPS导航定位原理以及定位解算算法

合集下载

GPS接收机定位解算算法

GPS接收机定位解算算法

u r r r
. i i0 i i (t toe)
13. 计算升交点(ascending node)和格林威治子午线(Greenwich meridian)之间的交 角Ωer
. er 0 (t toe) t
式中,Ω为地球转角速率 Ω=7.292115×10 5 rad/s 14. 计算卫星在轨道直角坐标系中的坐标
GPS接收机定位解算算法
Page 1 of 14
Revision History Version Date Author Description
Page 2 of 14
Abbreviation
GPS ECEF Global Position System Earth Center Earth Fix
xs sin cos sin sin cos x ys sin cos 0 y cos sin sin zs r cos cos z E

GPS 卫星 Doppler 频移估算
由于GPS卫星相对接收机的运动,产生了Doppler效应,由Doppler效应原理
fdopp
3.1式中
v cos

(3.1)
fdopp :Doppler频移,单位Hz
Page 9 of 14
v :接收机相对于GPS卫星的速度矢量,单位m/s 与接收机-卫星连线(line-of-sight)的夹角,单位rad :v :L1载波的波长,单位m
Page 3 of 14
Directory
1 2 3 引言................................................................................................................................... 5 GPS定位原理 ................................................................................................................... 6 GPS卫星系统 ................................................................................................................... 7 3.1 GPS卫星位置计算 ................................................................................................... 7 3.1.1 卫星位置、速度计算 ....................................................................................... 7 3.1.2 卫星仰角、方位角计算 ................................................................................... 9 3.2 GPS卫星Doppler频移估算 ...................................................................................... 9 4 接收机计算..................................................................................................................... 11 4.1 定位方程解算 ......................................................................................................... 11 4.1.1 参与定位卫星数为4 ....................................................................................... 11 4.1.2 参与定位卫星数大于4 ................................................................................... 12 4.2 坐标转换................................................................................................................. 13 4.3 接收机速度计算 ..................................................................................................... 14

第三章-GPS定位的基本原理

第三章-GPS定位的基本原理

位置差分 伪距差分 载波相位差分
多基准站 GPS差分
局部区域差分 广域差分 多基准站RTK
测相伪距修正法 载波相位求差法
19
3.3.1 绝对定位原理
1、测码伪距静态绝对定位 设
代入测码伪距方程
可得
2021/3/30
20
2021/3/30
21
静态测量时,可以观测多颗卫星不同历元的观测值,故
2021/3/30
(5)几何精度衰减因子GDOP,包含空间位置误差和时间误差
假设测站与4颗观测卫星所构成的六面体体积为V,GDOP与V的倒数成正比。V
越大GDOP越小,精度越好。
但卫星高度角月底,电离层、对流层误差越大。
2021/3/30
26
3.3.3 相对定位原理
相对定位:采用两台以上的接收机同步观测相同的GPS卫星,以确定接收机天线间 的相互位置关系的一种方法。分为静态相对定位和动态相对定位。
周跳有两种类型: (1)中断数分钟以上,在数个历元中没有载波相位观测值; (2)周跳发生在两个观测历元之间。
周跳探测与修复方法: (1)高次差法;无周跳的高次差值具有随机特性。 (2)多项式拟合法:利用前面正确的相位观测值利用多项式外推下一
个观测值,并与实际的观测值比较,从而发现周跳。 (3)其他方法:星际差分法、残差法等。
对定位;
2)按接收机在作业中的运动状态
分类:静态定位、动态定位;
动态绝对定位、动态相对定位、
静态绝对定位、静态相对定位。
3)依照测距的观测量分类:测码伪
距法定位、测相伪距法定位。
C为光速,δt为接收机钟差
2021/3/30
3
3.2 GPS定位的基本观测量

第五章 GPS定位基本原理

第五章 GPS定位基本原理

第五章 GPS定位基本原理
8
2)、相对定位
• 确定同步跟踪相同的GPS信号的若干台接收机之间的相对 位臵的方法。可以消除许多相同或相近的误差(如卫星钟、 卫星星历、卫星信号传播误差等),定位精度较高。但其 缺点是外业组织实施较为困难,数据处理更为烦琐。
• 在大地测量、工程测量、地壳形变监测等精密定位领域内 得到广泛的应用。
j为卫星数,j=1,2,3,…
第五章 GPS定位基本原理
27
三、用测距码来测定伪距的特点
• 利用测距码测距的必要条件
– 必须了解测距码的结构
(1)易于将微弱的卫星信号提取出来。
卫星信号的强度一般只有噪声强度的万分之一或更低。 只有依据测距码的独特结构,才能将它从噪声的汪洋大海中 提取出来;
第五章 GPS定位基本原理
接收机钟差
t tk t tk (G) t (G) tk t
j j
j
信号真正传播时 间
第五章 GPS定位基本原理 22
如果不考虑大气折射的影响,则有:
' ct c[tk t ]
j
c tk (G ) t (G ) c(tk t )
j j

ρ = τ*C= △t*C 上式求得的距离ρ并不等于卫星至地面测站的真正距 离,称之为伪距。
第五章 GPS定位基本原理 19
二、伪距测量的观测方程
• 码相关法测量伪距时,有一个基本假设,即卫星钟和接 收机钟是完全同步的。
• 但实际上这两台钟之间总是有差异的。因而在R(t) =max 的情况下求得的时延τ就不严格等于卫星信号的传播时间 Δt,它还包含了两台钟不同步的影响在内。
第五章 GPS定位基本原理 17

第四章-GPS定位基本原理

第四章-GPS定位基本原理

为P 码和W 码,然后再利用P
码来测距
原理
Z跟踪技术
将接收到的L1 和L2 信号分别和接 收机生成的、以P 码信号为基础的 复制信号相关,频带宽度降低到保 密W 码的带宽,从而得到未知的W 码调制信号的估值
应用反向频率信号处理法,将接收 到的信号减去这一W 码的估值, 就可以大部分消除W 码的影响, 进而恢复P 码
在相对定位中,至少其中一点或几个点的位置是已知的, 即其在WGS-84坐标系的坐标为已知,称之为基准点。
相对定位是高精度定位的基本方法
广泛应用于高精度大地控制网、精密工程测量、地球动 力学、地震监测网和导弹和火箭等外弹道测量方面。
动态定位
至少一台接收机处于运动状态,确定各观测时刻运动中 的接收机的绝对或相对位置关系。
GPS系统的定位过程可简述为如下步骤: 跟踪、选择卫星、接收选定卫星的信号。 解读、解算出卫星。 测量得到卫星和用户之间的相对位置。 解算得到用户的最可信赖位置。
“交会法” 定位
已知一颗卫星的位置和接收器到它的距离,就可以确定接收器在一个球面上。 已知两颗卫星的位置和接收器到它们的距离,就可以确定接收器在一个环上。 如果知道三颗卫星的位置和接收器到它们的距离,通常可以确定接收器一定
对于非特需用户, 采用Z 跟踪技术进行PRN 相关处理的积分 时间很短, 导致测量精度降低, 对于其他方式, 由于利用W 码 的近似信息和增加处理环节
导致伪距测量结果的误差增大
原来的高精度P 码在最终的伪距测量结果中并不是总能得到保证
虽然是采用同样的P 码, 由于测量方式和过程不同, 非特需 用户得到的P 码伪距精度低于特需用户的相应结果。
近来基本区分方法
静态:
接收机天线在测量期间静止不动。 测量的参数在测量期间是不随时间变化的。 目的是测量点位的坐标。

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法GPS(全球定位系统)是一种基于卫星信号的导航系统,用于确定地球上任意点的位置和时间。

GPS导航定位的原理基于三个基本原则:距离测量、导航电文和定位解算。

首先,定位解算的基本原理是通过测量卫星与接收器之间的距离差异来确定接收器的位置。

GPS接收器接收卫星发射的信号,并测量信号从卫星到接收器的时间延迟。

通过已知卫星位置和测量时间延迟,可以计算出接收器与卫星之间的距离。

至少需要接收到4个卫星信号才能进行定位解算,因为每个卫星提供三个未知数(x、y、z三个坐标)和一个时间未知数。

其次,GPS导航系统通过导航电文提供的卫星轨道参数来计算卫星的精确位置。

每个卫星通过导航电文向接收器传递关于卫星识别码、卫星轨道和钟差等数据。

接收器使用这些参数来计算卫星的准确位置。

最后,通过定位解算算法,将接收器收到的卫星信号和导航电文中的轨道参数进行计算,可以确定接收器的位置。

定位解算算法主要有两种:三角测量法和最小二乘法。

三角测量法基于三角学原理,通过测量多个卫星与接收器之间的距离差异,然后根据这些距离差异以及卫星的位置信息来计算接收器的位置。

这种算法的优势是计算简单,但受到测量误差的影响较大。

最小二乘法是一种数学优化方法,通过最小化接收器位置与测量距离之间的误差平方和来求解接收器的位置。

该方法考虑到了测量误差的影响,并通过对多个卫星信号进行加权以提高解算的准确性。

除了上述的定位解算算法,GPS导航系统还使用了差分GPS和惯性导航等技术来提高定位精度和可靠性。

差分GPS通过接收器与参考站之间的信号比对,消除了大部分的误差,提高了定位精度。

惯性导航通过测量加速度和角速度来估计接收器的位移,可以在信号丢失或弱化的情况下提供连续的导航定位。

综上所述,GPS导航定位通过距离测量、导航电文和定位解算算法来确定接收器的位置。

通过接收到的卫星信号和导航电文中的轨道参数,定位解算算法能够计算出接收器的位置,并提供准确的导航信息。

GPS定位系统原理简明讲解

GPS定位系统原理简明讲解
GPS定位系统
李含伦 lihanlun@
目录
一、GPS的发展背景
二、GPS的组成及工作原理
三、GPS定位系统的应用
四、其它的卫星定位系统
一、GPS的发展背景
1、 GPS的定义 全球定位系统GPS(Global Positioning System),是一种可以授时和测距的 空间交会定点的导航系统,可向全球用户提供连续、实时、高精度的三维位置,三 维速度和时间信息。 2、GPS发展过程 1958年,美国海军武器实验室,开始着手建立为美国海军舰艇导航的卫星 系统,即“海军导航卫星系统”(Navy Navigation Satellite System—— NNSS)。由于该系统卫星都通过地极,也称“子午(Transit)卫星系统”。 1964年该系统建成,并在美国军方启用。 1967年美国政府批准该系统解密,提供民用。 美国从1973年开始筹建全球定位系统,1994年投入使用。 经历20年,耗资300亿美元,是继阿波罗登月计划和航天飞机计划之后的第三 项庞大空间计划。
4 测速功能 通过GPS对卫星信号的接收计算,可以测算出行驶的具体速度,比一般的里程 表准确很多。
三、GPS定位系统的应用
汽车卫星导航系统的缺点 由于汽车卫星导航系统的自身工作特点决定了它要精确工作需要的两个 条件: 1)精确的坐标;2)准确的地图。
精确的坐标 这个只有依靠全球定位系统才能解决的,目前也就四个系统,美国的GPS, 俄罗斯“格格纳斯”,中国“北斗”,欧盟“伽利略“,民用方面所能够达到的 精度有限,在一些特殊时期精度将会人为降低。 准确的地图 处于国家安全的考虑,各国公布的地图精度有限,某些特殊地区(政府 机关所在地等)可能会发生一定的偏移。而在一些急需导航的偏远地区地 图的准确度更低,经济发达地区的地图精度要好。

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法全球定位系统(GPS)是一种基于卫星导航的定位技术。

其基本原理是通过接收来自卫星系统的信号,并利用这些信号的时间差来计算接收器与卫星之间的距离,进而确定接收器的位置。

GPS定位原理:1.卫星信号发射:GPS系统由一组运行在地球轨道上的卫星组成。

这些卫星通过周期性地广播信号来与地面上的GPS接收器进行通信。

2.接收器接收信号:GPS接收器接收来自卫星的信号,一般至少需要接收到4颗卫星的信号才能进行定位。

3.信号延迟计算:GPS接收器通过测量信号从卫星发射到接收器接收的时间来计算信号的传播延迟,然后将延迟转换为距离。

4.距离计算:GPS接收器通过比较接收的信号与预先知道的卫星发射信号之间的时间差,进而计算出接收器与卫星之间的距离。

5.定位解算:通过同时计算接收器与多颗卫星之间的距离,可以确定接收器所在的位置。

这一过程通常使用三角测量或者多路径等算法来完成。

GPS定位解算算法:1.平面三角测量:这是一种常用的定位解算算法。

通过测量接收器与至少三颗卫星之间的距离,可以得到三个方程,从而确定接收器的位置。

2.弧长法:这一算法通过测量接收器与至少四颗卫星之间的距离,将每个卫星看作是一个弧线,然后通过计算不同卫星间弧线的交点来确定接收器的位置。

3.最小二乘法:这种算法将测量误差最小化,通过最小二乘法来计算接收器与卫星之间的距离和接收器的位置。

4.系统解算:该算法利用多个时间点上的观测数据,通过组合计算来减小误差,精确确定接收器的位置。

GPS定位解算算法根据具体的应用场景和精度要求有所不同,不同的算法有着各自的优缺点。

在实际应用中,通常结合多种算法进行定位,以提高精度。

同时,还可以通过使用差分GPS(DGPS)来消除大气延迟和接收器误差,进一步提高定位精度。

总结:GPS导航定位原理基于卫星信号的接收和测量,通过计算信号传播的时间差来确定接收器与卫星之间的距离,并通过不同的算法进行定位解算。

GPS定位原理和简单公式

GPS定位原理和简单公式

GPS定位原理和简单公式全球定位系统(Global Positioning System)是美国第二代卫星导航系统。

是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。

和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。

按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。

21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。

卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。

这就提供了在时间上连续的全球导航能力。

地面监控部分包括四个监控站、一个上行注入站和一个主控站。

监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。

监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。

主控站设在范登堡空军基地。

它对地面监控部实行全面控制。

主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。

上行注入站也设在范登堡空军基地。

它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。

这种注入对每颗GPS卫星每天进行一次,并在卫星离开注入站作用范围之前进行最后的注入。

全球定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。

随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。

上述四个方程式中待测点坐标x、y、z 和Vto为未知参数,其中di=c△ti (i=1、2、3、4)。

di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接收机之间的距离。

△ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的信号到达接收机所经历的时间。

GPS差分定位原理与解算方法介绍

GPS差分定位原理与解算方法介绍

GPS差分定位原理与解算方法介绍导语:全球定位系统(Global Positioning System,简称GPS)已经成为现代社会中不可或缺的一部分。

它的差分定位原理和解算方法是GPS定位精度提高的重要手段。

本文将从基本原理、差分定位方法和解算流程三个方面进行介绍,希望能带给读者更深入的了解。

一、GPS差分定位的基本原理GPS差分定位技术主要通过消除卫星信号传输过程中的时间延迟和误差,提高定位的精度。

其基本原理如下:1.1 卫星信号传输的时间延迟在GPS定位过程中,卫星信号需要经过大气层的传输。

然而,大气层中存在电离层和对流层等不均匀介质,会导致信号的传输速度和路径发生变化,从而引起时间延迟。

这种时间延迟是影响GPS定位精度的主要因素之一。

1.2 接收机和卫星钟差接收机和卫星钟差也会对GPS定位的精度产生影响。

接收机钟差是指接收机内部时钟的不准确性,而卫星钟差是指卫星内部时钟的不准确性。

误差累积后,会使GPS定位出现较大的误差。

二、GPS差分定位的方法GPS差分定位的方法有静态差分定位和动态差分定位两种。

2.1 静态差分定位静态差分定位主要适用于定位场景相对固定的情况,如建筑物测量和基础设施监测等。

它的工作原理是通过一个称为参考站(Reference Station)的固定GPS接收机对已知位置进行定位,并计算多普勒、钟差和大气层延迟等误差参数。

然后,通过无线通信将这些参数传输给移动接收机,移动接收机利用这些参数进行定位。

2.2 动态差分定位相对于静态差分定位,动态差分定位更适用于移动环境中的定位,如汽车导航和船舶定位等。

动态差分定位的关键是实时计算接收机位置的误差参数,并将其发送给移动接收机进行定位。

通常,这种方法需要两个或更多的接收机组成一个虚拟基线,并使用这些接收机之间的数据进行定位。

三、GPS差分定位的解算流程GPS差分定位的解算流程包括差分基准站的建立、测量数据的采集和处理。

3.1 差分基准站的建立差分基准站是差分定位的核心组成部分,它记录了精确的位置和时间信息,并对卫星信号进行实时观测和处理。

GPS测量原理及应用备课课件(最新)第五章:GPS定位原理

GPS测量原理及应用备课课件(最新)第五章:GPS定位原理
31
3).三差法: 原理:利用连续跟踪的所有载波相位测量观测值中均含 有相同的整周未知数N0,所以将相邻两个观测历元的载 波相位相减,就可将该未知参数消去,从而直接解出坐 标参数。 4). FARA 法--fast ambiguity resolution approach
原理:利用初始平差的解向量(接收机点的坐标及整周 未知数的实数解)及其精度信息(单位权中误差和方差协 方差阵),以数理统计理论的参数估计和统计假设检验为 基础,确定在某一置信区间整周未知数可能的整数解的组 合,然后依次将整周未知数的每一组合作为已知值,重复 地进行平差计算。其中使估值的验后方差或方差和为最小 的一组整周未知数即为整周未知数的最佳估值。
1
(X、Y、Z)
X、Y 、Z —— 测点点位坐标
Xi、Yi、Zi——卫星星历(坐标) 1、 1、 1 ——观测所得伪距(在 方程中是已知量)
2
GPS定位的基本原理
需解决的两个关键问题: --如何确定卫星的位置 --如何测量出站星距离
3
测距方法
双程测距
用于电磁波测距仪
单程测距
用于GPS
4
二.GPS定位方法分类
j (GPS)] cti
ct
j
c
j i
c ti
c t
j
ij
c ti
c t
j
上式当所卫确星定钟的与伪接距收即机为钟站严星格几同何步距时离(。 ti t j ),
13
通常GPS卫星的钟差可从卫星发播的导航电文中获得,
经钟差改正后,各卫星之间的时间同步差可保持在109 s
以内。如果忽略卫星钟差影响,并考虑电离层、对流层折
所以⑦式可写为:
顾及载波相位整周数,观测方程可写为:

GPS北斗定位解算算法的研究

GPS北斗定位解算算法的研究

GPS北斗定位解算算法的研究一、本文概述随着全球定位系统的快速发展,GPS和北斗卫星导航系统已成为人们日常生活中不可或缺的定位技术。

它们通过接收来自多个卫星的信号,计算出接收器在地球上的位置,为导航、测量、军事等领域提供了强大的支持。

然而,GPS和北斗定位解算算法的研究,作为定位技术的核心,其复杂性和精度要求使得这一领域的研究具有重要的理论价值和实践意义。

本文旨在深入研究GPS和北斗定位解算算法,分析其原理、特点和优化方法,旨在提高定位精度和效率。

文章首先简要介绍了GPS和北斗卫星导航系统的基本原理和发展现状,然后重点阐述了定位解算算法的基本理论和关键技术,包括信号接收、信号处理、定位解算等过程。

在此基础上,文章对现有的定位解算算法进行了分析和比较,指出了各自的优缺点和适用范围。

为了进一步提高定位精度和效率,文章还探讨了定位解算算法的优化方法。

通过引入先进的信号处理技术和优化算法,对传统的定位解算算法进行了改进和创新。

这些优化方法包括滤波技术、最小二乘法、神经网络等,它们可以有效地提高定位精度、减少定位时间和降低误差。

文章对GPS和北斗定位解算算法的未来发展趋势进行了展望。

随着技术的不断进步和应用领域的不断拓展,定位解算算法将面临着更多的挑战和机遇。

未来,我们将继续深入研究定位解算算法,推动其在导航、测量、军事等领域的应用和发展。

本文的研究将为GPS和北斗定位解算算法的优化和应用提供理论支持和实践指导,有助于推动我国卫星导航事业的发展和创新。

二、GPS和北斗卫星导航系统概述全球定位系统(GPS)是由美国国防部研制建立的一种具有全方位、全天候、全时段、高精度的卫星导航系统,能为全球用户提供低成本、高精度的三维位置、车行速度及精确的时间信息。

该系统由空间部分——GPS卫星、地面控制部分-地面监控系统、用户部分-GPS 信号接收器三大部分组成。

GPS系统最初是为了军事目的设计的,但现在已经广泛应用于商业和民用领域,包括航空、航海、车辆导航、测量和地理信息系统等。

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。

它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。

它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。

GPS用户部分的核心是GPS接收机。

其主要由基带信号处理和导航解算两部分组成。

其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。

导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。

本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。

本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。

1地球坐标系简述要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。

因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。

地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。

地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90度方向)。

地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。

地球表面任意一点的大地纬度为过该点之椭球法线与椭球赤道面的夹角φ,经度为该点所在之椭球子午面与格林威治大地子午面之间的夹角λ,该点的高度h为该点沿椭球法线至椭球面的距离。

gps定位的基本原理和过程

gps定位的基本原理和过程

gps定位的基本原理和过程GPS(Global Positioning System)定位是一种利用卫星信号进行位置测量的技术。

它基于特定的定位原理和过程来计算出接收器所在的位置。

下面将介绍GPS定位的基本原理和过程。

GPS定位的基本原理如下:1. 卫星发射信号:GPS系统由一组卫星组成,它们以固定的轨道绕地球运行,发射特定的信号。

这些信号包括导航信息和时间信息。

2. 接收器接收卫星信号:GPS接收器接收来自多个卫星的信号。

GPS接收器需要接收到至少4颗卫星的信号才能进行三维定位,其中3颗用于测量接收器与卫星之间的距离,1颗用于帮助接收器校准时间。

3. 信号测距:接收器通过测量接收到的信号与卫星发射信号的时间差,计算出接收器与卫星之间的距离。

接收器需要准确地记录信号经过大气层的时间延迟,并进行校正以消除这个误差。

4. 定位计算:接收器使用多个卫星的距离信息进行三角测量,计算出接收器的三维位置。

这个计算被称为“定位解算”。

GPS定位的过程如下:1. 启动接收器:将GPS接收器打开,它开始搜索并接收来自卫星的信号。

2. 信号接收:接收器接收到卫星发射的信号,包括导航信息和时间信息。

3. 信号解析:接收器对接收到的信号进行解析,提取出导航和时间信息。

4. 信号测距:接收器测量接收到的信号与卫星发射信号的时间差,计算出接收器与卫星之间的距离。

5. 定位计算:接收器使用多个卫星的距离信息进行三角测量,计算出接收器的三维位置。

6. 显示位置信息:接收器将计算出的位置信息显示在屏幕上,或通过其他方式提供给用户使用。

需要注意的是,GPS定位的精度受到多种因素的影响,包括卫星的数量和位置、大气条件、接收器的性能等。

此外,GPS定位还可以结合其他辅助定位技术,如地基站定位或惯性导航系统,以提高定位精度和可靠性。

综上所述,GPS定位基于卫星发射信号和接收器的信号测距,通过多个卫星的距离信息进行三角测量,计算出接收器的三维位置。

卫星定位公式

卫星定位公式

卫星定位公式卫星定位系统(Global Positioning System,简称GPS)是一种利用地球轨道上的卫星群来实时确定地球表面位置、速度和时间的导航系统。

它由美国国防部于1973年启动,如今已有全球范围内的广泛应用。

卫星定位系统的核心是卫星发射的导航信号,地面接收设备接收到这些信号后,通过卫星定位公式计算出自身的位置、速度和时间。

卫星定位公式原理是基于测量学中的三角测量方法。

假设地面接收器接收到至少两颗卫星的信号,那么可以通过以下步骤计算位置:1.计算卫星到接收器的距离。

卫星发射的信号频率已知,通过测量信号传播时间,可以得到卫星到接收器的距离。

2.计算接收器所在平面与卫星所在平面的夹角。

利用卫星轨道数据和接收器位置数据,可以计算出卫星相对于接收器的夹角。

3.利用三角测量原理,计算出接收器在地球表面的位置。

通过计算接收器所在平面与卫星所在平面的交点,即可得到接收器的位置。

常见的卫星定位公式包括:1.伪距公式:通过测量卫星到接收器的距离,计算出接收器的位置。

2.载波相位公式:利用卫星信号的载波相位信息,计算出接收器的位置。

这种方法的精度较高,但需要较长的观测时间。

3.差分定位公式:将接收器的位置与已知基准站的位置进行差分,从而提高定位精度。

卫星定位公式在诸多领域具有广泛的应用,如:1.导航定位:可为各类导航设备提供位置、速度和时间信息,如车载导航、户外探险等。

2.地理信息系统(GIS):在地图制作、资源调查、环境监测等方面具有重要应用价值。

3.气象预报:通过卫星定位技术,可以获取大气层厚度、大气压力等参数,提高气象预报准确性。

4.地震预警:利用卫星定位技术,可以实时监测地壳形变,为地震预警提供数据支持。

5.航空航天:在飞行器导航、卫星轨道控制等领域具有重要作用。

总之,卫星定位公式在地球科学研究和实际应用中具有重要意义。

GPS相对定位原理

GPS相对定位原理

5颗卫星
可以提高精度,并检测和删除不良的卫星信号。
6颗卫星
可以进行三差定位,并且可以在测站位置上自动 校正流动性信号。
影响GPS定位精度的因素
1
大气影响
大气层反射、折射和散射会使GPS信号产生微小误差。
2
重力变化
重力差异会导致测站坐标的微小变化,产生定位偏差。
3
卫星透视
视线障碍或卫星几何构型变形可以影响测站坐标的位置。
适用于地震和构造地质学领域的大型GPS处理。
TEQC
是一个用于GNSS数据转换和品质控制的开源软 件,适用于各种GPS应用领域。
GAMIT/GLOBK
用于高精度GPS数据处理和分析,适用于大型 科研项目和测绘项目。
数据处理流程详解
1
数据预处理
2
根据具体需求对原始数据进行碎裂、
删除、编辑等预处理。
3
GPS相对定位的计算量较小, 易于实现和处理。
GPS相对定位的限制
1 卫星遮挡
2 环境干扰
3 时钟漂移
地形和建筑物会限制卫 星信号的传播,导致 GPS信号弱或失去信号。
环境噪声和电磁干扰会 影响GPS信号质量和定 位精度。
卫星时钟不断漂移,导 致GPS信号时间误差。
可见卫星数的影响
4颗卫星
可以确定水平和垂直方向上的测站位置。
相位观测值的处理方法
静态定位
将移动站的观测值与基准站观测数据相结合, 计算基线长度和向量,最终得出测站位置。
动态定位
使用运动学和动力学原理,计算运动方程和航 迹,过程中要消除多种偏差。
Doppler观测值的处理方法
1 原理
Doppler效应是由于移动站相对于卫星而产生的频率变化,反映移动站与卫星之间的距离 变化率。

第五 GPS卫星定位基本原理

第五 GPS卫星定位基本原理

j k
(t
k
)
——在
tk
时刻接收到j号卫星的相位
k (tk ) ——接收机在时刻 tk 的本振相位
j k
k (tk ) kj (tk )
2 (N
N)
N
(以周为单位)
(
N
N
)
j k
在初始时刻 t0,载波相位的观测值:
j k
(t0
)
k
(t0 )
j k
(t
0
)
0
N
j 0
任一时刻 t j 卫星S j到接收机的相位值:
q22 q32 q42
q23 q33 q43
q24
q34 q44
实际应用中,为了估算点的位置精度,常采用 其在大地坐标中的表达形式。假设在大地坐标系统 中相应点位的权系数阵为:
q11 q12 q13
QB q21
q22
q23
q31 q32 q33
根据误差传播率:
QB RQx RT
式中:
可知,有5个未知数。
把整周未知数当作平差计算中的待定参数来加
以估计和确定有两种方法:
(1)整数解(固定解):适合于短基线(20km以内)
步骤:
①按四舍五入的原则将平差后得到的实数化为整数;
②将 N0 3mN0 ( 3mN0为 N 0的三倍中误差),在区间
( N0 3mN0 ~ N0 3mN0 )内有多个整数 N0 值; ③将各个 N0代入观测方程,求得 (X ,Y, Z)i ,i=1,2,3…; ④在各个 (X ,Y , Z )i 中,精度最高的一组所对应的
两码对齐,R( ) 1。
那么,延迟时间 即为GPS卫星信号从卫星传播

GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法

GPS导航定位本理以及定位解算算法之阳早格格创做寰球定位系统(GPS)是英文Global Positioning System的字头缩写词汇的简称.它的含意是利用导航卫星举止测时战测距,以形成寰球定位系统.它是由好国国防部主宰启垦的一套具备正在海、陆、空举止齐圆背真时三维导航与定位本收的新一代卫星导航定位系统.GPS用户部分的核心是GPS接支机.其主要由基戴旗号处理战导航解算二部分组成.其中基戴旗号处理部分主要包罗对付GPS卫星旗号的二维搜索、捕获、追踪、真距估计、导航数据解码等处事.导航解算部分主要包罗根据导航数据中的星历参数真时举止各可视卫星位子估计;根据导航数据中各缺面参数举止星钟缺面、相对付论效力缺面、天球自转做用、旗号传输缺面(主要包罗电离层真时传输缺面及对付流层真时传输缺面)等百般真时缺面的估计,并将其从真距中与消;根据上述截止举止接支机PVT(位子、速度、时间)的解算;对付各粗度果子(DOP)举止真时估计战监测以决定定位解的粗度. 本文中沉面计划GPS接支机的导航解算部分,基戴旗号处理部分可参瞅有闭资料.本文计划的假设前提是GPS接支机已经对付GPS卫星旗号举止了灵验捕获战追踪,对付真距举止了估计,并对付导航数据举止相识码处事.1 天球坐标系简述要形貌一个物体的位子必须要有相闭联的坐标系,天球表面的GPS接支机的位子是相对付于天球而止的.果此,要形貌GPS接支机的位子,需要采与固联于天球上随共天球转化的坐标系、即天球坐标系动做参照系.天球坐标系有二种几许表白形式,即天球直角坐标系战天球大天坐标系.天球直角坐标系的定义是:本面O与天球量心沉合,Z轴指背天球北极,X轴指背天球赤讲里与格林威治子午圈的接面(即0经度目标),Y轴正在赤讲仄里里与XOZ形成左脚坐标系(即指背东经90度目标).天球大天坐标系的定义是:天球椭球的核心与天球量心沉合,椭球的短轴与天球自转轴沉合.天球表面任性一面的大天纬度为过该面之椭球法线与椭球赤讲里的夹角φ,经度为该面天圆之椭球子午里与格林威治大天子午里之间的夹角λ ,该面的下度h为该面沿椭球法线至椭球里的距离.设天球表面任性一面P正在天球直角坐标系内表白为P( x,y,z ),正在天球大天坐标系内表白为P ( φ,λ,h).则二者互换闭系为:大天坐标系形成直角坐标系:(1)式中:n为椭球的卯酉圈直率半径,e为椭球的第一偏偏心率. 若椭球的少半径为a,短半径为b,则有(2)直角坐标系形成大天坐标系,可由下述要收供得φ由叠代法赢得φc为天心纬度, ep为椭圆率可设初初值φ=φc 举止叠代,直到|φi=1-φi| 小于某一门限为止.那二种坐标系正在定位系统中时常接叉使用,必须认识二种坐标系之间的变换闭系.2 GPS定位中主要缺面及与消算法GPS定位中的主要缺面有:星钟缺面,相对付论缺面,天球自转缺面,电离层战对付流层缺面. 1)星钟缺面星钟缺面是由于星上时钟战GPS尺度时之间的缺面产死的,GPS丈量以粗稀测时为依据,星钟缺面时间上可达1ms,制成的距离偏偏好可达到300Km,必须加以与消.普遍用二项式表示星钟缺面.(3)GPS星历中通过收支二项式的系数去达到建正的脚段.经此建正以去,星钟战GPS尺度时之间的缺面不妨统制正在20ns之内.2)相对付论缺面由相对付论表里,正在大天上具备频次的时钟拆置正在以速度运止的卫星上以去,时钟频次将会爆收变更,改变量为:即卫星上时钟比大天上要缓,要建正此缺面,可采与系数矫正的要收.GPS星历中广播了此系数用以与消相对付论缺面,不妨将相对付论缺面统制正在70ns以内.3)天球自转缺面 GPS定位采与的是与天球固连的协议天球坐标系,随天球所有绕z轴自转.卫星相对付于协议天球系的位子(坐标值),是相对付历元而止的.若收射旗号的某一瞬间,卫星处于协议坐标系中的某个位子,当大天接支机接支到卫星旗号时,由于天球的自转,卫星已没有正在收射瞬时的位子〔坐标值)处了.也便是道,为供解接支机接支卫星旗号时刻正在协议坐标系中的位子,必须以该时刻的坐标系动做供解的参照坐标系.而供解卫星位子时所使用的时刻为卫星收射旗号的时刻.那样,必须把该时刻供解的卫星位子转移到参照坐标系中的位子. 设天球自转角速度为 we,收射旗号瞬时到接支旗号瞬时的旗号传播延时为△t ,则正在此时间历程中降接面经度安排为则三维坐标安排为(4)天球自转引起的定位缺面正在米级,粗稀定位时必须思量加以与消.4)电离层战对付流层缺面电离层是指天球上空距大天下度正在50-1000km 之间的大气层.电离层中的气体分子由于受到太阳等天体百般射线辐射,爆收热烈的电离,产死洪量的自由电子战正离子. 电离层缺面主要有电离层合射缺面战电离层延缓缺面组成.其引起的缺面笔直目标不妨达到50米安排,火仄目标不妨达到150米安排.暂时,还无法用一个庄重的数教模型去形貌电子稀度的大小战变更顺序,果此,与消电离层缺面采与电离层改正模型或者单频瞅测加以建正. 对付流层是指从大天进与约40km 范畴内的大气下层,占所有大气品量的99%.其大气稀度比电离层更大,大气状态也更搀纯.对付流层与大天交战,从大天得到辐射热能,温度随下度的降下而落矮.对付流层合射包罗二部分:一是由于电磁波的传播速度或者光速正在大气中变缓制成路径延缓,那占主要部分;二是由于GPS 卫星旗号通过对付流层时,也使传播的路径爆收蜿蜒,进而使丈量距离爆收偏偏好.正在笔直目标可达到2.5米,火仄目标可达到20米.对付流层缺面共样通过体味模型去举止建正. GPS星历中通过给定电离层对付流层模型以及模型参数去与消电离层战对付流层缺面.真验资料标明,利用模型对付电离层缺面矫正灵验性达到75%,对付流层缺面矫正灵验性为95%.3 GPS星历结构及解算历程要得到接支机的位子,正在接支机时钟战GPS尺度时庄重共步的情况下,则待供解位子是3个已知变量,需要3个独力圆程去供解.然而是本量情况中,很易干到接支机时钟战GPS尺度时庄重共步,那样,咱们把接支机时间战GPS尺度时间偏偏好也动做一个已知变量,那样,供解便需要4个独力圆程,也便是需要有4颗瞅测卫星.图1 GPS定位示企图(已思量时间偏偏好)假设接支机位子为(xu,yu,zu),接支机时间偏偏好为 tu,则由于时间偏偏好引起的距离偏偏好为为得到的真距瞅测值.咱们不妨得到联坐圆程(5)将上式线性化,即正在真正在位子(xu,yu,zu)举止泰勒级数展启,忽略下次项,得到(6)其中,式(6)即为本量估计的叠代公式,叠代末止条件是真正在位子(xu,yu,zu)的变更量小于某一个阈值,最后得到不妨动做安排接支机时间偏偏好的依据,估计普遍采与矩阵办法供解.央供解该圆程,咱们还需要预先知讲4颗卫星的位子(xj,yj,zj),而卫星位子不妨从该卫星的星历中赢得. GPS卫星星历给出了本星的星历,根据星历不妨算出卫星的真时位子,而且星历中给出了与消卫星星钟缺面、相对付论缺面、天球自转缺面、电离层战对付流层缺面的参数,根据那些参数估计出的卫星位子,不妨基础上与消上述缺面.供解卫星位子的基础步调为:估计卫星运止仄衡角速度①估计归化时间;②估计瞅测时刻的仄近面角;③估计偏偏近面角;④估计卫星矢径;⑤估计卫星真近面角;⑥估计降接面角距;⑦估计摄动改正项;⑧估计通过摄动改正的降接距角、卫星矢径、轨讲倾角;⑨估计瞅测时刻的降接面经度;⑩估计卫星正在天心坐标系中的位子. 特天值得指出的是,正在估计卫星真近面角Vk时,应采与公式(7)其中,e为偏偏心率, Ek为卫星偏偏近面角.有部分参照书籍籍估计卫星真近面角的公式有误,会引导卫星真近面角的象限朦胧问题,进而无法得到卫星粗确位子. 举止上述估计后,再根据星历中广播的各缺面参数进一步与消各项缺面.那样,咱们便得到一个完备的利用GPS星历举止导航定位解算的历程.4 论断咱们仔细天道述了GPS卫星的导航定位本理以及定位解算的算法,分解了其中主要缺面根源战与消要收.天然,对付于卫星数多于4颗星时的算法以及好分GPS算法皆不妨正在此算法前提上举止深进钻研.介绍一下GPS定位的数教本理GPS定位的基根源基本理是根据下速疏通的卫星瞬间位子动做已知的起算数据,采与空间距离后圆接会的要收,决定待测面的位子.如图所示,假设t时刻正在大天待测面上安顿GPS接支机,不妨测定GPS旗号到达接支机的时间△t,再加上接支机所接支到的卫星星历等其余数据不妨决定以下四个圆程式:上述四个圆程式中待测面坐标x、y、z 战Vto为已知参数,其中di=c△ti (i=1、2、3、4).di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接支机之间的距离.△ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的旗号到达接支机所经历的时间.c为GPS旗号的传播速度(即光速).四个圆程式中各个参数意思如下:x、y、z 为待测面坐目标空间直角坐标.xi 、yi 、zi (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4正在t时刻的空间直角坐标,可由卫星导航电文供得. Vt i (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的卫星钟的钟好,由卫星星历提供.Vto为接支机的钟好.由以上四个圆程即可解算出待测面的坐标x、y、z 战接支机的钟好VtoDGPS本理暂时GPS系统提供的定位粗度是劣于10米,而为得到更下的定位粗度,咱们常常采与好分GPS技能:将一台GPS接支机安顿正在基准站上举止瞅测.根据基准站已知粗稀坐标,估计出基准站到卫星的距离改正数,并由基准站真时将那一数据收支进去.用户接支机正在举止GPS瞅测的共时,也接支到基准站收出的改正数,并对付其定位截止举止改正,进而普及定位粗度.好分GPS分为二大类:真距好分战载波相位好分. 1.真距好分本理那是应用最广的一种好分.正在基准站上,瞅测所有卫星,根据基准站已知坐标战各卫星的坐标,供出每颗卫星每一时刻到基准站的真正在距离.再与测得的真距比较,得出真距改正数,将其传输至用户接支机,普及定位粗度.那种好分,能得到米级定位粗度,如内天广大使用的“疑标好分”.2.载波相位好分本理载波相位好分技能又称RTK(Real Time Kinematic)技能,是真时处理二个测站载波相位瞅丈量的好分要收.即是将基准站支集的载波相位收给用户接支机,举止供好解算坐标.载波相位好分可使定位粗度达到厘米级.洪量应用于动背需要下粗度位子的范畴.。

GPS实验三GPS基线解算

GPS实验三GPS基线解算

数据格式转换
02
将原始数据格式转换为基线解算软件可识别的格式。
数据筛选与预处理
03
剔除异常数据,进行必要的坐标转换和时间对齐等预处理操作。
基线解算设置与执行
1 2
参数设置
设置基线解算所需的参数,如卫星轨道、地球模 型、时间系统等。
执行基线解算
利用基线解算软件进行数据处理,求解基线向量。
3
输出结果
将基线解算结果输出为所需的格式,如RINEX格 式。
实验结论与讨论
结论
通过本次GPS基线解算实验,我们成功得到了基线的长度和坐标差值,测量精度较高, 验证了GPS技术在测量领域的应用价值。
讨论
为了进一步提高测量精度,可以考虑采用更高精度的GPS接收器,优化数据处理算法, 以及加强信号传播过程中的干扰抑制措施。此外,还可以通过多次测量取平均值的方法
减小误差。
GpsDataPro软件应用实例
某城市高精度地形测量项目
利用GpsDataPro软件对大量GPS观测数据进行处理,得到高精度的地形图。
某桥梁施工监测项目
在桥梁施工过程中,利用GpsDataPro软件对桥梁进行实时监测,确保施工安全。
04
GPS基线解算实验步骤
数据准备与预处理
数据收集
01
收集相关GPS数据,包括卫星观测数据、接收机位置数据等。
高精度数据处理
随着数据获取技术的不断发展,未来需要更加高 效和高精度的数据处理方法,以满足更高精度的 测量和定位需求。
人工智能与机器学习应用
人工智能和机器学习技术在数据处理和分析中具 有巨大的潜力,未来将进一步探索其在GPS基线 解算中的应用,提高数据处理效率和精度。
THANKS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS导航定位原理以及定位解算算法全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。

它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。

它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。

GPS用户部分的核心是GPS接收机。

其主要由基带信号处理和导航解算两部分组成。

其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。

导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。

本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。

本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。

1 地球坐标系简述要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。

因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。

地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。

地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ构成右手坐标系(即指向东经90度方向)。

地球大地坐标系的定义是:地球椭球的中心与地球质心重合,椭球的短轴与地球自转轴重合。

地球表面任意一点的大地纬度为过该点之椭球法线与椭球赤道面的夹角φ,经度为该点所在之椭球子午面与格林威治大地子午面之间的夹角λ ,该点的高度h为该点沿椭球法线至椭球面的距离。

设地球表面任意一点P在地球直角坐标系内表达为P( x,y,z ),在地球大地坐标系内表达为P ( φ,λ,h)。

则两者互换关系为:大地坐标系变为直角坐标系:(1)式中:n为椭球的卯酉圈曲率半径,e为椭球的第一偏心率。

若椭球的长半径为a,短半径为b,则有(2)直角坐标系变为大地坐标系,可由下述方法求得φ由叠代法获得φc为地心纬度,ep为椭圆率可设初始值φ=φc 进行叠代,直到|φi=1-φi| 小于某一门限为止。

这两种坐标系在定位系统中经常交叉使用,必须熟悉两种坐标系之间的转换关系。

2 GPS定位中主要误差及消除算法GPS定位中的主要误差有:星钟误差,相对论误差,地球自转误差,电离层和对流层误差。

1)星钟误差星钟误差是由于星上时钟和GPS标准时之间的误差形成的,GPS测量以精密测时为依据,星钟误差时间上可达1ms,造成的距离偏差可达到300Km,必须加以消除。

一般用二项式表示星钟误差。

(3)GPS星历中通过发送二项式的系数来达到修正的目的。

经此修正以后,星钟和GPS 标准时之间的误差可以控制在20ns之内。

2)相对论误差由相对论理论,在地面上具有频率的时钟安装在以速度运行的卫星上以后,时钟频率将会发生变化,改变量为:即卫星上时钟比地面上要慢,要修正此误差,可采用系数改进的方法。

GPS星历中广播了此系数用以消除相对论误差,可以将相对论误差控制在70ns以内。

3)地球自转误差GPS定位采用的是与地球固连的协议地球坐标系,随地球一起绕z轴自转。

卫星相对于协议地球系的位置(坐标值),是相对历元而言的。

若发射信号的某一瞬间,卫星处于协议坐标系中的某个位置,当地面接收机接收到卫星信号时,由于地球的自转,卫星已不在发射瞬时的位置〔坐标值)处了。

也就是说,为求解接收机接收卫星信号时刻在协议坐标系中的位置,必须以该时刻的坐标系作为求解的参考坐标系。

而求解卫星位置时所使用的时刻为卫星发射信号的时刻。

这样,必须把该时刻求解的卫星位置转化到参考坐标系中的位置。

设地球自转角速度为we,发射信号瞬时到接收信号瞬时的信号传播延时为△t ,则在此时间过程中升交点经度调整为则三维坐标调整为(4)地球自转引起的定位误差在米级,精密定位时必须考虑加以消除。

4)电离层和对流层误差电离层是指地球上空距地面高度在50-1000km 之间的大气层。

电离层中的气体分子由于受到太阳等天体各种射线辐射,产生强烈的电离,形成大量的自由电子和正离子。

电离层误差主要有电离层折射误差和电离层延迟误差组成。

其引起的误差垂直方向可以达到50米左右,水平方向可以达到150米左右。

目前,还无法用一个严格的数学模型来描述电子密度的大小和变化规律,因此,消除电离层误差采用电离层改正模型或双频观测加以修正。

对流层是指从地面向上约40km范围内的大气底层,占整个大气质量的99%。

其大气密度比电离层更大,大气状态也更复杂。

对流层与地面接触,从地面得到辐射热能,温度随高度的上升而降低。

对流层折射包括两部分:一是由于电磁波的传播速度或光速在大气中变慢造成路径延迟,这占主要部分;二是由于GPS卫星信号通过对流层时,也使传播的路径发生弯曲,从而使测量距离产生偏差。

在垂直方向可达到2.5米,水平方向可达到20米。

对流层误差同样通过经验模型来进行修正。

GPS星历中通过给定电离层对流层模型以及模型参数来消除电离层和对流层误差。

实验资料表明,利用模型对电离层误差改进有效性达到75%,对流层误差改进有效性为95%。

3 GPS星历结构及解算过程要得到接收机的位置,在接收机时钟和GPS标准时严格同步的情况下,则待求解位置是3个未知变量,需要3个独立方程来求解。

但是实际情况中,很难做到接收机时钟和GPS 标准时严格同步,这样,我们把接收机时间和GPS标准时间偏差也作为一个未知变量,这样,求解就需要4个独立方程,也就是需要有4颗观测卫星。

图1 GPS定位示意图(未考虑时间偏差)假设接收机位置为(xu,yu,zu),接收机时间偏差为tu,则由于时间偏差引起的距离偏差为为得到的伪距观测值。

我们可以得到联立方程(5)将上式线性化,即在真实位置(xu,yu,zu)进行泰勒级数展开,忽略高次项,得到(6)其中,式(6)即为实际计算的叠代公式,叠代终止条件是真实位置(xu,yu,zu)的变化量小于某一个阈值,最终得到可以作为调整接收机时间偏差的依据,计算一般采用矩阵方式求解。

要求解该方程,我们还需要预先知道4颗卫星的位置(xj,yj,zj),而卫星位置可以从该卫星的星历中获得。

GPS卫星星历给出了本星的星历,根据星历可以算出卫星的实时位置,并且星历中给出了消除卫星星钟误差、相对论误差、地球自转误差、电离层和对流层误差的参数,根据这些参数计算出的卫星位置,可以基本上消除上述误差。

求解卫星位置的基本步骤为:计算卫星运行平均角速度①计算归化时间;②计算观测时刻的平近点角;③计算偏近点角;④计算卫星矢径;⑤计算卫星真近点角;⑥计算升交点角距;⑦计算摄动改正项;⑧计算经过摄动改正的升交距角、卫星矢径、轨道倾角;⑨计算观测时刻的升交点经度;⑩计算卫星在地心坐标系中的位置。

特别值得指出的是,在计算卫星真近点角Vk时,应采用公式(7)其中,e为偏心率,Ek为卫星偏近点角。

有部分参考书籍计算卫星真近点角的公式有误,会导致卫星真近点角的象限模糊问题,从而无法得到卫星正确位置。

进行上述计算后,再根据星历中广播的各误差参数进一步消除各项误差。

这样,我们就得到一个完整的利用GPS星历进行导航定位解算的过程。

4 结论我们详细地叙述了GPS卫星的导航定位原理以及定位解算的算法,分析了其中主要误差来源和消除方法。

当然,对于卫星数多于4颗星时的算法以及差分GPS算法都可以在此算法基础上进行深入研究。

介绍一下GPS定位的数学原理GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。

如图所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:上述四个方程式中待测点坐标x、y、z 和Vto为未知参数,其中di=c△ti (i=1、2、3、4)。

di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接收机之间的距离。

△ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的信号到达接收机所经历的时间。

c为GPS信号的传播速度(即光速)。

四个方程式中各个参数意义如下:x、y、z 为待测点坐标的空间直角坐标。

xi 、yi 、zi (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4在t时刻的空间直角坐标,可由卫星导航电文求得。

Vt i (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的卫星钟的钟差,由卫星星历提供。

Vto为接收机的钟差。

由以上四个方程即可解算出待测点的坐标x、y、z 和接收机的钟差VtoDGPS原理目前GPS系统提供的定位精度是优于10米,而为得到更高的定位精度,我们通常采用差分GPS技术:将一台GPS接收机安置在基准站上进行观测。

根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时将这一数据发送出去。

用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。

差分GPS分为两大类:伪距差分和载波相位差分。

1.伪距差分原理这是应用最广的一种差分。

在基准站上,观测所有卫星,根据基准站已知坐标和各卫星的坐标,求出每颗卫星每一时刻到基准站的真实距离。

再与测得的伪距比较,得出伪距改正数,将其传输至用户接收机,提高定位精度。

这种差分,能得到米级定位精度,如沿海广泛使用的“信标差分”。

2.载波相位差分原理载波相位差分技术又称RTK(Real Time Kinematic)技术,是实时处理两个测站载波相位观测量的差分方法。

即是将基准站采集的载波相位发给用户接收机,进行求差解算坐标。

载波相位差分可使定位精度达到厘米级。

大量应用于动态需要高精度位置的领域。

相关文档
最新文档