2020-2021深圳华师一附中实验学校初二数学上期末模拟试卷带答案

合集下载

华师附中八年级上期期末数学测试卷(1)(含答案)

华师附中八年级上期期末数学测试卷(1)(含答案)

八年级上期期末数学测试卷(1)班级_______ 学号_______ 姓名_______ 总分_______一、选择题(每题3分,共30分) 1.下列计算正确的是( )A .a·a 2=a 2B .(a 2)2=a 4C .a 2·a 3=a 6D .(a 2b)3=a 2·b 32.下列式子中,从左到右的变形是因式分解的是( ). A .(x -1)(x -2)=x 2-3x +2 B .x 2-3x +2=(x -1)(x -2) C .x 2+4x +4=x(x 一4)+4 D .x 2+y 2=(x +y)(x —y) 3.下列因式分解变形中,正确的是( )A .ab(a -b)-a(b -a)=-a(b -a)(b +1);B .6(m +n)2-2(m +n)=(2m +n)(3m +n +1)C .3(y -x)2+2(x -y)=(y -x)(3y -3x +2);D .3x(x +y)2-(x +y)=(x +y)2(2x +y) 4.下列各命题中,假命题的个数为( )①面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形. A .1 B .2 C .3 D .45.已知:如图,△ABD 和△ACE 均为等边三角形,且∠DAB =∠CAE =60°,那么,△ADC ≌△AEB 的根据是( )A.边边边 B .边角边 C.角边角 D .角角边6.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .a 2一b 2=(a +b)(a —b) B .(a +b)2=a 2+2ab +b 2 C .(a —b)2=a 2-2ab +b 2D .a 2-ab =a(a —b)7.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )A.310元 B .300元C.290元 D .280元 8.若2a 3x b y +5与5a 2-4y b 2x是同类项,则( ) A 、⎩⎨⎧x =1y =2B 、⎩⎨⎧x =2y =-1C 、⎩⎨⎧x =0y =2D 、⎩⎨⎧x =3y =19.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是( ).xyO Axy OBxyOCx y OD10.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A.1个 B .2个 C .3个 D .4个 二、填空题(每题2分,共18分)1.多项式3a 2b +2b -13ab 2-1第三项的系数是_______,次数是_______。

2020-2021深圳市八年级数学上期末试卷带答案

2020-2021深圳市八年级数学上期末试卷带答案

2020-2021深圳市八年级数学上期末试卷带答案一、选择题1.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①2.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 3.下列运算正确的是( ) A .a 2+2a =3a 3 B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 4.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 5.下列运算正确的是( )A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =6.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .7.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC8.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°9.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5B.4C.3D.210.如图,在△ABC 中,AB=AC,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A.50°B.80°C.100°D.130°11.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.1012.下列条件中,不能作出唯一三角形的是( )A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度二、填空题13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.已知2m =a ,32n =b ,则23m +10n =________.15.三角形三边长分别为 3,1﹣2a ,8,则 a 的取值范围是 _______.16.若分式242x x --的值为0,则x 的值是_______. 17.因式分解:3x 3﹣12x=_____.18.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.19.若=2m x ,=3n x ,则2m n x +的值为_____.20.若分式的值为零,则x 的值为________.三、解答题21.共有1500kg 化工原料,由A ,B 两种机器人同时搬运,其中,A 型机器人比B 型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?22.某公司计划购买A 、B 两种型号的机器人搬运材料,已知A 型机器人比B 型机器人每小时多搬运15kg 材料,且A 型机器人搬运500kg 的材料所用的时间与B 型机器人搬运400kg 材料所用的时间相同.(1)求A 、B 两种型号的机器人每小时分别搬运多少材料?(2)该公司计划采购A 、B 两种型号的机器人共10台,要求每小时搬运的材料不得少于700kg ,则至少购进A 型机器人多少台?23.如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若72EFG ∠=,求EGF ∠的度数.24.已知3a b -=,求2(2)a a b b -+的值.25.如图,已知AB 比AC 长2cm ,BC 的垂直平分线交AB 于点D ,交BC 于点E ,△ACD 的周长是14cm ,求AB 和AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH ⊥AC 即可.【详解】用尺规作图作△ABC 边AC 上的高BH ,做法如下:④取一点K 使K 和B 在AC 的两侧;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;①分别以点D 、E 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;故选B .【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.2.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .3.C解析:C【解析】【分析】根据整式的混合运算法则与完全平方公式进行判断即可.【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误;B.326 (2a )4a -=,故本选项错误;C.()()2a 2a 1a a 2+-=+-,正确; D.222 (a b)a 2ab b +=++,故本选项错误.故选C.【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.6.B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:,故选B .【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键. 7.D解析:D【解析】【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选D.9.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C12.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.二、填空题13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b215.﹣5<a<﹣2【解析】【分析】根据在三角形中任意两边之和大于第三边任意两边之差小于第三边;即可求a的取值范围再将a的取值范围在数轴上表示出来即可【详解】由三角形三边关系定理得8-3<1-2a<8+3解析:﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.16.-2【解析】【分析】根据分式值为零的条件可得x2-4=0且x﹣2≠0求解即可【详解】由题意得:x2-4=0且x﹣2≠0解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件需同时具备两解析:-2【解析】【分析】根据分式值为零的条件可得x2-4=0,且x﹣2≠0,求解即可.【详解】由题意得:x2-4=0,且x﹣2≠0,解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查解析:3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.19.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.两种机器人需要10小时搬运完成【解析】【分析】先设两种机器人需要x小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A型机器人比B型机器每小时多搬运30kg,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x 小时搬运完成,∵900kg +600kg =1500kg ,∴A 型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:900600-x x=30, 解得:x =10, 经检验,x =10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.22.(1)A 型每小时搬动75kg ,B 型每小时搬动60kg ;(2)至少购进7台A 型机器人【解析】【分析】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+15)千克材料,根据A 型机器人搬运500kg 材料所用的时间与B 型机器人搬运400kg 材料所用的时间相同建立方程求出其解就可以得出结论;(2)设购进A 型机器人a 台,根据每小时搬运材料不得少于700kg 列出不等式并解答.【详解】(1)设B 型机器人每小时搬运xkg 材料,则A 型机器人每小时搬运()15x kg +, 依题意得:50040015x x=+, 解得:60x =,经检验,60x =是原方程的解,答:A 型每小时搬动75kg ,B 型每小时搬动60kg ;(2)设购进A 型a 台,B 型()10a -台,由题意,得7560(10)700a a +-≥, 解得:263a ≥, 答:至少购进7台A 型机器人.【点睛】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.23.54【解析】【分析】利用平行线的性质和角平分线的定义进行求解即可.【详解】解:∵AB//CD ,∠EFG=72°(已知) , ∴∠BEF=180°-∠EFG=108°(两直线平行,同旁内角互补) , ∵EG 平分∠BEF,∴∠BEG=12∠BEF=54° (角平分线定义) , ∵AB//CD , ∴∠EGF=∠BEG=54°(两直线平行,内错角相等). 【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.24.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键.25.AB=9cm ,AC=6cm .【解析】根据线段垂直平分线上的点到两端点的距离相等可得CD=BD ,然后求出△ACD 的周长=AB+AC,再解关于AC 、AB 的二元一次方程组即可.解:∵DE 垂直平分BC ,∴BD=DC,∵AB=AD+BD,∴AB=AD+DC.∵△ADC 的周长为15cm ,∴AD+DC+AC=15cm ,∴AB+AC=15cm .∵AB 比AC 长3cm ,∴AB -AC=3cm .∴AB=9cm ,AC=6cm .。

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.下列运算,正确的是( )A .2x 2+x =2x 3B .(﹣x )2÷x =xC .(﹣x )2•x =﹣x 3D .(3x 2)2=6x 4 2.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-3.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .1S +2S =3SB .222123S S S +=C .222123S S S +>D .222123S S S +< 4.下列等式中,计算正确的是( )A .109a a a ÷=B .326x x x ⋅=C .32x x x -=D .222(3)6xy x y -=5.在实数5,0.31,2π(π表示圆周率),13,0.232332333,38中,无理数的个数为( ).A .1个B .2个C .3个D .4个 6.请你计算:(1-x)(1+x),(1-x)(1+x+x 2),…,猜想(1-x)(1+x+x 2+…+x n )的结果是( ) A .1-x n B .1+x n+1 C .1-x n+1 D .1+x n7.利用反证法证明命题“在ABC ∆中,若AB AC =,则90B ∠<︒”时,应假设( ) A .若AB AC =,则90B ∠>︒B .若AB AC ≠,则90B ∠<︒ C .若AB AC =,则90B ∠︒D .若AB AC ≠,则90B ∠︒8.下列命题中是真命题的个数是( )①两条直线被第三条直线所截,同位角相等.②如果22a b >,那么a b >③若x y =,则x 、y 都等于0;④两个有理数的和一定大于这两个有理数。

2020-2021学年华师大版初二数学上册期末测试卷 (含答案)

2020-2021学年华师大版初二数学上册期末测试卷 (含答案)

2020-2021学年初二数学上册期末测试卷一、选择题(每小题3分,共30分。

下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.42.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.xy﹣x=x(y﹣1)C.a2+a+1=(a+1)2D.2x+y=2(x+y)3.如图,数轴上点P表示的数可能是()A.B.﹣3.2C.D.4.要说明“若两个单项式的次数相同,则它们是同类项”是假命题,可以举的反例是()A.2ab和3ab B.2a2b和3ab2C.2ab和2a2b2D.2a3和﹣2a35.在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是()A.14B.15C.16D.176.如果x m=4,x n=8(m、n为自然数),那么x3m﹣n等于()A.B.4C.8D.567.已知等边△ABC的中线BD、CE相交于点O,∠BOC等于()A.60°B.150°C.30°D.120°8.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,则下列结论:①AC=AF;②EF=BC;③∠FAB=∠EAB;④∠EAB=∠FAC,其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD10.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为2,则AC的长是()A.B.C.D.5二、填空题(每小题3分,共15分)11.计算:22+|﹣1|﹣=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于.15.如图,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,则重叠部分(阴影部分)的面积是.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:(a+b)(a﹣b)+(a﹣2b)2﹣2(3a﹣b)(a﹣b),其中a=,b=﹣1.17.(8分)把下列多项式分解因式:(1)3a2﹣12ab+12b2(2)m2(m﹣2)+4(2﹣m)18.(9分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(9分)某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)请计算最喜欢B项目的人数所占的百分比.(2)请计算D项所在扇形图中的圆心角的度数.(3)请把统计图补充完整.20.(10分)如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.21.(10分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.22.(10分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)23.(11分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.参考答案与试题解析一、选择题(每小题3分,共30分。

2020-2021学年华师大版八年级数学上学期期末测试卷含答案)

2020-2021学年华师大版八年级数学上学期期末测试卷含答案)

2020-2021学年八年级数学上学期期末测试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的平方根是()A.±2B.﹣2C.2D.162.在实数0,2,,3中,最大的是()A.0B.2C.D.33.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D4.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.5.下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a66.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.47.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)8.下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个9.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:210.国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米11.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组12.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.因式分解:x2﹣6x+9=.14.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=.15.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.16.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的平方根是()A.±2B.﹣2C.2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.在实数0,2,,3中,最大的是()A.0B.2C.D.3【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,2,,3中,最大的是3.故选:D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.3.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D【分析】根据互为相反数的绝对值相等,可得答案.【解答】解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.【点评】本题考查了实数的性质,利用互为相反数的绝对值相等是解题关键.4.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.【分析】首先正确数出这句话中的字母总数,a出现的次数;再根据频率=频数÷总数进行计算.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选:B.【点评】考查了频率的概念以及计算方法:频率=频数÷总数.5.下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.6.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.4【分析】根据题意对各选项数据进行验证即可得解.【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选:D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.7.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.1【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.8.下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个【分析】根据实数的分类、单项式和多项式的定义进行选择即可.【解答】解:①0是绝对值最小的有理数,正确;②无限小数是无理数,错误;③数轴上原点两侧的数互为相反数,错误;④a,0,都是单项式,错误;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1,正确;所以正确的有①⑤,共2个;故选:A.【点评】本题考查了实数、单项式以及多项式,掌握实数的分类、单项式和多项式的定义是解题的关键.9.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【分析】由等腰三角形的定义与等角对等边的判定定理,即可求得答案.【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.【点评】此题考查了等腰三角形的判定.此题比较简单,注意掌握等腰三角形的定义与等角对等边的判定定理是解题的关键.10.国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米【分析】根据题意可得∠ABC=90°,AB=4000米,BC=3000米,然后利用勾股定理求得AC.【解答】解:如图,连接AC.依题意得:∠ABC=90°,AB=4000米,BC=3000米,则由勾股定理,得AC===5000(米).故选:B.【点评】本题考查勾股定理在实际生活中的运用,关键是得出两车行驶的路程和两车的距离构成的是直角三角形,然后根据勾股定理可求出解.11.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.【点评】考查了完全平方公式,本题关键是把(x﹣2015)2+(x﹣2017)2=34变形为(x ﹣2016+1)2+(x﹣2016﹣1)2=34,注意整体思想的应用.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.因式分解:x2﹣6x+9=(x﹣3)2.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.14.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质解答.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.15.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是25n2.【分析】根据m2﹣10mn+■=(m﹣5n)2求出即可.【解答】解:∵m2﹣10mn+■是一个二项式的平方,∴■=(5n)2=25n2,故答案为:25n2.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.16.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为20cm.【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm【点评】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).【分析】(1)根据根式的性质即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.【解答】解:(1)原式==3+1=4(2)原式=x9+x10﹣x9=x10(3)原式=a2+2ab﹣b2﹣(a2﹣b2)=a2+2ab﹣b2﹣a2+b2=2ab【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.【分析】(1)根据整式的混合计算解答即可.(2)把x+2y=1整体代入解答即可.【解答】解:(1)A=(x+1)2﹣(x2﹣4y)=x2+2x+1﹣x2+4y=2x+1+4y;(2)∵x+2y=1,由(1)得:A=2x+1+4y=2(x+2y)+1∴A=2×1+1=3.【点评】此题考查整式的加减,关键是根据整式的混合计算解答.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)利用基本作作图,作线段AB的垂直平分线即可;(2)根据线段的垂直平分线的性质得AE=BE,则∠EAB=∠B=50°,然后根据三角形外角性质计算∠AEC的度数.【解答】解:(1)如图,DE为所作;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∵∠AEC=∠EAB+∠B∴∠AEC=50°+50°=100°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.【分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,(2)然后利用百分比的意义求得安全意识为“很强”的居民占被调查居民总数的百分比;(3)利用总人数乘以对应的百分比即可求解;【解答】解:(1)这次调查的居民总数为:18÷15%=120(人);(2)关注程度为“很强”的居民占被调查居民总数的百分比是:.(3)关注程度为“较强”的人数是:120×45%=54(人),补全的条形统计图为:【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【分析】根据例题中的已知的两个式子的关系,两个中二次三项式x2﹣4x+m的二次项系数是1,因式是(x+3)的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子2x2+3x﹣k的二次项系数是2,因式是(2x﹣5)的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)【点评】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB;(2)连接MN,由(1)的结论证明△BMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、∠CMA的度数;(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【解答】解:(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【点评】本题考查全等三角形的判定与性质以及等边三角形的性质,是一道综合性的题目难度很大.1、三人行,必有我师。

2020-2021学年八年级数学上学期期末测试卷(华东师大版)01(教师版)

2020-2021学年八年级数学上学期期末测试卷(华东师大版)01(教师版)

2020-2021学年华师大第一学期期末测试卷01八年级数学一、选择题(本大题共12小题,共48.0分)1.以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( )A .1,2,3B .2,4,4C .5,12,15D .3,4 【答案】D【分析】利用勾股定理逆定理进行计算即可.【详解】解:A 、12+22≠32,不能构成直角三角形,故此选项不合题意;B 、22+42≠42,不能构成直角三角形,故此选项不合题意;C 、52+122≠152,不能构成直角三角形,故此选项不合题意;D 、32=42,能构成直角三角形,故此选项符合题意;故选:D .【点睛】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.2.下列各数中,是无理数的是( )A .227 BC D .3.14159 【答案】B【分析】根据无理数的定义可判断答案.【详解】为无理数.故选:B【点睛】本题考查了无理数的定义,要求学生掌握其定义,能正确判断出无理数.3)A.±5B.-5C.5D.0【答案】C【分析】25的算术平方根,即可得出答案.【详解】25的算术平方根故选:C【点睛】本题考查了算术平方根的定义,若一个非负数x的平方等于a,即x2=a,则这个数x叫做a的算术平方根.4.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是( )A.30cm B.33cm C.24cm或21cm D.30cm或33cm【答案】D【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当9为腰时,9+9>12,故此三角形的周长=9+9+12=30;②当12为腰时,9+12>12,故此三角形的周长=9+12+12=33.故选D.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.5.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为().A .2B .2.5C .3D .3.5【答案】C【分析】 依据全等三角形的性质及等量代换即可求出.【详解】解:∵△ABC ≌△DAE ,∴AE=BC =2,AC=DE =5,∴CE=AC−AE =3.故故:C .【点睛】找到全等三角形的对应边是关键.6.下列运算正确的是( )A .236x x x ⋅=B .824x x x ÷=C .()2224x x =D .()32626x x = 【答案】C【分析】根据同底数幂的乘、除法法则,幂的乘方与积的乘方运算法则分别求解判断.【详解】A 、235x x x ⋅=,故A 错误;B 、826x x x ÷=,故B 错误;C 、()2224x x =,故C 正确;D 、()()332326228x x x ==,故D 错误. 故选:C .【点睛】本题考查了同底数幂的乘除法,幂的乘方与积的乘方,熟练掌握各运算法则是解题的关键.7.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC故AC于点D和E故∠B故60°故∠C故25°,则∠BAD为故 故A.50°B.70°C.75°D.80°【答案】B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC故∴∠DAC=∠C=25°故∵∠B=60°故∠C=25°故∴∠BAC=95°故∴∠BAD=∠BAC-∠DAC=70°故故选B故点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图所示,若△ABE≌△ACF ,且AB = 5,AE= 2 ,则EC 的长为()A.2B.3C.5D.2.5【答案】B【分析】根据全等三角形的对应边相等解答即可.【详解】∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC-AE=3,故选B.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A.2cm B.2.5cm C.3cm D.4cm【答案】C【分析】-,在△BDE中,利用首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8x勾股定理列方程求解即可.【详解】在Rt△ABC中,由勾股定理可知:==,10由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x,则BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故选:C.【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.10.下列约分正确的有()(1)22a2a3a2a1ab--=++;(2)()()33a m n1b n m-=-;(3)2xyxy2+=+;(4)a m ab m b+=+A.0个B.2 个C.3?个D.4?个【答案】A【分析】原式各项约分得到结果,即可做出判断.【详解】(1)()()()2a-3a+1a-3a+1a+1=,故此项错误;(2)()()()()3333a m n a m n a=bb n m b m n--=----,故此项错误;(3)2xy xy21xy2xy2++==++,故此项错误;(4)a mb m++不能约分,故此项错误;综上所述,全部错误,答案选A【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.11.如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有()A.4个B.3个C.2个D.1个【答案】B【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断.【详解】∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠CAD=∠BAE,又∵AD=AB,AC=AE,∴△CAD≌△EAB(SAS),∴DC=BE.故①正确.∵△CAD≌△EAB,∴∠ADC=∠ABE.设AB与CD的交点为O.∵∠AOD=∠BOF,∠ADC=∠ABE,∴∠BFO=∠BAD=90°,∴CD⊥BE.故③正确.过点A作AP⊥BE于P,AQ⊥CD于Q.∵△CAD ≌△EAB ,AP ⊥BE ,AQ ⊥CD ,∴AP=AQ ,∴AF 平分∠DFE .故④正确.②无法通过已知条件和图形得到.故选B.【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键.12.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【分析】 分两种情况进行讨论:当转动较小角度的OC 平分EOF ∠时,45COE ∠=︒;当转动较大角度的OC 平分EOF ∠时,45COE ∠=︒;分别依据角的和差关系进行计算即可得到t 的值.【详解】解:分两种情况:①如图OC 平分EOF ∠时,45AOE ∠=︒,即930345t t +︒-=︒,解得 2.5t =;②如图OC 平分EOF ∠时,45COE ∠=︒,即9150345t t -︒-=︒,解得32.5t =.综上所述,当CD 平分EOF ∠时,t 的值为2.5或32.5.故选:D .【点睛】本题考查角的动态问题,理解题意并分析每个运动状态是解题的关键.二、填空题(本大题共4小题,共16.0分)13.如图,已知AC=BD , 要使ABC ≅DCB , 则只需添加一个适合的条件是_________(填一个即可).【答案】AB=DC【分析】已知AC=BD,BC为公共边,故添加AB=DC后可根据“SSS”证明ABC≅DCB.【详解】解:∵BC为公共边,∴BC=CB,又∵AC=BD,∴要使ABC≅DCB,只需添加AB=DC即可故答案为:AB=DC【点睛】本题考察了全等三角形的判断,也可以添加“∠ABC=∠DCB”,根据“SAS”可证明ABC≅DCB.14.比较大小:3.(填“>”、“<”、“=”)【答案】>【分析】首先将3放到根号下,然后比较被开方数的大小即可.【详解】=>,39,98∴>3故答案为:>.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键.15.如图点C,D在AB同侧,AD=BC,添加一个条件____________就能使△ABD≌△BAC.【答案】BD=AC或∠BAD=∠ABC【分析】根据全等三角形的判定,满足SAS,SSS即可.解:∵AD=BC,AB=AB,∴只需添加BD=AC或∠BAD=∠ABC,可以利用SSS或SAS证明△ABD≌△BAC;故答案为BD=AC或∠BAD=∠ABC.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.16.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA 与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【答案】0;4;8;12【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴CP=6−2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本大题共86分)17.如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.【答案】见解析.【分析】先根据CE=FB得到CF=BE,然后利用“边边边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠B=∠C ,再利用“边角边”证明△ABF 和△DCE 全等,然后根据全等三角形对应边相等得证.【详解】∵CE=FB ,∴CE+EF=FB+EF ,即CF=BE ,在△ABE 和△DCF 中,AB CD AE DF CF BE ⎧⎪⎨⎪⎩===∴△ABE ≌△DCF (SSS ),∴∠B=∠C ,在△ABF 和△DCE 中AB CD B C CE FB ⎧⎪∠∠⎨⎪⎩===∴△ABF ≌△DCE (SAS ),∴AF=DE .【点睛】本题考查了全等三角形的判定与性质,根据CE=FB 证明得到CF=BE 是解题的关键,注意本题需要两次证明三角形全等.18.如图,已知B ,C ,E 三点在同一条直线上,//AC DE ,AC CE =,ACD B ∠=∠.求证:ABC EDC △≌△.【答案】见解析【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△EDC .【详解】证明:∵//AC DE ,∴BCA E ∠=∠,ACD D ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠.在ABC 和EDC △中,B D BCA E AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC EDC △≌△.【点睛】本题考查全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.19.先化简,再求值:221(2)()(3)52x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中12,2x y =-=. 【答案】44x y -,-10.【分析】根据整式的乘除运算法则即可求解.【详解】()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭=()222221443352x xy y x xy xy y y x ⎛⎫⎡⎤++--+--÷- ⎪⎣⎦⎝⎭=()222221443352x xy y x xy xy y y x ⎛⎫++-+-+-÷- ⎪⎝⎭=()21222x xy x ⎛⎫-+÷-⎪⎝⎭ =44x y - 把12,2x y =-=代入原式=()14-24-82-102⨯-⨯=-=. 【点睛】 此题主要考查整式的化简求值,解题的关键是熟知整式的乘除运算法则.20.为了深入践行素质教育,落实学生的核心素养,培养全面发展的人,育红中学积极开展校本课程建设,促进学生的个性发展,计划成立“A.陶艺社团、B.航模社团、C.足球社团、D.skill科技社团、E.其他”,规定每位学生选报一个.为了了解报名情况,随机抽取了部分学生进行调查,将所有调查结果整理后绘制成不完整的条形统计图(如图1)和扇形统计图(如图2),请结合统计图回答下列问题:(1)在这次调查中,一共调查了_______名学生;(2)扇形统计图中,扇形B的圆心角度数是_______;(3)请补全条形统计图;(4)若该校共有6800名学生,请估计全校选择“skill科技社团”的学生人数.【答案】(1)200(2)144︒(3)见解析(4)680人【分析】(1)由C社团的人数及其百分比可得总人数;(2)先求出B社团的人数,再用360 ︒乘以所得百分比可得;(3)根据B社团的人数即可补全条形统计图;(4)总人数乘以样本中D社团的百分比可得.【详解】(1)本次调查的学生人数为60÷30%=200人,故答案为:200;(2)∵B社团的人数为200-10-60-20-30=80人,∴扇形统计图中,扇形B的圆心角度数为360 ︒×80200=144︒,故答案为:144︒;(3)B社团的人数为80人,故补全条形统计图如下:(4)估计全校选择“skill科技社团”的学生人数为6800×20200=680人.【点睛】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21.(1)计算:2a2•a4﹣(2a2)3+7a6(2)因式分解:3x3﹣12x2+12x【答案】(1)a6;(2)3x(x﹣2)2.【分析】(1)根据单项式乘单项式的运算法则、合并同类项法则计算;(2)利用提公因式法和完全平方公式因式分解.【详解】(1)原式=2a6﹣8a6+7a6=a6;(2)原式=3x(x2﹣4x+4)=3x(x﹣2)2.【点睛】本题考查的是单项式乘单项式、多项式的因式分解,掌握单项式乘单项式的运算法则、提公因式法和完全平方公式因式分解的一般步骤是解题的关键.22.如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)【答案】见解析【分析】要证明EF 平分∠BED ,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【详解】解:证明:∵AC ∥DE ,∴∠BCA=∠BED ,即∠1+∠2=∠4+∠5,∵AC ∥DE ,∴∠1=∠3;∵DC ∥EF ,∴∠3=∠4;∴∠1=∠4,∴∠2=∠5;∵CD 平分∠BCA ,∴∠1=∠2,∴∠4=∠5,∴EF 平分∠BED .【点睛】本题考查了角平分线的定义及平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【答案】(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可,()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒DE ∴==又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒3AE ∴===,3BD ∴=.【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE ⊥BD ,利用等式性质证∠DCE=90º,利用勾股定理求DE ,结合∠ADC=45º证Rt △ADE,会用勾股定理求AE 使问题得以解决.24.如图所示,四边形ABCD 中AB=AD ,AC 平分∠BCD ,AE∠BC ,AF∠CD ,图中有无和∠ABE 全等的三角形?请说明理由【答案】证△ABE ≌△ADF (AD=AB 、AE=AF )【分析】由题中条件AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,可得AE=AF ,由AB=AD ,可由HL 判定Rt △ABE ≌Rt △ADF ,即可得证.【详解】图中△ADF 和△ABE 全等.∵AC 平分∠BCD ,AF ⊥CD ,AE ⊥CE ;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.【答案】(1)证明见解析;(2)结论:BD2+FC2=DF2.证明见解析;(3).【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题.【详解】(1)证明:如图,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD 和△ACE 中12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE .(2)结论:BD 2+FC 2=DF 2.理由如下:连接FE ,∵∠BAC=90°,AB=AC ,∴∠B=∠3=45°由(1)知△ABD ≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE 2+CF 2=EF 2,∴BD 2+FC 2=EF 2,∵AF 平分∠DAE ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===,∴△DAF ≌△EAF∴DF=EF∴BD 2+FC 2=DF 2.(3)过点A 作AG ⊥BC 于G ,由(2)知DF 2=BD 2+FC 2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC ,AG ⊥BC ,∴BG=AG=12BC=6, ∴DG=BG -BD=6-3=3,∴在Rt△ADG中,【点睛】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.26.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.故求证:AD=BE;故求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【答案】(1)故见解析;故80°;(2)AE=2CF+BE,理由见解析.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD 和△BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .②解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵点A 、D 、E 在同一直线上,且∠CDE =50°,∴∠ADC =180°﹣∠CDE =130°,∴∠BEC =130°,∵∠BEC =∠CED+∠AEB ,∠CED =50°,∴∠AEB =∠BEC ﹣∠CED =80°.(2)结论:AE =2CF+BE .理由:∵△ACB ,△DCE 都是等腰直角三角形,∴∠CDE =∠CED =45°,∵CF ⊥DE ,∴∠CFD =90°,DF =EF =CF ,∵AD =BE ,∴AE =AD+DE =BE+2CF .【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.27.如图1,△ABC 是等边三角形,D 是BC 边上一点,且满足60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.(1)小明发现,当点D 是边BC 的中点时,过点D 作DF //AC ,交AB 于点F ,通过构造全等三角形,能够使问题得到解决,请直接写出AD 与DE 的数量关系:______;(2)如图2,当点D 是线段BC 上(除B 、C 外)任意一点时(其它条件不变),试猜想AD 与DE 之间的数量关系,并说明理由;(3)当点D 在线段BC 的延长线上,且满足CD BC =(其它条件不变)时,请画出图形,并直接写出△ABC 与△BDE 的面积之比.【答案】(1)AD DE =;(2)不变,AD DE =;证明见解析;(3)1:4.【分析】(1)根据题意易证△ADF ≌△DEC ,进而问题可得证;(2)过点D 作//DF AC ,交AB 于点F ,由题意易证△ADF ≌△DEC ,进而问题得证;(3)根据题意画出图形,然后由题意易得△ABD ≌△DCE ,则根据三角形中线把三角形的面积分成相等的两部分可进行求解.【详解】解:(1)△ABC 是等边三角形,∴AB=AC=BC ,∠B=∠ACB=60°,等边三角形外角平分线CE ,∴∠ACE=60°,点D 是边BC 的中点,//DF AC ,∴△DBF 是等边三角形,BD=DC ,AD ⊥BC ,∴BF=BD=DC=DF=AF ,∠BFD=60°,∴∠AFD=∠DCE=120°,∠FDA=30°,60ADE ∠=︒,∠ADC=90°,∴∠EDC=30°,∴∠EDC=∠FDA ,∴△ADF≌△DEC,∴AD=DE,故答案为AD=DE;(2)AD=DE,理由如下:DF AC,交AB于点F,如图所示:过点D作//△ABC是等边三角形,∴AB=AC=BC,∠B=∠ACB=60°,∴△BDF是等边三角形,∴∠BFD=60°,BF=BD,∴AF=DC,∠AFD=120°,等边三角形外角平分线CE,∴∠ACE=60°,∴∠DCE=120°,∴∠DCE=∠AFD,∠=︒,ADE60∴∠CDE+∠ABD=120°,∠FAD+∠ABD=120°,∴∠FAD=∠CDE,∴△ADF≌△DEC(ASA),∴AD=DE;(3)△ABC与△BDE的面积之比为1∶4,由题意可作图:△ABC 是等边三角形,∴AB=AC=BC ,∠B=∠ACB=∠BAC=60°,CD BC =,∴AC=CD=AB ,∴∠CAD=∠ADC=30°,∠ADE=60°,∴∠BAD=∠CDE=90°,CE 平分∠ACD ,∴∠ECD=∠DBA=60°,∴△BAD ≌△CDE ,∴BAD CDE S S =,2,2BAD ABC BDE CDE SS S S ==, ∴4BDE ABC S S =,∴△ABC 与△BDE 的面积之比为1∶4.【点睛】本题主要考查全等三角形的性质与判定、三角形的中线及等边三角形的性质与判定,熟练掌握全等三角形的性质与判定、三角形的中线及等边三角形的性质与判定是解题的关键.28.如图,在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点C 出发,按C →B →A 的路径,以2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.【答案】(1)6;(2)32;(3)3s或6s或132s或5.4s.【分析】(1)当t=1s时,故ACP是直角三角形,根据公式求故ACP的面积;(2)如图3,过P作PH故AB于H,Rt故PHB中,PB=8﹣2t,根据勾股定理列方程可求解;(3)分四种情况进行讨论:故如图4,根据AC=CP列式求解;故如图5,根据AC=AP列式求解;故如图6,AP=PC,根据AP=PB列式求解;故如图7,AC=CP,根据AP的值列式求解.【详解】解:(1)如图1,点P在BC上,由题意得:CP=2t,当t=1时,PC=2,故S△ACP=12AC•PC=12×6×2=6;(2)如图2,Rt故ACB中,由勾股定理得:AB=10,如图3,AP平分故CAB,过P作PH故AB于H,故故C=90°,故PC=PH=2t,故故C=故AHP=90°,AP=AP,故故ACP故故AHP,故AH=AC=6,故BH=4,在Rt故PHB中,PB=8﹣2t,故(2t)2+42=(8﹣2t)2,t=32;则当t=32时,线段AP是故CAB的平分线;(3)当故ACP是等腰三角形时,有四种情况:故如图4,AC=CP时,由题意得2t=6,故t=3;故如图5,AC=AP时,由题意得18﹣2t=6,故t=6;故如图6,AP=PC时,过P作PG故AC于G,故故C=90°,故PG故BC,故AP=PB,即18﹣2t=2t﹣8,故t=132;故如图7,AC=CP时,过C作CM故AB于M,故AM=PM=12(18-2t)=9-t,∵12AB×CM=12AC×BC,∴CM=4.8,∴,∴9-t=3.6,故t=5.4,综上所述,当故ACP是等腰三角形时,t的值是3s或6s或132s或5.4s.【点睛】本题是三角形的综合题,考查了动点运动问题、等腰三角形的性质和判定、勾股定理、角平分线的性质等知识,首先要确定动点P的运用路程=时间t×速度2,本题在第3问的等腰三角形中采用了分类讨论的思想,注意不要丢解,并利用数形结合的思想解决问题.。

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷C卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷C卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷C 卷(附答案)一、单选题1.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根。

其中,所有正确说法的序号是A .①④B .②③C .①②④D .①③④ 2.如图.在Rt△ABC 中,∠ABC=90°,点D 是斜边上的中点,点P 在AB 上,PE⊥BD 于E ,PF⊥AC 于F ,若AB=6,BC=3,则PE+PF=( )A .B .C .D . 3.计算:()()5160.1252-⨯-=( )A .1B .-1C .2D .-2 4.()()()()242162(31)31313131⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 5.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16 6.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 7. 等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( )A .32 aB .aC .12aD .12a 或32 a 8.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )9.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使△BPE 与△CQP 全等.A .1B .1或4C .1或2D .310.如图,在等腰△ABC 中,AB=AC=6,∠BAC=120°,点P 、Q 分别是线段BC 、射线BA 上一点,则CQ+PQ 的最小值为( )A .6B .7.5C .9D .12二、填空题 11.如图,将1、2、3三个数按图中方式排列,若规定(a ,b )表示第a 排第b 列的数,则(1)(5,3)=________,(2)(8,2)与(2014,2014)表示的两个数的积是________.12.如图,Rt ABC 中,AB AC =,BAC 90∠=,BE CE ⊥,垂足是E ,BE 交AC 于点D ,F 是BE 上一点,AF AE ⊥,且C 是线段AF 的垂直平分线上的点,AF 22=,13.如图,直线l 1、l 2相交于点A ,点B 是直线外一点,在直线l 1或l 2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有_____________个.14.如图,在ABC ∆中,D 在边BC 上,点E F 、在边AC 上,,, 75, 60AF BD AE DE ADF CDE ︒︒==∠=∠=,连接AD ,,6,32BF AD DF ==,则线段BF 的长为__________15.如图,在矩形ABCD 中,16 , 6 AB cm AD cm ==.点E 从点D 出发以1 /cm s 的速度向点C 运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 从点C 出发以2 /cm s 的速度向点D 运动,当直线MN 和正方形AEFG 开始有公共点时,点E 运动的时间为__________s16.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,3DE =,则BC =____________.17.如图,在△ABC 中,∠B=45°,在BC 边上取一点D ,使CD=CA ,点E 在AC 上,连接ED ,若∠AED=45°,且CE=1,BD=2,则AD 的长是 .18.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.19.如图,在ABC 中,ACB 90,CA CB ∠==.点D 在AB 上,点F 在CA 的延长线上,连接FD 并延长交BC 于点E ,若∠BED=2∠ADC ,AF=2,DF=7,则ABC 的面积为______.三、解答题20.如图,在笔直的公路AB 旁有一座山,为方便运输货物现要从公路AB 上的D 处开凿隧道修通一条公路到C 处,已知点C 与公路上的停靠站A 的距离为15 km ,与公路上另-停靠站B 的距离为20km ,停靠站,A B 之间的距离为25km ,且.CD AB ⊥ ()1求修建的公路CD 的长;()2若公路CD 修通后,辆货车从C 处经过D 点到B 处的路程是多少?21.(1)如图1,AD 是ABC ∆的中线,8,6AB AC ==,求AD 的取值范围,我们可以延长AD 到点M ,使DM AD =,连接BM (如图2所示),这样就可以求出2AD 的取值范围,从而得解,请写出解题过程;(2)在(1)问的启发下,解决下列问题:如图3,AD 是ABC ∆的中线,BE 交AC 于点E ,交AD 于点F ,且AE EF =,求证:AC BF =.22.计算:(1)()26-+327﹣(5)2;(2)()10113224-⎛⎫-+-+- ⎪⎝⎭.23.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边△DCF 和等边△DCF ′,连接AF ,BF ′,探究AF ,BF ′与AB 有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D 在等边△ABC 的边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.24.如图,直线//,HD GE 点A 在直线HD 上,点C 在直线GE 上,点B 在直线,HD GE 之间,DAB ∠=120︒.(1)如图1,若40BCG ∠=︒,求ABC ∠的度数;(2)如图2,AF 平分,HAB CB ∠平分20FCG BCG ∠∠=︒,,比较,B F ∠∠的大小; (3)如图3,点P 是线段AB 上一点,PN 平分,APC CN ∠平分PCE ∠,探究HAP ∠和N ∠的数量关系,并说明理由.25.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ.(1)证明:CP=CQ;(2)求∠PCQ的度数;(3)当点D是AB中点时,请直接写出△PDQ是何种三角形.26.计算:.27.如图,正方形ABCD的边长是,点P是对角线AC上的一个点(不与A,C两点重合),连接BP,并将线段BP绕点B顺时针旋转90°得到线段BP′,连接PP′,CP′,PP′与BC相交于点E.(1)求证:△BAP≌△BCP′;(2)探究:线段PA,PC,PB之间满足什么数量关系,请写出结论并证明;(3)若PA<PC,当PB=时,求BE的长.28.平面直角坐标系xOy 中,()0,A a ,(),0B b 分别在y 轴正半轴和x 轴负半轴上,C在第二象限,满足:AC AB =,90BAC ︒∠=.已知()2220a b b +++=.(1)求A ,B 的坐标;(2)求点C 的坐标及ABC ∆的面积;(3)已知D 是x 轴的正半轴上一点,OD OB >,E 在第一象限,AE AD =,90EAD ︒∠=,连接CE 交y 轴于点P .①求证:PC PE =.②在点D 的移动过程中,给出以下两个结论:(i )ACE OAD∠∠的值不变;(ii )PAE ABD S S ∆∆的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.29.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.参考答案1.C【解析】根据勾股定理,边长为3的正方形的对角线长为a32=,是无理数,故说法①正确。

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.已知直角三角形的两条边的长为 3 和 4,则第三条边的长为( )A .5B .4C .7D .5 或7 2.已知98x y xy -=,= ,则22x y + 等于( )A .100B .97C .94D .913.0.01的算术平方根是( )A .0.1±B .0.0001±C .0.001D .0.14.如图,已知O 为直线AB 上一点,OC 平分AOD ∠,3BOD DOE ∠=∠,COE α∠=,则BOE ∠的度数为( )A .αB .1802α-C .3604α-D .260α-5.2013年5月31日是第26个“国际无烟日”,这一天小敏与小伙伴们对人们“在娱乐场所吸烟”所持的三种态度(彻底禁烟、建立吸烟室、无所谓)进行调查,丙把调查结果绘制成了如图所示的扇形统计图,小红看了说这个图有问题,你认为( )A .没问题B .有问题,看不出调查了多少人C .有问题,赞成禁烟的还不够多D .有问题,所有百分数的和不等于1 6.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:根据上图提供的信息,下列推断中不合理的是( )A .2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B .2018年11月与2018年10月相比,全国居民消费价格降低0.3%C .2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是-0.4%D .2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大7.如图,线段AB =2,CD =5,那么线段EF 的长度为( )A 7B 11C 13D 298.下列实数中,无理数是( )A .227B .3πC .4-D 3279.231()2a -等于( ) A .618a B .218a - C .618a - D .518a 10.下列各数中无理数是( )A .3.14B .0C 2D .-111.下列各对单项式中,不是同类项的是( )A .8与14B .12xy 与﹣xy C .mb 2与223m b D .(xy 2)2与2412x y -12.下列运算正确的是( )A .2x+3y=5xyB .(-3x 2y )3=-9x 6y 3C .4x 3y 2×( -12 xy 2)=-2 x 4y 4 D .(x-y )2= x 2- y 2 二、填空题13.下列各数:①3.141;②0.3;57;④∏;⑤± 2.25;⑥23- ⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2);其中是有理数的有__________;是无理数的有___________(填序号)。

华师大版2020-2021学年八年级上册数学期末复习试卷 (有答案)

华师大版2020-2021学年八年级上册数学期末复习试卷  (有答案)

华师大版2020-2021学年八年级上册数学期末复习试卷一.选择题(共14小题,满分28分,每小题2分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列语句正确的是()A.的算术平方根是2B.36的平方根是6C.的立方根是±D.的立方根是23.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个4.下列计算正确的是()A.2a2﹣a2=1B.(﹣3a2b)2=6a4b2C.a3×a4=a12D.a4÷a2+a2=2a25.若2x=5,2y=3,则22x﹣y的值为()A.25B.C.9D.756.若m+n=4,则2m2+4mn+2n2﹣5的值为()A.27B.11C.3D.07.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为()A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个9.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,410.如图,AB∥CE,∠A=40°,CE=DE,则∠C=()A.40°B.30°C.20°D.15°11.如图,在等腰三角形ABC中,AC=BC=5,AB=8,D为底边上一动点(不与点A,B 重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF=()A.5B.8C.13D.4.812.如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°13.如图,一个梯形分成一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是12cm和13cm,那么阴影部分的面积是()cm2.A.16B.25C.36D.4914.如图,在等边三角形ABC中,点D、E分别在边BC,AC上,DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F,CD=2,则DF的长为()A.2B.3C.4D.5二.填空题(共4小题,满分12分,每小题3分)15.已知a<<b,且a,b为两个连续的整数,则a+b=.16.如图,两个正方形的边长分别为a,b,若a+b=10,ab=20,则四边形ABCD的面积为.17.如图,已知△ABC中,∠C=90°,AC=BC,AB=8cm,BD平分∠ABC交AC于点D,过D作DE⊥AB于点E,则△ADE的周长为cm.18.如图,点A在线段BG上,正方形ABCD和正方形DEFG的面积分别为3和7,则△CDE的面积为.三.解答题(共6小题,满分60分)19.(15分)先化简,再求值:[(2x+y)(2x﹣y)﹣3(2x2﹣xy)+y2]÷(﹣x),其中x=2,y=﹣1.20.(8分)分解因式:(1)m2n﹣4n(2)﹣3ax2+6axy﹣3ay221.(8分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:①如下分数段整理样本;②根据下表绘制扇形统计图.等级等级分数段各组总分人数A110<x≤120P4B100<x≤110843nC90<x≤100574mD80<x≤901712(1)填空m=,n=,数学成绩的中位数所在的等级是;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.22.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB、AC于点E、点D,∠A=36°.求证:AD=BC.23.(9分)(1)化简:;(2)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D;③过C作CF∥AB交PQ于点F.求证:△AED≌△CFD.24.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.参考答案与试题解析一.选择题(共14小题,满分28分,每小题2分)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:A、=2,2的算术平方根,故本选项错误;B、36平方根是±6,故本选项错误;C、的立方根是,故本选项错误;D、=8,8的立方根是2,故本选项正确;故选:D.3.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.4.解:A、2a2﹣a2=a2,故此选项错误;B、(﹣3a2b)2=9a4b2,故此选项错误;C、a3×a4=a7,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.5.解:∵2x=5,2y=3,∴22x﹣y=(2x)2÷2y=52÷3=.故选:B.6.解:∵m+n=4,∴2m2+4mn+2n2﹣5=2(m+n)2﹣5=2×42﹣5=2×16﹣5=32﹣5=27,故选:A.7.解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:D.8.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.9.解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.10.解:∵AB∥CE,∴∠AEC=∠A=40°,∵CE=DE,∴∠C=∠D,∴∠AEC=∠C+∠D=2∠C,∴∠C=∠AEC=×40°=20°.故选:C.11.解:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG===3,∵S△ABC =S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∵AC=BC,∴8×3=5×(DE+DF)∴DE+DF=4.8.故选:D.12.解:∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣62°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故选:A.13.解:如图所示:Rt△CDE中,DE=12,CE=13,∴CD==5,∴阴影部分的面积=5×5=25cm2;故选:B.14.解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=30°,∵∠ACB=∠EDC=60°,∴△DEC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.故选:C.二.填空题(共4小题,满分12分,每小题3分)15.解:∵4<7<9,∴2<<3.∵a、b为两个连续整数,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.16.解:根据题意可得,四边形ABCD的面积=(a2+b2)﹣﹣b(a+b)=(a2+b2﹣ab)=(a2+b2+2ab﹣3ab)=[(a+b)2﹣3ab];代入a+b=10,ab=20,可得:四边形ABCD的面积=(10×10﹣20×3)÷2=20.故答案为:20.17.解:∵△ABC是等腰直角三角形,∴∠A=45°,BC=AC=AB=4.∵BD是∠ABC的平分线,DC⊥BC,DE⊥AB,∴DC=DE,BC=BE=4.所以AE=AB﹣BE=8﹣4.又△ADE是等腰直角三角形,所以AE=DE=DC.△ADE周长=AD+AE+DE=AC+AE=8.故答案为8.18.解:作EM⊥GB于点M,延长CD交EM于点N,∵正方形ABCD和正方形DEFG的面积分别为3和7,∴AD=,DG=,∵∠DAG=90°,∴AG=2,∵CD∥AB,∠EDG=90°,∠EMA=90°,∴∠END=∠EMA=90°,∠NDG+∠GDA=90°,∠NDG+∠NDE=90°,∴∠END=∠DAG,∠NDE=∠ADG,在△END和△GAD中∴△END≌△GAD(AAS),∴EN=GA,∵GA=2,∴EN=2,∴△CDE的面积是:==,故答案为:.三.解答题(共6小题,满分60分)19.解:原式=(4x2﹣y2﹣6x2+3xy+y2)÷(﹣x)=(﹣2x2+3xy)÷(﹣x)=4x﹣6y,当x=2,y=﹣1时,原式=8+6=14.20.解:(1)原式=n(m2﹣4)=n(m+2)(m﹣2);(2)原式=﹣3a(x2﹣2xy+y2)=﹣3a(x﹣y)2.21.解:(1)本次抽查的学生有:4÷=20(人),m=20×30%=6,n=20﹣4﹣3﹣2=11,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)1200×=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:=113(分),即A等级学生的数学成绩的平均分是113分.22.证明:∵AB的垂直平分线分别交AB、AC于点E、点D,∴DB=DA,∴△ABD是等腰三角形;∵∠A=36°,∴∠ABD=∠A=36°,∠ABC=∠C=(180°﹣36°)÷2=72°,∴∠BDC=∠A+∠ABD=72°,∴∠C=∠BDC,∴BD=BC,∴AD=BC.23.(1)解:原式==.(2)证明:由作图知:PQ为线段AC的垂直平分线,∴AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD(AAS).24.解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.1、三人行,必有我师。

深圳华师一附中实验学校八年级上册期末数学模拟试卷及答案

深圳华师一附中实验学校八年级上册期末数学模拟试卷及答案

深圳华师一附中实验学校八年级上册期末数学模拟试卷及答案一、选择题1.如图1,将7张长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =2bC .a =3bD .a =4b2.我们知道,同底数幂的乘法法则为a m ·a n =a m+n (其中a≠0 ,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:h (m+n )=h (m )·h (n );比如h (2)=3,则h (4)=h (2+2)=3×3=9,若h (2)=k (k≠0 ),那么h (2n )·h (2020)的结果是( )A .2k+2020B .2k+1010C .k n+1010D .1022k 3.若分式方程133x m x x -=++产生增根,则m =( ) A .5- B .4- C .3- D .14.在ABC ∆中,6AC =、8BC =,10AB =,用尺规作图的方法在BC 上确定一点P ,设PC x =,下列作图方法中,不能求出PC 的长的作图是( )A .B .C .D .5.雾霾是一种灾害性天气现象,由大量的PM2.5(指大气中直径不超过0.0000025米的颗粒物)集聚形成,将0.0000025用科学记数法表示为( )A .72.510⨯B .62.510-⨯C .72.510-⨯D .62.510⨯6.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,①BD CD =,AD BC ⊥;②DE DF =;③若点P 为AC 上任意一点,且3DE =,则DP 的取值范围是3PD <;④BDE CDF ∠=∠.其中,正确的个数是( )A .1个B .2个C .3个D .4个7.若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒8.如图,等边ABC ∆的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若3AE =,则EM CM +的最小值为( )A .226B .33C .23D .92 9.下列各式从左到右的变形中,属于因式分解的是( ) A .()a m n am an +=+ B .2221(1)x x x +-=-C .21055(21)x x x x -=-D .216+6(+4)(4)+6x x x x x -=- 10.已知实数,x y 满足480x y -+-=,则以x 、y 的值为两边长的等腰三角形的周长是( )A .8B .20C .16D .16或20二、填空题11.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________12.如图,△ABC 的三边AB ,BC ,CA 的长分别为14,12,8,其三条角平分线的交点为O ,则::ABO BCO CAO S S S =_____.13.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .14.分解因式:4x ﹣2x 2=_____.15.已知2a b +=,则224a b b -+=________________.16.a 与2b 互为相反数,则2244a ab b ++=____.17.在Rt △ABC 中,∠A =90°,∠C =60°,点P 是直线AB 上不同于A 、B 的一点,且PC =4,∠ACP =30°,则PB 的长为_____.18.如图,CA ⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM ⊥BQ,垂足为B,动点P 从C 点出发以1cm/s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN=AB,随着P 点运动而运动,当点P 运动_______秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.(2个全等三角形不重合)19.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.20.分解因式:a 2b -4b 3=______.三、解答题21.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=. 其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.22.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .23.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值. 24.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.25.已知分式:222222()1211x x x x x x x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?26.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 27.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积;(2)若DF AF =,求证:2AE DE EF +=.28.已知x =3+1,y =3﹣1,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.29.如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°.(1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F . ①当点E 为线段CD 的中点时,求点F 的坐标;②当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.30.已知,//AB CD ,点M 在AB 上,点N 在CD 上.(1)如图1中,BME E END ∠∠∠、、的数量关系为:________;(不需要证明) 如图2中,BMF F FND ∠∠∠、、的数量关系为:__________;(不需要证明)(2)如图3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=︒,求FME ∠的度数;(3)如图4中,60BME ∠=︒,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式;【详解】如图所示,左上角阴影部分的长为AE ,宽为3AF b =,右下角阴影部分的长为PC ,宽为a ,∵AD=BC ,即AE ED AE a +=+,4BC BP PC b PC =+=+,∴4AE a b PC +=+,即4AE PC b a -=-,∴阴影部分的面积之差:3AE AF PC CG bAE aPC -=-,=()()2343123b PC b a aPC b a PC b ab +--=-+-, 则30b a -=,即3a b =.故答案选C .【点睛】本题主要考查了整式的混合运算,准确计算是解题的关键.2.C解析:C【解析】【分析】根据h (2)=k (k≠0),以及定义新运算:h (m+n )=h (m )•h (n )将原式变形为k n •k 1010,再根据同底数幂的乘法法则计算即可求解.【详解】解:∵h (2)=k (k≠0),h (m+n )=h (m )•h (n ),∴h (2)= h (1+1)=h(1) •h(1)=k (k≠0)∴h (2n )= k n ;101010101010(2020)(22..2)=(2)(2)...(2)=h h h h h k =+++个个∴h (2n )•h (2020)=k n •k 1010=k n+1010.故选:C .【点睛】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.3.B解析:B【解析】【分析】方程两边都乘以最简公分母x +3化分式方程为整式方程,然后把增根代入进行计算即可求出m 的值.【详解】解:方程两边都乘以x +3,得1x m -=∵方程有增根,∴x +3=0,x =-3,将x =-3代入x -1=m ,得m =-4,故选:B .【点睛】本题考查了分式方程的增根的问题,增根就是使分式方程的最简公分母等于0的未知数的值,把分式方程化为整式方程代入求解即可.4.D解析:D【解析】【分析】根据题意分别求出选项A,B,C中的PC的长,即可解决问题.【详解】解:A、由题意PC=BC-PB=BC-(AB-AC)=8-(10-6)=4.B、连接PA,由题意PA=PB,设,PA=PB=y.∵AC=6、BC=8,AB=10,∴AB2=AC2+BC2,∴∠ACB=90°,∴PA2=AC2+PC2,∴y 2=(8- y)2+62,∴y = 254,∴PC=BC-PB=8- 254=74.C、作PH⊥AB于H.由题意,PA平分∠BAC,∵PH⊥AB,PC⊥AC,∴PH=PC,设PH=PC=m,∵S△ABC=S△ABP+S△APC,∴12•AC•BC=12•AB•PH+12•AC•PC,∴6×8=10 m +6 m,∴m =3,∴PC=3,故A,B,C中,能求出PC的长度,D中条件不确定,求不出PC的长度.故选:D.【点睛】本题考查作图-复杂作图,垂直平分线及角平分线的性质及作图,运用勾股定理进行求解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由科学记数法得0.0000025=2.5×10−6,故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.C解析:C【解析】【分析】根据等腰三角形三线合一的性质可得BD=CD ,AD ⊥BC ,根据角平分线上的点到角的两边的距离相等可得AD 上的点到AB 、AC 两边的距离相等,根据垂线段最短判断PD 的取值范围,根据等边对等角的性质可得∠B=∠C ,等角的余角相等即可判断.【详解】在ABC 中,∵AB AC =,AD 是ABC 的角平分线,∴BD CD =,AD BC ⊥(三线合一),①正确;∵AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,②正确;∵3DE =,∴DF=3,∵点P 为AC 上任意一点,且DF AC ⊥,∴3PD ≤,③错误;∵AB AC =,∴B C ∠=∠,∵DE AB ⊥,DF AC ⊥,∴90BDE B CDF C ∠+∠=∠+∠=︒,∴BDE CDF ∠=∠,④正确;即①②④正确;故选:C .【点睛】本题考查等腰三角形的性质,角平分线的性质,掌握等腰三角形三线合一的性质,角平分线的性质和垂线段最短的性质为解题关键.7.C解析:C【解析】【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC ,且2B C ∠=∠,情况一:当∠B 是底角时,则另一底角为∠A ,且∠A=∠B=2∠C ,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C 是底角,则另一底角为∠A ,且∠B=2∠A=2∠C ,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C .【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.8.B解析:B【解析】【分析】连接BE ,与AD 交于点M ,BE 就是EM CM +的最小值,根据等边三角形的性质求解即可.【详解】解:连接BE ,与AD 交于点M ,AD 是BC 边上的中线,AD BC ∴⊥,AD ∴是BC 的垂直平分线,B ∴、C 关于AD 对称,BE ∴就是EM CM +的最小值,等边ABC 的边长为6,∴3BD =,6AB =,AD ∴==3AE =,633CE AC AE ∴=-=-=,BE ∴是AC 的垂直平分线,∵ABC 是等边三角形,易得 BE AD ==EM CM BE +=,EM CM ∴+的最小值为故选:B .【点睛】本题考查等边三角形的性质、轴对称-路径最短等内容,明确当B ,M ,E 三点共线时EM CM +最短是解题的关键.9.C解析:C【解析】【分析】根据因式分解的定义逐项作出判断即可.【详解】解:A. ()a m n am an +=+,是乘法运算,不是因式分解,不合题意;B. 2221(1)x x x +-=-,变形错误,不是因式分解,不合题意;C. 21055(21)x x x x -=-,是因式分解符合题意;D. 216+6(+4)(4)+6x x x x x -=-,没有化为整式的积的形式,不是因式分解,不合题意. 故选:C .【点睛】本题考查了因式分解的定义:把一个多项式化为几个整式的积的形式,叫因式分解.10.B解析:B【解析】【分析】由绝对值非负性及算术平方根的非负性可得40x -==,解得4,8x y ==,可知以x ,y 的值为两边长的等腰三角形的情况,根据三角形构成的条件即可得出答案.【详解】解:4040x x -≥-≥=,,40x ∴-==,解得4,8x y ==以x ,y 的值为两边长的等腰三角形有两种情况:①4,4,8,因为448+=,所以该三角形不存在;②8,8,4,该等腰三角形的周长为20.故选:B .【点睛】本题主要考查了绝对值和算术平方根的非负性,利用0a ≥≥求出x ,y 的值是解题关键.同时注意对等腰三角形进行分类讨论,考虑两种情况是否均成立,这是本题的易错点.二、填空题11.120°或75°或30°【解析】∵∠AOB=60°,OC 平分∠AOB,点E 在射线OA 上,∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况:(1)当OE=CE 时,∠OC解析:120°或75°或30°【解析】∵∠AOB=60°,OC 平分∠AOB ,点E 在射线OA 上,∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况:(1)当OE=CE 时,∠OCE=∠COE=30°,此时∠OEC=180°-30°-30°=120°;(2)当OC=OE 时,∠OEC=∠OCE=180302-=75°; (3)当CO=CE 时,∠OEC=∠COE=30°. 综上所述,当△OCE 是等腰三角形时,∠OEC 的度数为:120°或75°或30°.点睛:在本题中,由于题中没有指明等腰△OCE 的腰和底边,因此要分:(1)OE=CE ;(2)OC=OE ;(3)CO=CE ;三种情况分别讨论,解题时不能忽略了其中任何一种情况.12.;【解析】【分析】利用角平分线的性质,可得知△BCO ,△ACO 和△ABO 中BC ,AC 和AB 边上的高相等,根据三角形的面积比即为底的比,由此得知结果.【详解】如图,过O 作OD ⊥AB 交AB 于D解析:7:6:4;【解析】【分析】利用角平分线的性质,可得知△BCO ,△ACO 和△ABO 中BC ,AC 和AB 边上的高相等,根据三角形的面积比即为底的比,由此得知结果.【详解】如图,过O 作OD ⊥AB 交AB 于D ,过O 作OE ⊥AC 交AC 于E ,过O 作OF ⊥BC 交BC 于F ,因为点O 为三条角平分线的交点,所以OD=OE=OF ,所以:::1412876::::4:ABO BCO CAO S S S AB BC AC ===.故答案为:7:6:4.【点睛】考查角平分线的性质,学生熟练掌握角平分线到角两边的距离相等这一性质是本题解题关键,利用性质找到面积比等于底的比,从而解题.13.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.14.2x(2﹣x).【解析】【分析】直接找出公因式2x,进而提取公因式得出即可.【详解】解:4x﹣2x2=2x(2﹣x).故答案为:2x(2﹣x).【点睛】本题考查了提取公因式法分解因式解析:2x(2﹣x).【解析】【分析】直接找出公因式2x,进而提取公因式得出即可.【详解】解:4x﹣2x2=2x(2﹣x).故答案为:2x(2﹣x).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.15.4【解析】【分析】分析:把变形为,代入后,再变形为即可求得最后结果.【详解】∵,∴,,,,,=4.故答案为:4.【点睛】本题主要考查代数式的求值,解题的关键是熟练掌握平方解析:4【解析】【分析】分析:把224a b b -+=变形为()()4a b a b b -++,代入2a b +=后,再变形为()2a b +即可求得最后结果.【详解】∵2a b +=,∴()()2244a b b a b a b b -+=-++, ()24a b b =-+,224a b b =-+,()2a b =+,22=⨯,=4.故答案为:4.【点睛】本题主要考查代数式的求值,解题的关键是熟练掌握平方差公式及其灵活变形. 16.0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a2+4ab+4b2变形为(a+2b)2代入求值即可.【详解】解:∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b解析:0【解析】【分析】根据互为相反数的定义得出a+2b=0,再把a2+4ab+4b2变形为(a+2b)2代入求值即可.【详解】解:∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b2=(a+2b)2=0故答案为:0【点睛】此题主要考查了互为相反数以及完全平方公式,正确把握互为相反数的定义是解题关键.17.4或8【解析】【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60解析:4或8【解析】【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB,∴∠PCB=∠B=30°,∴PB=PC=4.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=4,∴BP'=2P'C=8.故答案为:4或8.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△解析:0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP =6−2=4,∴点P 的运动时间为4÷1=4(秒);②当P 在线段BC 上,AC =BN 时,△ACB ≌△NBP ,这时BC =PN =6,CP =0,因此时间为0秒;③当P 在BQ 上,AC =BP 时,△ACB ≌△PBN ,∵AC =2,∴BP =2,∴CP =2+6=8,∴点P 的运动时间为8÷1=8(秒);④当P 在BQ 上,AC =NB 时,△ACB ≌△NBP ,∵BC =6,∴BP =6,∴CP =6+6=12,点P 的运动时间为12÷1=12(秒),故答案为0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112【解析】【分析】 根据题目所给计算方法,令23201911112222S ,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 20.b(a +2b)(a -2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】解:a2b -4b3=b (a2-4b2)=b (a+2b )(a解析:b(a +2b)(a -2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】解:a 2b -4b 3=b (a 2-4b 2)=b (a+2b )(a-2b ).故答案为:b(a +2b)(a -2b).【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.解:(1)①②④⑤;(2)18DAE ∠=︒【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线,∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.22.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠D B′E=80°,∴∠CB′E+80°=∠CB′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.故答案为:∠CB′E+80°=∠A DB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.21m +,2 【解析】【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值.【详解】 解:2222421121m m m m m m m ---÷+--+ 222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+ 因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.24.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.25.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x+=-⋅-- 11x x x x +=⋅- 11x x +=-; (2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.26.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭=a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键.27.(1)152;(2)证明见解析. 【解析】【分析】(1)由题意易得AD 为BAC ∠的角平分线,DEDF =,然后根据三角形面积计算公式可求解;(2)延长EA 到点G ,使AG DE =,连接FG ,则有360AED EDF DFA FAE ∠+∠+∠+∠=︒,进而得到EDF GAF ∠=∠,故EDF GAF ∆∆≌,然后根据全等三角形的性质及等腰三角形可进行求解.【详解】(1)解:BAD DAC ∠=∠∴AD 为BAC ∠的角平分线,DE AB DF AC ⊥⊥∴DE DF =∴11115532222ADCS AC DF AC DE ∆=⨯=⨯=⨯⨯=; (2)证明:延长EA 到点G ,使AG DE =,连接FG ,在四边形AEDF 中,360AED EDF DFA FAE ∠+∠+∠+∠=︒,90AED ∠=︒,90DAF ∠=︒,∴180EDF FAE ∠+∠=︒,180GAF FAE ∠+∠=︒,∴EDF GAF ∠=∠,在EDF ∆和GAF ∆中,DE AG DF AFEDF GAF =⎧⎪=⎨⎪∠=∠⎩, ∴EDF GAF ∆∆≌,∴,13EF GF =∠=∠,1290∠+∠=︒,∴3290∠+∠=︒,∴90EFG ∠=︒,∴GAF ∆是等腰三角形,∴EG=,=+=,∴EG AE DEEG EA AG AG DE,=+,∴+=.AE DE【点睛】本题主要考查等腰三角形的性质与判定及全等三角形的判定与性质,关键是根据全等三角形的判定与性质及直角三角形的性质得到角、线段的等量关系,然后利用等腰三角形的性质求解即可.28.(1)2;(2)【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=)=2-1=2;(2)∵x,y1,xy=2,∴∴x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3= x2(x+y)+y2(x+y)=(x2+y2)(x+y)【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.y<-29.(1 ) C(4,1);(2)①F( 0 , 1 ),②1【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标.()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到⊥,得到△OBF为等腰直角三角形,即可求出点F的坐标.===,BE BF1OB BM EM()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21∴,,E∴OM=2,()10.B,1OB BM EM∴===,45EBM∴∠=︒,BE BF⊥,∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.()0,1.F∴法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90° .∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).D(0,1).又∵CD∥OM ,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°.∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=12CD=2,∵A(0,3), OA=3,∴OF=1.∴F(0,1) , (3) 1y<-.30.(1)BME MEN END ∠=∠-∠,BMF MFN FND ∠=∠+∠;(2)120°;(3)没发生变化,30°【解析】【分析】(1)过E 作//EH AB ,易得////EH AB CD ,根据平行线的性质可求解;过F 作//FH AB ,易得////FH AB CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2()180BME END BMF FND ∠+∠+∠-∠=︒,可求解60BMF ∠=︒,进而可求解;(3)根据培训心得性质及角平分线的定义可推知12FEQ BME ∠=∠,进而可求解. 【详解】解:(1)过E 作//EH AB ,如图1,BM E M EH ∴∠=∠,//AB CD ,//HE CD ∴,END HEN ∴∠=∠,MEN MEH HEN BME END ∴∠=∠+∠=∠+∠,即BME MEN END ∠=∠-∠.如图2,过F 作//FH AB ,BMF MFK ∴∠=∠,//AB CD ,//FH CD ∴,FND KFN ∴∠=∠,MFN MFK KFN BMF FND ∴∠=∠-∠=∠-∠,即:BMF MFN FND ∠=∠+∠.故答案为BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠.(2)由(1)得BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠.NE 平分FND ∠,MB 平分FME ∠,FM E BM E BM F ∴∠=∠+∠,FND FNE END ∠=∠+∠,2180MEN MFN ∠+∠=︒,2()180BME END BMF FND ∴∠+∠+∠-∠=︒,22180BME END BMF FND ∴∠+∠+∠-∠=︒,即2180BMF FND BMF FND ∠+∠+∠-∠=︒,解得60BMF ∠=︒,2120FME BMF ∴∠=∠=︒;(3)FEQ ∠的大小没发生变化,30FEQ ∠=︒.由(1)知:MEN BME END ∠=∠+∠, EF 平分MEN ∠,NP 平分END ∠,11()22FEN MEN BME END ∴∠=∠=∠+∠,12ENP END ∠=∠, //EQ NP ,NEQ ENP ∴∠=∠,111()222FEQ FEN NEQ BME END END BME ∴∠=∠-∠=∠+∠-∠=∠, 60BME ∠=︒,160302FEQ ∴∠=⨯︒=︒. 【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.。

2020-2021学年华师大版八年级上册数学期末复习试卷(有答案)

2020-2021学年华师大版八年级上册数学期末复习试卷(有答案)

2020-2021学年华师大版八年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.若x2=9,则x的取值是()A.x=3B.x=﹣3C.x=±3D.x=±4.52.给出下列实数:、、、、、、﹣0.1010010001…(每相邻两个1之间依次多一个0),其中无理数有()A.2个B.3个C.4个D.5个3.能够直观、形象地显示各个量在总量中所占份额的是()A.扇形统计图B.条形统计图C.折线统计图D.频数分布直方图4.比较255、344、433的大小()A.255<344<433B.433<344<255C.255<433<344D.344<433<2555.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,66.下列因式分解正确的是()A.x(x﹣y)﹣y(x﹣y)=(x﹣y)2B.a2﹣a﹣2=a(a﹣1)﹣2C.2n2﹣nm﹣n=2n(n﹣m﹣1)D.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)7.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设()A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中每个内角都大于60°D.三角形中没有一个内角小于60°8.下列命题的逆命题成立的是()A.对顶角相等B.全等三角形的对应角相等C.等腰三角形两底角相等D.如果两数相等,那么它们的绝对值相等9.估计+1的值是()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间10.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13B.17C.13或17D.13或10二.填空题(共6小题,满分24分,每小题4分)11.若的整数部分为2,则满足条件的奇数a有个.12.一次射击训练中,李磊共射击10发,射中8环的频率是0.4,则射中8环的频数是.13.等腰三角形的顶角为36°,它的底角为.14.如图,已知AB∥CF,E为DF的中点.若AB=13cm,CF=7cm,则BD=cm.15.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.16.一个长方体的长、宽、高分别为正整数a,b,c,而且①ab﹣ca﹣bc=1,②ca=bc+1,试确定长方体的体积.三.解答题(共9小题,满分86分)17.(8分)(1)计算:(﹣2xy2z)2•(﹣3x2y2)3(2)计算:(2x﹣1)•(﹣3x2)(3)解方程组:(4)解方程组:18.(8分)分解因式:(3m﹣1)2﹣(2m﹣3)2.19.(8分)先化简,再求值:[(2x+y)(2x﹣y)﹣3(2x2﹣xy)+y2]÷(﹣x),其中x =2,y=﹣1.20.(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.21.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名?(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度.22.(10分)如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积.23.(10分)如图,有一张直角三角形纸片,两直角边AC=6cm,AB=8cm,将△ABC折叠,使点B与C点重合,折痕为DE.(1)求△ABC的周长.(2)求DE的长.24.(12分)先仔细阅读材料,再尝试解决问题:通过上学期对有理数的乘方的学习,我们知道x2≥0,本学期学习了完全平方公式后,我们知道a2±2ab+b2=(a±b)2,所以(a±b)2≥0,这一性质在数学中有着广泛的应用,比如,探究多项式2x2+4x﹣5的最小值时,我们可以这样处理:解:原式=2(x2+2x)﹣5=2(x2+2x+12﹣12)﹣5=2[(x+1)2﹣12]﹣5=2(x+1)2﹣2﹣5=2(x+1)2﹣7因为(x+1)2≥0,所以2(x+1)2﹣7≥0﹣7,即2(x+1)2﹣7≥﹣7所以2(x+1)2﹣7的最小值是﹣7,即2x2+4x﹣5的最小值是﹣7请根据上面的探究思路,解答下列问题:(1)多项式5(x﹣3)2+1的最小值是;(2)求多项式4x2﹣16x+3的最小值;(3)求多项式x2+6x+y2﹣4y+20的最小值.25.(14分)如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x 轴的正半轴,且FH⊥FG,求m+n的值.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵x2=9,∴x=±3.故选:C.2.解:,=1.2,实数:、、、、、、﹣0.1010010001…(每相邻两个1之间依次多一个0),其中无理数有、、﹣0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B.3.解:条形统计图比较直观的反映各个数量的多少,折线统计图则反映数量增减变化情况,扇形统计图则比较直观反映各个部分占整体的百分比,故选:A.4.解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.5.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.6.解:整式x(x﹣y)﹣y(x﹣y)提取公因式(x﹣y),得(x﹣y)2,因式分解正确;a2﹣a﹣2=a(a﹣1)﹣2,等号的右边不是整式积的形式,不属于因式分解;式子2n2﹣nm﹣n提取公因式n后可分解为n(2n﹣m﹣1),故选项C分解不正确;式子﹣ab2+2ab﹣3b提取公因式﹣b后可分解为﹣b(ab﹣2a+3),故选项D错误.故选:A.7.解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设三角形中每个内角都大于60°,故选:C.8.解:A、逆命题为:相等的角为对顶角,错误,不成立,不符合题意;B、逆命题为:对应角相等的三角形全等,错误,不成立,不符合题意;C、逆命题为:两角相等的三角形是等腰三角形,正确,成立,符合题意;D、逆命题为:绝对值相等的两个数相等,错误,不成立,不符合题意;故选:C.9.解:∵16<20<25,∴,∴,∴+1的值是在5到6之间.故选:D.10.解:①当腰是3,底边是7时,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,能构成三角形,则其周长=3+7+7=17.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:因为=2,=3,而的整数部分为2,所以8<a<27,则满足条件的奇数a有:9,11,13,15,17,19,21,23,25,共有9个.故答案为:9.12.解:∵共射击10发,射中8环的频率是0.4,∴射中8环的频数是:10×0.4=4,故答案为:4.13.解:∵(180°﹣36°)÷2=72°,∴底角是72°.故答案为:72°.14.解:∵AB∥CF,∴∠ADE=∠EFC,∵∠AED=∠FEC,E为DF的中点,∴△ADE≌△CFE(ASA),∴AD=CF=7cm,∵AB=13cm,∴BD=13﹣7=6cm.故答案为615.解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:16.解:∵①ab﹣ca﹣bc=1,②ca=bc+1,∴把②代入①得:ab﹣bc﹣1﹣bc=1,∴ab﹣2bc=2,∴b(a﹣2c)=2.∵a,b,c为正整数,∴当b=1时,a﹣2c=2③当b=2时,a﹣2c=1.④当b=1时,a﹣2c=2时,②变为:ca=c+1,∴c(2+2c)=c+1,c=或﹣1,都不符合题意.当b=2时,a﹣2c=1时,ca=2c+1,∴c(1+2c)=2c+1,c=﹣或1,故c=1,∴把b=2,c=1代入②,得a=3,∴长方体的体积为:1×2×3=6.故答案为6.三.解答题(共9小题,满分86分)17.解:(1)(﹣2xy2z)2•(﹣3x2y2)3=4x2y4z2×(﹣27)x6y6=﹣108x8y10z2(2)(2x﹣1)•(﹣3x2)=﹣6x3+3x2(3)将①代入②得:3x+x﹣1=3∴x=1 ④将④代入①得:2y=1﹣1∴y=0∴方程组的解为:(4)①×2﹣②得:﹣10y﹣3y=24+2∴y=﹣2 ③将③代入①得:2x﹣5×(﹣2)=12∴x=1∴方程组的解为:.18.解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).19.解:原式=(4x2﹣y2﹣6x2+3xy+y2)÷(﹣x)=(﹣2x2+3xy)÷(﹣x)=4x﹣6y,当x=2,y=﹣1时,原式=8+6=14.20.证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AB =CD .21.解:(1)由题意可得初三(1)班接受调查的同学共有:10÷20%=50名;(2)听音乐的人数为:50﹣10﹣15﹣5﹣8=12名,补图如下:“体育活动C ”所对应的圆心角度数:360°×=108°.22.解:连接BD ,∵∠A =90°,∴BD 2=AD 2+AB 2=100则BD 2+CD 2=100+576=676=262=BC 2,因此∠CBD =90°,S 四边形ABCD =S △ADB +S △CBD =AD •AB +BD •CD =×6×8+×24×10=144(平方米).23.解:(1)∵AC =6cm ,AB =8cm ,∴BC ===10cm ,∴△ABC 的周长=AC +AB +BC =6+8+10=24cm ;(2)∵将△ABC 折叠,使点B 与C 点重合,折痕为DE ,∴∠DEC =∠DEB =90°,DC =BD ,CE =BE =5cm ,∵AC 2+AD 2=CD 2,∴36+(8﹣DB )2=DB 2,∴DB=,∴DE===.24.解:(1)∵(x﹣3)2≥0,∴5(x﹣3)2+1≥1,∴多项式5(x﹣3)2+1的最小值是1,故答案为:1;(2)4x2﹣16x+3=4(x2﹣4x)+3=4(x2﹣4x+22﹣22)+3=4[(x﹣2)2﹣4]+3=4(x﹣2)2﹣16+3=4(x﹣2)2﹣13,∵(x﹣2)2≥0,∴4(x﹣2)2﹣13≥﹣13,∴多项式4x2﹣16x+3的最小值为﹣13;(3)x2+6x+y2﹣4y+20=x2+6x+9+y2﹣4y+4+7=(x+3)2+(y﹣2)2+7,∵(x+3)2≥0,(y﹣2)2≥0,∴(x+3)2+(y﹣2)2+7≥7,∴多项式x2+6x+y2﹣4y+20的最小值为7.25.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.1、三人行,必有我师。

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷B卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷B卷(附答案)

华师大版2020-2021学年度第一学期八年级数学期末模拟测试卷B 卷(附答案)一、单选题1.下列各式从左到右的变形属于因式分解且分解正确的是( )A .(x+1)(x -1)=x 2-1B .2x 2-y 2=(2x+y)( 2x -y)C .a 2+2a+1=a(a+2)+1D .-a 2+4a -4=-(a -2)22.如图在平行四边形ABCD 中,已知∠OAB =90°,AC =8,BC =10,则BD 的长为( )A .213B .15C .4D .203.下列式子变形是因式分解的是( )A .()25656x x x x -+=-+B .()()25623x x x x -+=++ C .()()22356x x x x --=-+ D .()()25623x x x x -+=-- 4.如图,过边长为6的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,连PQ 交AC 边于D ,当P A =CQ 时,DE 的长为( )A .1B .2C .3D .45.已知等边△ABC 的中线BD 、CE 相交于点O ,∠BOC 等于( )A .60°B .150°C .30°D .120°6.如图,在菱形ABCD 中,对角线AC 、BD 交于点O .若60ABC ∠=︒,1OA =,则CD 的长为( )A .1B 3C .2D .37.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有()A.1个B.2个C.3个D.4个8.在,,0,这四个数中,为无理数的是( )A.B.C.D.9.以下列各线段为边,不能组成直角三角形的是()A .2,5,8 B.1,1,C.10,6,8 D.3,4,5 10.△ABC的三边长度分别是a、b、c,能说明△ABC是直角三角形的是()A.13a=,14b=,15c=B.3a=,2b=,5c=C.∠A:∠B:∠C=3:4:5 D.(b+c)(b-c)=a2二、填空题11.如图,在ABC中,D、E分别是边AC、BC上的点,若ADB≌EDB≌EDC,AB10cm=,则BC=______ cm.12.某个正数的平方根是x与y,3x﹣y的立方根是2,则这个正数是_____.13.已知,则的值为_____.14.如图,△ABC中,AB=AC,∠A=30°,点D在AB上,∠ACD=15°,则(BC AD)2的值是_____.15.因式分解:22168m n mn--+=______.16.如图,已知正方体的棱长为2,则正方体表面上从A1点到C点的最短距离为_______.17.若,则a 应满足的条件是______.18.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC, 点E 正好在BD 的垂直平分线上,且AB=6,则△DBE 的周长是___________.19.若等边三角形的面积为3,则它的边长为______.20.有一个如图所示的长方体透明玻璃鱼缸,假设其长80AD cm =,高60AB cm =,水深为40AE cm =,在水面上紧贴内壁G 处有一鱼饵,G 在水面线EF 上,且60EG cm =.一小虫想从鱼缸外的A 点沿壁爬进鱼缸内G 处吃鱼饵,则小虫爬行的最短路线长为____cm .三、解答题21.如图,点P 是∠AOB 的平分线上的一点,作PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,连接DE ,交OC 于点F ,求证:F 是DE 的中点.22.如图,已知△ABC 中,∠B=90°,AB=BC,BD=CE,M 是AC 边上的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021深圳华师一附中实验学校初二数学上期末模拟试卷带答案一、选择题1.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 2.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d++= 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+4.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称5.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+6.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 7.计算:(4x 3﹣2x )÷(﹣2x )的结果是( ) A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 8.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫9.等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为( )A .30oB .30o 或150oC .60o 或150oD .60o 或120o 10.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 11.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5 B .-5C .3D .-3 12.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°二、填空题13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.分解因式:2a 2﹣8=_____.15.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN V 周长的最小值为________.16.若分式方程22x m x x =--有增根,则m 的值为__________. 17.因式分解:3x 3﹣12x=_____. 18.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .19.计算:()201820190.1258-⨯=________.20.分解因式2m 2﹣32=_____.三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.22.化简:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.23.解分式方程:33122x x x-+=--. 24.共有1500kg 化工原料,由A ,B 两种机器人同时搬运,其中,A 型机器人比B 型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?25.如图,在Rt V ABC 中,∠C =90º,BD 是Rt V ABC 的一条角一平分线,点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形,(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .2.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.3.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.4.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.5.A解析:A【解析】【分析】【详解】甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A. 6.C解析:C 【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.7.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.8.B解析:B【解析】【分析】利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC=∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED= , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.9.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD 是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD 是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.10.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.11.A解析:A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A. 12.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC 中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE 是边AC 的垂直平分线,∠C=20°,∴CE=AE ,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.2(a+2)(a﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2)故答案为:2(a+2)(a﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.15.8【解析】【分析】分别作点P关于OAOB的对称点P1P2连接P1P2交OA于M 交OB于N△PMN的周长=P1P2然后证明△OP1P2是等边三角形即可求解【详解】分别作点P关于OAOB的对称点P1P2解析:8【解析】【分析】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,△PMN的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【详解】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N.连接OP ,则OP 1=OP =OP 2,∠P 1OA =∠POA ,∠POB =∠P 2OB ,MP =P 1M ,PN =P 2N ,则△PMN 的周长的最小值=P 1P 2,∴∠P 1OP 2=2∠AOB =60°,∴△OP 1P 2是等边三角形. △PMN 的周长=P 1P 2,∴P 1P 2=OP 1=OP 2=OP =8.故答案为8.【点睛】本题考查了轴对称﹣最短路线问题,正确作出辅助线,证明△OP 1P 2是等边三角形是关键.16.【解析】【分析】先将分式方程去分母转化为整式方程再由分式方程有增根得到然后将的值代入整式方程求出的值即可【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根掌握增根的定义是解 解析:2-【解析】【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到2x =,然后将x 的值代入整式方程求出m 的值即可.【详解】 ∵22x m x x=-- ∴x m =- ∵若分式方程22x m x x=--有增根 ∴2x =∴2m =-故答案是:2-【点睛】本题考查了分式方程的增根,掌握增根的定义是解题的关键. 17.3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x 然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x (x2﹣4)=3x (x+2)(x ﹣2)故答案为3x (x+2)(x ﹣2)【点睛】本题考查解析:3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.19.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8)20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.20.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:2(m+4)(m﹣4)【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(m 2﹣16)=2(m +4)(m ﹣4),故答案为2(m +4)(m ﹣4).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x 2+4x+4=(x+2)2,16x 2+24x+9=(4x+3)2,9x 2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b 2=4ac ,故答案为b 2=4ac ;②∵多项式x 2-2(m-3)x+(10-6m )是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m ),m 2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.1x x +,x=2时,原式=23. 【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.【详解】 解:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭=2221(1)(1)(1)x x x x x x x ⎡⎤+-÷⎢⎥--⎣⎦=21(1)x x x --•22(1)x x + =(1)(1)(1)x x x x +--•22(1)x x + =1x x + 由题意可知,x ≠0,±1 ∴当x=2时,原式=23. 【点睛】本题考查分式的化简求值及分式成立的条件.23.x=1.【解析】【分析】方程两边同时乘以x-2,化为整式方程,解整式方程后进行检验即可.【详解】方程两边同时乘以x-2,得x-3+x-2=-3,解得:x=1,检验:当x=1时,x-2≠0,所以原分式方程的解为x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.24.两种机器人需要10小时搬运完成【解析】【分析】先设两种机器人需要x 小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A 型机器人比B 型机器每小时多搬运30kg ,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x 小时搬运完成,∵900kg +600kg =1500kg ,∴A 型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:900600-x x=30, 解得:x =10, 经检验,x =10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.25.(1)证明见解析;(2)2.【解析】【分析】(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E∴OM=OE=OF∵OM⊥AB于M, OE⊥BC于E∴∠AMO=90°,∠AFO=90°∵OM OF AO AO=⎧⎨=⎩∴Rt△AMO≌Rt△AFO∴∠MA0=∠FAO∴点O在∠BAC的平分线上(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12∴AB=13∴BE=BM,AM=AF又BE=BC-CE,AF=AC-CF,而CE=CF=OE ∴BE=12-OE,AF=5-OE∴BM+AM=AB即BE+AF=1312-OE+5-OE=13解得OE=2【点睛】本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.。

相关文档
最新文档