流体管

合集下载

11-第11讲 粘性流体管内流动阻力和能量损失

11-第11讲  粘性流体管内流动阻力和能量损失

Q u 2rdr
0
R
p 2 ( R 2 r 2 )rdr l 4 0
R
pR 4 d 4 p 8l 128l
(4-13)
这就是圆形管道内层流流动的流量计算公式。德国工程师哈根在 1839 年,法国科学家泊肃 叶在 1840 年对此结果进行了实验验证,故又称为哈根-泊肃叶公式,式中 p 为在长为 l 的 管路上的压力降。 根据断面平均流速的定义,有
(4-10)
du p (4-11) r dr 2l p R ,与(4-11)式相比,得到切应力分布为 当 r R 时,壁面摩擦力为 0 2l

r 0 R
切应力分布如图 4-7 所示。这就是过流断面上切应力的 K 字形分布规律,既适用于层 流也适用于时均紊流,只不过二者的 0 不同,K 字的斜率不同而已。
RH
A

(4-1)
对于半径为 r 充满流体的圆形管道来说,其过流断面上的水力半径为
RH
水力直径的定义如下
A


r 2 r 2r 2
4A
DH

(4-2)
对于直径为 d 充满流体的圆形管道来说,其过流断面上的水力值径为
d 2 DH d d
4A
由此可知,圆形管道的直径就是其水力直径。 2、 沿程损失(Frictional loss) 流体流动的过流断面的大小、形状和方位沿流程不变,这种流动称为缓变流。在缓变流 动中,流体所承受的阻力只有不变的切应力(摩擦阻力) ,称这类阻力为沿程阻力,由此引
失的公式是
hf
A l V2 Re d 2 g
(4-9)
式中 A 是一个大于 64 的数。 对于紊流入口段, 由于紊流质点间互相掺混, 因而流体进入管道后较短距离就可以完成 其在断面上的紊流速度分布规律,通常紊流入口段比层流入口段要短些。 2、 速度分布与切应力分布 对于截面形状和大小沿流程不变的长直管道来说, 只有沿程损失而没有局部损失。 下面 推导在充分发展段内流体做层流流动所满足的基本方程。 在管道中取坐标 x 轴与圆管轴线重合,并取如图 4-6 所示的轴线为 x 轴、半径为 r、长 为 l 的小圆柱体为研究对象。

1.3流体管中流动

1.3流体管中流动

2
聊城大学东昌学院化生系
一、流体的流量与流速
2.流速 (平均流速)
单位时间内流体质点在流动方向上所流经的距离。
qv 4qv u A d2
m/s
3
聊城大学东昌学院化生系
一、流体的流量与流速
3、管径的估算
4q v 对于圆形管道:d u
流量qv一般由生产任务决定。 通常钢管的规格以外径和壁厚来表示,通式为
阻力平方区

64 Re

0.03 0.025 0.02 0.015

d
层 流 区
过 渡 区
Re, d
0.002
0.001 0.000 0.0006 0.0004 0.0002 0.0001 0.00005 0.00001 108
湍流区
2 4 68 2 4 68 2 4 68 107 2 4 68
40
聊城大学东昌学院化生系
突然扩大
A1 2 ζ = (1 - ) A2 u1 hf = ζ 2g
1.方程的推导 二、流型判据——雷诺准数
实验发现,影响流体运动情况的因素有三个方面:
① 流体的性质:黏度、密度
② 设备的情况:管道直径d;
③ 操作参数:流体流速u; Reynolds综合上述诸因素整理出一个无因次数群— 雷诺准数Re。
Re
du

聊城大学东昌学院化生系
13
1.方程的推导 二、流型判据——雷诺准数
雷诺数
Re 36
du
106
2
4
68 107
2
4 68

聊城大学东昌学院化生系 0.000001
0.000005

不锈钢流体管的用途

不锈钢流体管的用途

不锈钢流体管是一种高强度、耐腐蚀的管道材料,具有广泛的用途,以下是几个常见的应用领域:
1. 医疗设备:不锈钢流体管在医疗设备中应用广泛,包括手术室内的医用气体传输管道和输液管道等。

由于其耐腐蚀性和易于清洁的特点,可以确保医疗设备的卫生安全。

2. 石油化工行业:在石油化工行业中,不锈钢流体管被广泛应用于处理各种腐蚀性液体、气体和化学药品的管道系统。

其高强度和抗腐蚀性可以提高管道的稳定性和安全性。

3. 食品加工和饮料工业:在食品加工和饮料工业中,不锈钢流体管被用于输送腐蚀性或易污染的原料、半成品和成品。

不锈钢管道具有无毒、耐腐蚀、易清洗等特点,可以确保食品安全和质量。

4. 空调和制冷设备:不锈钢流体管在空调和制冷设备中用于输送冷却剂。

不锈钢管道具有良好的导热性能和抗腐蚀性能,可确保系统稳定运行。

总之,不锈钢流体管具有高强度、耐腐蚀等优点,被广泛应用于医疗设备、石油化工、食品加工、空调制冷等领域。

常用管道各数值

常用管道各数值

常用管道各数值(整理稿)一、各管道规格相对应的厚度:1、公称直径20-65的壁厚20 2.8mm;25 3.2;32 3.5;40 3.5;50 3.8;65 4.0;2、PVC电线管:常用的PVC穿线管的壁厚有A型加厚型、B型通用型、C型薄壁型三种。

一般工程采用最多的是B型管。

B型管DN20的壁厚为1.6,DN25的壁厚为1.8,DN32的壁厚为2.03、JDG热镀锌电线管:JDG除了16的管壁厚为1.2以外,其余全部为1.64、U-PVC排水管:50*2.0;75*2.3;110*2.8;110*3.2;160*3.2;160*4.0二、管的种类1、铜管;2、铝塑复合管;3、不锈钢复合管;4、PP管[PP-R(无规共聚聚丙烯,又叫三型聚丙烯管)管、PP-C(改性共聚聚丙烯)管、PP-B(嵌段共聚聚丙烯管)];5、镀锌铁管;6、PVC管;7、不锈钢管;8、PE缠绕管:聚乙烯管、钢管、球墨管、灰口铸铁管、水泥管、玻璃钢夹砂管、UPV-C管等三、各种管的参数、特点、施工特点等1、PP-R管:PPR管主要有三种颜色,白色、绿色和灰色,所用原材料PPR粒子以及填充物的不同造成的。

其中白色、绿色为材质较好的精品PPR管,灰色则为早期材质略差的普通管。

用热溶机承插连接,施工时应按照横平竖直的原则,在房间基础地面上开槽出大于水管直径的深槽,然后铺设PPR水管,紧接着逐一顺序热熔连接。

所有PPR接口采用热熔技术融合到一起后,要进行24小时以上的打压测试,如果现场环境允许,打压测试时间可长一些。

当确保没有任何渗水漏水现象后,再进行填埋。

钢管的分类钢管分无缝钢管和焊接钢管(有缝管)两大类。

按断面形状又可分为圆管和异形管,广泛应用的是圆形钢管,但也有一些方形、矩形、半圆形、六角形、等边三角形、八角形等异形钢管。

对于承受流体压力的钢管都要进行液压试验来检验其耐压能力和质量,在规定的压力下不发生泄漏、浸湿或膨胀为合格,有些钢管还要根据标准或需方要求进行卷边试验、扩口试验、压扁试验等。

常用钢材.管材

常用钢材.管材

管材管材类:焊管镀锌管无缝管方管矩形管锅炉管螺旋管流体管合金管轴承管结构管支架管石油套管化肥用管低中压锅炉管高压锅炉管低温管地质管吹氧管穿线管异型管铸管球墨铸铁管钢塑管船用管管线管声测管一.焊管焊接钢管也称焊管,是用钢板或带钢经过卷曲成型后焊接制成的钢管。

焊接钢管生产工艺简单,生产效率高,品种规格多,设备资少,但一般强度低于无缝钢管。

焊管常用材质为:Q235A,Q235B、16Mn、20#、Q345、L245、L290、X42、X46、X60、X80、0Cr13、1Cr17、00Cr19Ni11、1Cr18Ni9、0Cr18Ni11Nb等。

二.镀锌管镀锌钢管:为提高钢管的耐腐蚀性能,对一般钢管(黑管)进行镀锌。

镀锌钢管分热镀锌和电钢锌两种,热镀锌镀锌层厚,电镀锌成本低。

热镀锌钢管钢管基体与熔融的镀液发生复杂的物理、化学反应,形成耐腐蚀的结构紧密的锌一铁合金层。

合金层与纯锌层、钢管基体融为一体。

故其耐腐蚀能力强。

冷镀锌钢管锌层是电镀层,锌层与钢管基体独立分层。

锌层较薄,锌层简单附着在钢管基体上,容易脱落。

故其耐腐蚀性能差。

在新建住宅中,禁止使用冷镀锌钢管作为给水管。

三.无缝管无缝管(Seamless tube)是一种具有中空截面、周边没有接缝的长条钢材四.方管方管顾名思义,它是种方形体的管型,很多种材质的物质都可以形成方管体,它介质于,干什么用,用在什么地方,大多数方管以钢管为多数,经过拆包,平整,卷曲,焊接形成圆管,再由圆管轧制成方形管然后剪切成需要长度。

一般是50根每包神傲方管在现货方面以大规格居多在10*10*0.8-1.5~~500*500*10-25,方管用途为结构方管,装饰方管,建筑方管,机械方管等五.矩形管矩形管是一种空心方形的截面轻型薄壁钢管,也称为钢制冷弯型材。

它是以Q235热轧或冷轧带钢或卷板为母材经冷弯曲加工成型后再经高频焊接制成的方形截面形状尺寸的型钢。

热轧特厚壁方管除壁厚增厚外情况,其角部尺寸和边部平直度均达到甚至超过电阻焊冷成型方管的水平.2、矩形管用途建筑,机械制造,钢铁建设项目,造船,太阳能发电支架,钢结构工程,电力工程,电厂,农业和化学机械,玻璃幕墙,汽车底盘,机场等。

第四章黏性流体管内流动的能量损失详解

第四章黏性流体管内流动的能量损失详解
沿程阻力系数与Re成反比,
与管壁粗糙度无关。
例4-3 用内径为d10mm,长为L3m的输油管 输送润滑油,已知该润滑油的运动黏度1.80210-
4m2/s。
求流量为qV=75cm3/s时,润滑油在管道上的沿程损失。
(三)圆形管内湍流时沿程阻力系数的计算
1、管壁的粗糙度对沿程阻力系数的影响
流体在管内作湍流流动时,其沿
沿程损失的计算
(J/kg)
达西公式
式中 沿程阻力系数, 为无因次系数;
v截面的平均流速,m/s。
(m)
(Pa)
二、局部阻力与局部损失
局部阻力: 流体流过管件,阀门及进出口等局 部阻碍时,因固体边壁形状的改变,使流体的流速 和方向发生变化,导致产生局部阻力。
局部损失: 为克服局部阻力产生的能量损失, 用符号hj表示,单位为J/kg 、kJ/kg 。
1、圆形管内层流速度分布
层流一般发生在低流速、小管径的管路中或黏性较大
的机械润滑系统和输油管路中。
实验测得层流速度分布呈抛物线状分布,管中心处的
流体质点速度最大。管内流体的平均流速v等于管中心处最 大流速vmax的二分之一。
u
p
4
f
l
( r02
r
2
)
u max
p f
4 l
r02
流动的流体在圆管内好像无数层 很薄的圆筒,平行的一个套着一 个地相对滑动。
K为绝对粗糙 度, d 为管径
壁面粗糙度对沿程损失的影响取决于相对粗糙度K/d 。
绝对粗糙度K: 管壁表面粗糙突起绝对高度的平均距离。
因此,对于湍流:
(二)圆形管内层流时沿程阻力系数的计算
理论分析得出,流体在圆形直管内作层流流动时的压

第5章黏性流体管内流动(12)

第5章黏性流体管内流动(12)
1.雷诺实验
从现象观察发现,流动状态与流速的大小有直接的关系。流态发生 转换时的流速称为临界流速。用实验方法确定。
5.1 流体流动的两种流动状态
由层流过度到紊流的速度极限称为上临界流速,���������′��� 由紊流过度到层流的速度极限称为下临界流速,������������ 。 上临界流速���������′��� 随外界条件的变化,变化较大,下临界速度却不变。 在实际工程中,扰动是普遍存在的,所以上临界流速没有实际意义,以
ℎ������
=
������1 −������2 ������g
=
∆������ ������g
=
32������������������ ������g������2
上式表明层流时管路沿程水头损失与平均流速成正比,将上
式代入达西公式(5-1)则有 32������������������ ������ ������2 ������g������2 = ������ ������ 2g
������max
=
∆������ 4������������
������02
= 2������ ,

������ = ������max
2
(5-15)
3.剪应力分布
在管壁������ = ������������ 处黏性切应力取极值������o,代 入式(5-10)即
������o
=
∆������ 2������
对于直径为������的圆截面管道有:
������������ = ������������������ = ������������
������
������
式中,������为管道直径(m)。

流体管网输配

流体管网输配

1流体输配管网有哪些基本组成部分?各有什么作用?答:流体输配管网的基本组成部分及各自作用如下表:组成管道动力装置调节装置末端装置附属设备作用为流体流动提供流动空间,为流体流动提供需要的动力,调节流量,开启/关闭管段内流体的流动直接使用流体,是流体输配管网内流体介质的服务对象为管网正常、安全、高效地工作提供服2 比较开式管网与闭式管网、枝状管网与环状管网的不同点。

答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。

开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。

闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。

闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。

枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。

环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。

3流体输配管网水力计算的目的是什么?答:水力计算的目的包括设计和校核两类。

一是根据要求的流量分配,计算确定管网各管段管径(或断面尺寸),确定各管段阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、耗(设计计算)或者是根据已定的动力设备,确定保证流量分配要求的管网尺寸规格(校核计算);或者是根据已定的动力情况和已定的管网尺寸,校核各管段流量是否满足需要的流量要求(校核计算水泵等)的型号和动力消。

4水力计算的基本原理是什么?流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一?答:水力计算的基本原理是流体一元流动连续性方程和能量方程,以及管段串联、并联的流动规律。

流体管网输配

流体管网输配

1 流体输配管网有哪些基本组成部分?各有什么作用?答:流体输配管网的基本组成部分及各自作用如下表:组成管道动力装置调节装置末端装置附属设备作用为流体流动提供流动空间,为流体流动提供需要的动力,调节流量,开启/关闭管段内流体的流动直接使用流体,是流体输配管网内流体介质的服务对象为管网正常、安全、高效地工作提供服2 比较开式管网与闭式管网、枝状管网与环状管网的不同点。

答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。

开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。

闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。

闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。

枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。

环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。

3 流体输配管网水力计算的目的是什么?答:水力计算的目的包括设计和校核两类。

一是根据要求的流量分配,计算确定管网各管段管径(或断面尺寸),确定各管段阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、耗(设计计算);或者是根据已定的动力设备,确定保证流量分配要求的管网尺寸规格(校核计算);或者是根据已定的动力情况和已定的管网尺寸,校核各管段流量是否满足需要的流量要求(校核计算水泵等)的型号和动力消。

4 水力计算的基本原理是什么?流体输配管网水力计算大都利用各种图表进行,这些图表为什么不统一?答:水力计算的基本原理是流体一元流动连续性方程和能量方程,以及管段串联、并联的流动规律。

工程流体力学 第6章 粘性流体管道内流动

工程流体力学 第6章 粘性流体管道内流动
de 2ab ab
第6章 粘性流体管道内流动
6.4 管内流动的两种损失
不可压粘性流体的总流伯努利方程:
V12 p1 V22 p2 1 gz1 2 gz2 hw 2 2
hw——单位重量流体损失的能量。
1.沿程(水头)损失
渐变流中由于流体微团、层间、流体与管壁间粘性摩擦引
教学内容
第0章 绪论 第1章 流体的主要物理性质 第2章 流体静力学 第3章 流体流动的基本方程 第4章 旋涡理论和势流理论 第5章 相似理论与量纲分析 第6章 粘性流体管内流动 第7章 粘性流体绕物体的流动
第6章 粘性流体管内流动
6.1 粘性流体中的应力分析
理想流体—无粘性,无切向应力; 实际流体—有粘性,存在切向应力,表现为阻碍流体运动的 摩擦力,消耗机械能。
是t时刻的脉动速度但脉动速度的时均量为零即u010tuudtt?在横向也存在横向脉动且第6章粘性流体管道内流动在横向yz也存在横向脉动且0vw依上法湍流中有瞬时压强p时均压强脉动压强p且pppp01tppdtt?010tppdtt?若湍流中各物理量的时均值如不随时间而变仅是空间点的函数即uvwp?第6章粘性流体管道内流动随时间而变仅是间点的函数即uuxyzppxyz?则被称为恒定的湍流运动但湍流的瞬时运动总是非恒定的
时,随着 当逐渐加大玻璃管内流速到达某一上临界值 Vcr 玻璃管内流速的再增大,颜色水与周围清水混合,使整个圆管 都带有颜色,表明此时质点的运动轨迹极不规则,各层质点相 互掺混,称这种流动状态为湍流。
从层流到湍
流的转捩阶段称
为过渡流,一般 将它作为湍流的 初级阶段。
第6章 粘性流体管道内流动
6.3.2 层流和湍流
6.2 不可压缩粘性流体的运动微分方程

流体管14976外径标准

流体管14976外径标准

流体管14976外径标准流体管是一种用于输送液体或气体的管道。

它的外径是管道的一个重要参数,直接影响着管道的性能和使用范围。

此处将介绍流体管外径的标准及其相关内容。

首先,值得注意的是,流体管的外径标准并非是唯一的,不同国家和地区有不同的标准和规范。

以下将针对国际通用的标准进行介绍。

在国际上,流体管的外径通常采用公制制度来规定。

具体而言,外径的单位是毫米(mm),并采用常用的直径尺寸进行划分。

常见的外径规格有6mm、8mm、10mm、12mm、15mm、20mm等。

此外,国际标准化组织(ISO)还制定了一些与流体管外径相关的标准。

ISO161-1:1996《塑料管道和配件-联接尺寸和试验方法》规定了一系列有关直径、壁厚和长度的要求。

ISO4427-1:2024《高密度聚乙烯(HDPE)配管系统-通用要求和试验方法》则规定了HDPE管道的外径范围和公差要求。

除了ISO标准外,流体管的外径还受到一些行业规范和标准的约束。

例如,对于医疗行业的输液管道,国家药典会对其外径进行规定,以确保安全和可靠性。

此外,对于一些特殊应用,流体管的外径标准可能会有所不同。

例如,在石油工业中使用的油井管道,其外径标准采用非公制制度,如英制或英制与公制结合。

在实际应用中,选择合适的流体管外径对于管道的功能和性能至关重要。

过粗或过细的外径都会导致一系列问题。

过粗的外径会使得管道管件的连接不紧密,容易出现渗漏情况;过细的外径可能会导致管道无法承受高压和流量的要求。

综上所述,流体管的外径标准主要采用公制制度,并受到ISO标准和行业规范的约束。

选择合适的外径对于流体管的使用非常重要,需要根据具体的应用需求进行选择。

薄壁大口径流体管规格尺寸

薄壁大口径流体管规格尺寸

薄壁大口径流体管规格尺寸薄壁大口径流体管是一种常用的工业管道,由于其壁厚较小,重量轻,成本低,故使用广泛。

薄壁大口径流体管使用前需进行规格尺寸计算,以确保其质量和使用效果。

以下是薄壁大口径流体管规格尺寸的介绍。

一、流体管的分类流体管按材质可以分为金属流体管和非金属流体管;按直径可分为小口径管和大口径管,大口径管指管径大于DN200的管道。

大口径流体管有许多优点,如耐压强度高、承载力大、流量大等。

1. 管径(DN)管径指流体管的内径和外径,常用的表示方式是DN,即管径的公称直径。

大口径流体管的常见管径有DN300、DN400、DN500、DN600、DN700、DN800、DN900、DN1000、DN1200、DN1400、DN1600等。

特别提醒:DN与实际管径(OD)的换算需要参照国家标准。

2. 壁厚(S)薄壁管即其壁厚要比普通管子的壁厚要薄,一般来说,薄壁管壁厚在10mm一下被定义为薄壁管。

薄壁大口径流体管的壁厚大小影响着管道的使用效果,过厚会增加重量,使成本升高,过薄会影响管道的强度,降低管道的承载力。

3. 长度(L)流体管的长度表示管道的长度和接口的开口距离,常用的长度为3m、6m、9m、12m,也可以根据具体需要定制特殊长度。

需要注意的是,流体管的长度要够长,可以应对高流量和较长距离的输送。

三、大口径流体管的标准1. GB/T14957-1994《大口径无缝钢管》该标准规定了大口径无缝钢管的分类、尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明文件等。

3. HG/T3091-2015《焊接钢管》四、结论通过上述介绍,我们可以知道大口径流体管规格尺寸的重要性。

在使用前,我们应该准确计算规格尺寸,根据管道负荷、输送介质等参数,选择合适的管径、壁厚和长度。

此外,我们还需对流体管的标准有一个充分的了解,这是保证管道质量的保证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体管流体管是一种具有中空截面,从头到尾的没有焊缝。

钢管具有中空截面,大量用作输送流体的管输送石油、天然气、煤气、水及某些固体物料的管道等。

钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等。

用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,如滚动轴承套圈、千斤顶套等,目前已广泛用钢管来制造。

钢管还是各种常规武器不可缺少的材料,枪管、炮筒等都要钢管来制造。

钢管按横截面积形状的不同可分为圆管和异型管。

由于在周长相等的条件下,圆面积最大,用圆形管可以输送更多的流体。

此外,圆环截面在承受内部或外部径向压力时,受力较均匀,因此,绝大多数钢管是圆管。

生产制造方法:①一般锅炉管使用温度在450℃以下,国产管主要用10号、20号碳结钢热轧管或冷拔管制造。

②高压锅炉管使用时经常处于高温和高压条件,管子在高温烟气和水蒸气的作用下,会发生氧化和腐蚀。

要求钢管具有高的持久强度,高的抗氧化腐蚀性能,并有良好的组织稳定性。

(2)用途:①一般锅炉管主要用来制造水冷壁管、沸水管、过热蒸汽管、机车锅炉用的过热蒸汽管,大、小烟管及拱砖管等。

②高压锅炉管主要用来制造高压和超高压锅炉的过热器管、再热器管、导气管、主蒸汽管等。

但是,圆管也有一定的局限性,如在受平面弯曲的条件下,圆管就不如方、矩形管抗弯强度大,一些农机具骨架、钢木家具等就常用方、矩形管。

根据不同用途还需有其他截面形状的异型钢管。

1.结构用无缝钢管(GB/T8162-1999)是用于一般结构和机械结构的无缝钢管。

2.流体输送用无缝钢管(GB/T8163-1999)是用于输送水、油、气等流体的一般无缝钢管。

3.低中压锅炉用无缝钢管(GB3087-1999)是用于制造各种结构低中压锅炉过热蒸汽管、沸水管及机车锅炉用过热蒸汽管、大烟管、小烟管和拱砖管用的优质碳素结构钢热轧和冷拔(轧)无缝钢管。

4.高压锅炉用无缝钢管(GB5310-1995)是用于制造高压及其以上压力的水管锅炉受热面用的优质碳素钢、合金钢和不锈耐热钢无缝钢管。

5.化肥设备用高压无缝钢管(GB6479-2000)是适用于工作温度为-40~400℃、工作压力为10~30Ma的化工设备和管道的优质碳素结构钢和合金钢无缝钢管。

6.石油裂化用无缝钢管(GB9948-88)是适用于石油精炼厂的炉管、热交换器和管道无缝钢管。

7.地质钻探用钢管(YB235-70)是供地质部门进行岩心钻探使用的钢管,按用途可分为钻杆、钻铤、岩心管、套管和沉淀管等。

8.金刚石岩芯钻探用无缝钢管(GB3423-82)是用于金刚石岩芯钻探的钻杆、岩心杆、套管的无缝钢管。

9.石油钻探管(YB528-65)是用于石油钻探两端内加厚或外加厚的无缝钢管。

钢管分车丝和不车丝两种,车丝管用接头联结,不车丝管用对焊的方法与工具接头联结。

10.船舶用碳钢无缝钢管(GB5213-85)是制造船舶I级耐压管系、Ⅱ级耐压管系、锅炉及过热器用的碳素钢无缝钢管。

碳素钢无缝钢管管壁工作温度不超过450℃,合金钢无缝钢管管壁工作温度超过450℃。

11.汽车半轴套管用无缝钢管(GB3088-82)是制造汽车半轴套管及驱动桥桥壳轴管用的优质碳素结构钢和合金结构钢热轧无缝钢管。

12.柴油机用高压油管(GB3093-86)是制造柴油机喷射系统高压管用的冷拔无缝钢管。

13.液压和气动缸筒用精密内径无缝钢管(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。

14.冷拔或冷轧精密无缝钢管(GB3639-83)是用于机械结构、液压设备的尺寸精度高和表面光洁度好的冷拔或冷轧精密无缝钢管。

选用精密无缝钢管制造机械结构或液压设备等,可以大大节约机械加工工时,提高材料利用率,同时有利于提高产品质量。

15.结构用不锈钢无缝钢管(GB/T14975-1994)是广泛用于化工、石油、轻纺、医疗、食品、机械等工业的耐腐蚀管道和结构件及零件的不锈钢制成的热轧(挤、扩)和冷拔(轧)无缝钢管。

16.流体输送用不锈钢无缝钢管(GB/T14976-1994)是用于输送流体的不锈钢制成的热轧(挤、扩)和冷拔(轧)无缝钢管。

17.异型无缝钢管是除了圆管以外的其他截面形状的无缝钢管的总称。

按钢管截面形状尺寸的不同又可分为等壁厚异型无缝钢管(代号为D)、不等壁厚异型无缝钢管(代号为BD)、变直径异型无缝钢管(代号为BJ)。

异型无缝钢管广泛用于各种结构件、工具和机械零部件。

和圆管相比,异型管一般都有较大的惯性矩和截面模数,有较大的抗弯抗扭能力,可以大大减轻结构重量,节约钢材。

一般用无缝钢管是用10、20、30、35、45等优质碳结钢16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合结钢热轧或冷轧制成的。

10、20等低碳钢制造的无缝管主要用于流体输送管道。

45、40Cr等中碳钢制成的无缝管用来制造机械零件,如汽车、拖拉机的受力零件。

一般用无缝钢管要保证强度和压扁试验。

热轧钢管以热轧状态或热处理状态交货;冷轧以热以热处理状态交货。

低中压锅炉用无缝钢管:用于制造各种低中压锅炉、过热蒸汽管、沸水管、水冷壁管及机车锅炉用过热蒸汽管、大烟管、小烟管和拱砖管等。

用优质碳素结构钢热轧或冷轧(拨)无缝钢管。

主要用10、20号钢制造,除保证化学成分和机械性能外要做水压试验,卷边、扩口、压扁等试验。

热轧以热轧状态交货、冷轧(拨)以热处理状态交货。

18.GB18248-2000(气瓶用无缝钢管)主要用于制作各种燃气、液压气瓶。

其代表材质为37Mn、34Mn2V、35CrMo等.流体管钢管钢级管道介质的输送压力有逐渐增高的趋势,在输气管线上尤为明显。

这是因为在一定范围内提高输送压力会增加经济效益,以输气管线为例,在输量不变的条件下,随着输送压力的提高气体的密度增加而流速减小,从而使摩阻下降。

在一条输气管线的站间距内由进站到出战压力逐渐下降,而流速逐渐增加,随之摩阻也逐渐增加,故离进站口 3 / 4 长度消耗生出站压差△ p 的一半,而后 1 / 4 长度消耗另一半。

输气管线与输油管线最大的差别是由进站到出站流速是逐渐增加的,这是介质的可压缩性造成的。

而油基本上是不可压缩的,虽然输送压力沿管程逐步下降,但流速是不变的,摩阻也是前后相同的。

由此看出对于输气管线压力的提高可使摩阻下降,而输送能耗下降。

还应指出,输气管线的能耗远比输油为大,仅以西气东输管线为例,该管线输送压力 p : 10MPa ,输量为 120 亿 m3 /年,管线长度为 4000KM ,粗略按经验估计能耗大致为 12 亿 m3 /年,而输量的。

1/10 作为沿途的能源消耗掉了。

由于对降低能耗的关切,输送压力有逐步增加的趋势。

早期我国四川省的天然气管线输送压力为 2.5MPa ,以后增加到 4MPa ,陕京线提升为 6MPa ,西气东输增至 10MPa ,国外经济发达国家近十气输气管线多选取 12MPa 。

在输气管线上压比亦有逐渐下降的趋势。

所谓压比指进站压力与出站压力之比,压比减少意味着全线均在较高的压力下运行,这样也可使能耗减小。

早期压力多为 1.6 ,后来降至 1.4 ,近年国外有些输气管线取压比为 1.25 。

当然,压比减小,压缩机站数要增加,从而投资会增加。

对于管径、压力、压比均需进行优化计算和比选。

当输量确定,通过优化确定管径、压力、压比以后,如选取较高压力而钢材强度等级太低,则会造成壁厚过大,这给制管、现场焊接以及运输等诸多环节带来困难,甚至难以实现。

生产的需求促进了钢材等级的提高。

API 于 1926 年发布 APl5L 标准,最初只包括 A25 、 A 、 B 三种钢级,最小屈服值分别为 172 、 207 、 251MPa 。

API 于 1947 年发布 APl5LX 标准,该标准中增加了 X42 , X46 , X52 三种钢级,其最小屈服值分别为 289 、317 、 358MPa 。

1966 年开始,先后发布了 X56 、 X60 、 X65 、 X70 四种钢级,其最小屈服值分别为 386 、 413 、 448 、 482MPa 。

1972 年 API 发布 U80 、 U100 标准,其最小屈服值分别为 551 、 691Mpa ,以后 API 又将U80 、 U100 改为 X80 、 X100 。

粗略统计,全世界 2000 年以前 X70 用量在 40 %左右, X65 、 X60 均在 30 %左右徘徊,小口径成品油管线也有相当数量选用 X52 钢级,且多为ERW钢管。

关于 X80 钢级,国内、外议论很多,国际上曾对 X80 研制已耗巨额投资的钢铁巨头更是积极宣传 X80 ,甚至 X100 ,但时至今日 X80 只处于 " 试验段阶段,总长仅 400KM 左右。

目前正在建设中的管线尚无采用 X80 钢级的,计划中或正在准备中兴建的管线尚无下定决心采用 X80 者,对此笔者曾与国外多家管道工程公司 ( 负责管道设计 ) 的技术人员交换过意见,大家看法基本相同,大致可归纳如下:1 、 X80 钢级随着操作压力的提高及准备工作的完善将来必定会得到发展;2 、当前大石油业主不愿意首先选用 X80 大致出于以下原因:(1) 某一种新钢级 ( 包括炼钢、轧制、制管 ) 由开始生产至熟练的生产要有一个不合格率由高至低的过程,用同样的检验手段其出厂的不合格率也会有一个由低至高的过程,首先采用者要承担此风险;(2) 在现场焊接过程中,包括预热温度、层间温度、热入量等对新钢级要有一个探索过程,在此期间不合格率也有一个由高至低的过程,首先采用者更多地承担此风险;(3) 采用 X80 后,现场使用的冷弯机、焊丝、环缝自动焊机、热弯头工艺等可能需要改变,重新购置或研制,从而增加了工程费用;(4) 采用 X80 后,同样直径,当操作压力不够高的情况下,钢材强度等级的提高意味着厚度的减薄,亦即厚度直径比 (t / D) 的减小,这也就意味着管线刚性的降低。

从事故分析及风险分析看,管线的第三方破坏通常占破坏原因的40 %以上,而管线抵抗第三方破坏能力仅与 t / D 比有关而与强度等级无关。

从我国国情看,我国虽然经济近十多年迅速发展,但仍属发展中国家,笔者建议在采用 X80 问题上我们不做 " 第一个吃螃蟹 " 的人,采取 " 韬光养晦 " 的策略,这对业主单位有利对我国冶金行业也有利。

我国冶金行业在近十余年来为发展管道钢付出了极大的辛劳,取得可喜的业绩,目前正在全力攻关 X70 宽板 ( 做直缝埋弧焊焊管用 ) 并积极为能稳定X70 热轧卷板的质量做努力,如当前决定大量采用 X80 钢级,因我国冶金业对此既无经验又无业绩而难与国外冶金行业竞争,笔者对我国冶金业不仅有深厚的感情,也深信我国冶金业的能力,但不宜操之过急,当然目前抽出少量的力量对X80 进行探索还是必要的,但必须抓住主要矛盾。

相关文档
最新文档