(完整版)电动力学习题集答案
电动力学习题集答案
电动力学第一章习题及其答案1、 当下列四个选项:(A 、存在磁单级, B 、导体为非等势体, C 、平方反比定律不精确成立,D 、光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立、 2、 若 a 为常矢量 , r= (x - x ')i + ( y - y ')j + (z -z ')k 为从源点指向场点的矢量 ,E 0 , k 为常矢量,则∇⋅(r 2 a) =∇⋅(r 2 a ) = (∇r ⋅a =2r ⋅a ,)⋅a ) = ddrr ∇r ⋅a = 2r r r2∇r = (i +j + k ) (x - x ') + (y - y ') + (z - z ') = i +j y-y' + k = rr∂ ∂x ∂ ∂y ∂ ∂z 2 2 2 x-x' r z-z' rr ⎛ ⎫ ⎪ 2(x -x ') = (x -x ') ,同理, ∂ ∂x(x -x ') 2+(y - y ') 2 +(z -z ') 2 = r 2 (x -x ')2+(y -y ')2+(z -z ')2⎝ ⎪⎪ ⎭(y -y ') (x -x ') +(y - y ') 2 +(z -z ') ∂ ∂y (x -x ') 2 +(y - y ') 2 +(z -z ') 2 = , ∂ ∂z 2 2 = (z -z ') r re e e x x x∇⋅r = ∂(x-x')∇⨯ r = + ∂(y-y') ∂y+ ∂(z-z') = 3∂z, ∂ ∂x ∂ ∂y ∂ ∂zx - x ' y - y ' z - z '= 0, ∂x∇⋅(a ⨯r )=a ⋅(∇⨯r ) = 0 ,) ⨯ r + r ∇ ⨯ r = ∇r 2r ⨯ r = ⨯ r = 0 r ∇ ⨯ rr = ∇( r1 1 3r a ,,∇ ( ⋅ ) = ∂[ a x (x -x' )]+ ∂[ a y (y - y')] j + [ a z ∂ (z -z')] = a r i k ∂x ∂y ∂z∇⋅ r =∇ ⋅ + ∇⋅ =- ⋅ + = r r r 1r 1 r r 3 r2 3 r ,∇ ⋅ (∇ ⨯ A ) = __0___、 r r∇ ⋅[E 0 sin(k ⋅r )] = k ⋅ E 0 cos(k ⋅ r )= __0__、 ∇ ⋅ (E 0 e ik ⋅r ) =, 当 r ≠ 0 时 , ∇ ⨯ = (r / r 3)ik ⋅ E 0 exp(ik ⋅r ) , ∇ ⨯ [rf (r )] = _0_、 ∇ ⋅ [ r f ( r)] 3f (r )+r df (r )drs3、 矢量场 f 的唯一性定理就是说:在以 为界面的区域V 内,若已知矢量场在V 内各点的旋度与散度,以及该矢量在边界上的切向或法向分量,则在 内唯一确定、 f V ∂ρ = 0 ,若 J为稳恒电流情况下的电流密度 ,则 J 满足4、 电荷守恒定律的微分形式为 ∇⋅ J + ∂t∇ ⋅ J = 0 、5、 场强与电势梯度的关系式为, E = -∇ϕ 、对电偶极子而言 ,如已知其在远处的电势为ϕ = P ⋅ r/(4πε 0r ⎛ 4πε 0 ⎝ ⎫ E = 1 3(P ⋅r )r- P3) ,则该点的场强为 ⎪ ⎪ 、 r 5 r 3⎭a (r > a ) 任意一点 D 的散度为 0,Q 6、 自由电荷 均匀分布于一个半径为 的球体内,则在球外内 (r < a )任意一点 D 的散度为 3Q / 4π a 3 、arbr 7、 已知空间电场为 E = + 3 (a ,b 为常数),则空间电荷分布为______、rr 2ar1 r 1 ∇ = - 3 ⇒ E = -b ∇ ⇒r r r 2 r 2 1 a ∇⋅r - 2r ⋅∇r + 4πb δ(r )]ρ = ε 0∇⋅E = ε 0(∇⋅ arr 2 -b ∇ r ) = ε 0[ r 2 r 33a 2r ⋅r + 4πb δ(r )]⇒ ρ = ε 0[ a 2 + 4πb δ(r )] = ε 0[ - r 2r 4 ra8、 电流 I 均匀分布于半径为 的无穷长直导线内,则在导线外 (r > a ) 任意一点 B 的旋度的大小为 0 , 导线内 (r < a )任意一点 B 的旋度的大小为 μ 0I / πa 2 、D ε9、 均匀电介质(介电常数为 )中 ,自由电荷体密度为 ρ f 与电位移矢量 的微分关系为∇ ⋅ D = ρ f , 束缚电荷体密度为 ρ P 与电极化矢量 的微分关系为 ∇ ⋅ P = - ρ P ,则P ρ = - ε - ε 0 ρ 、f ρ P 与 ρ f 间的关系为 P ε10、 无穷大的均匀电介质被均匀极化,极化矢量为 P ,若在σ = -(P - P )θ 21R= -(P cos θ - 0)介质中挖去半径为 R 的球形区域,设空心球的球心到球 P= - P ⋅R面某处的矢径为 R ,则该处的极化电荷面密度为R- P ⋅ R / R 、q ε 11、 电量为的点电荷处于介电常数为 的均匀介质中,则点电荷附近的极化电荷 为 (ε 0 / ε - 1)q 、H 12、 某均匀非铁磁介质中,稳恒自由电流密度为 J f ,磁化电流密度为 J M ,磁导率 ,磁场强度为 ,磁μ 化强度为M ,则∇⨯ H = Jf ,∇⨯ M =J M , JM 与J f 间的关系为J= (μ/ μ 0 - 1)J f、M13、 在 两 种 电 介 质 的 分 界 面 上 , D , E 所 满 足 的 边 值 关 系 的 形 式 为 n ⋅(D2- D1)=σf,- 1 -n ⨯(E2- E1)= 0、ε14、 介电常数为 的均匀各向同性介质中的电场为 E 、 如果在介质中沿电场方向挖一窄缝 ,则缝中电场强度大小为 E 、ε15、 介电常数为 的无限均匀的各项同性介质中的电场为 E ,在垂1 n2直于电场方向横挖一窄缝,则缝中电场强度大小为________、E⎧D 2n - D 1n = 0 ⇒ ⎧ ⎨ ⎩εE = ε 0E 缝 E 2τ = E 1 sin θ1 = 0 ⇒ E 缝 = εE / ε 0 , 、 E E⎨ E 2τ - E 1τ = 0 ⎩ 16、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球 心的立体角等于 2的一圆锥体介质,则锥体中的场强与介 质中的场强之比为_1:1_、Eσ1nE2ε1Rσ 2极化电荷D 2n = D 1n = 0 ⇒E 1 = E 1τ = E 2τ = E 2 ⇒ E 1 : E 2 = 1:1自由电荷17、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于 2 的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质 附近导体壳上的自由电荷密度之比为ε 0 / ε 、⎧ ⎨ ⎩ D 2n = D 1n = 0 E = E 1τ = E 2τ = E 2σ = σ 1D ε 0 D 2 ε 内球面上 ⇒ 1= ⇒ ε 0 2 ⇒ σ 1 :σ 2 = ε 0 :ε ε 118、 在 两 种 磁 介 质 的 分 界 面 上 , H , B 所 满 足 的 边 值 关 系 的 矢 量 形 式 为n ⨯ (H 2 - H 1)= α f ,n ⋅ B 2 - B = 0 、( ) 1I μ219、一截面半径为 b 无限长直圆柱导体,均匀地流过电流 I ,则储存在单位长度导 μ1体内的磁场能为__________________、rB ⋅ 2πr = μ 0I ππr 22⇒ B = bμ Ir2, 0 2πb22πrdr =⎰b 0 2μ0b W =⎰B μ I 2r 2 2 2πrdr =⎰ μ0I 2r 3dr4πb 4= μ0I 2b 4 16πb 4 = μ0I 216π12μ01 04π 2b 4 020、在同轴电缆中填满磁导率为 μ1,μ 2的两种磁介质,它们沿轴各占一半空间。
电动力学习题解答1
电动力学习题解答若干运算公式的证明ϕψψϕϕψψϕϕψψϕϕψ∇+∇=∇+∇=∇+∇=∇c c c c )()()(f f f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇+⋅∇=⋅∇ϕϕϕϕϕϕϕ)()()()()(c c c c f f f f f f f ⨯∇+⨯∇=⨯∇+⨯∇=⨯∇+⨯∇=⨯∇ϕϕϕϕϕϕϕ)()()()()(c c c c )()()(g f g f g f ⨯⋅∇+⨯⋅∇=⨯⋅∇c c )()(g f f g ⨯∇⋅-⨯∇⋅=c c)()(g f g f ⨯∇⋅-⋅⨯∇=)()()(g f g f g f ⨯⨯∇+⨯⨯∇=⨯⨯∇c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=c c c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=)()()(c c g f g f g f ⋅∇+⋅∇=⋅∇)()(c c g f f g ⋅∇+⋅∇=(利用公式b a c b a c c b a )()()(⋅+⨯⨯=⋅得)f g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cf g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )( , uu u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x zu u f yu u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf zu y u xuu f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)zu A yu A xu A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zu u A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu zu yu x u uA uA uA z y x z z y y x x d d )()d d d d d d (A e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA uA uA z u y u x u uu z y x zyxd /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e A zx y y z x x y z y u u A x u u A x u u A z u u A z u u A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z yu A xu A xu A zu A zu A yu A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
郭硕鸿电动力学习题解答完全版(1_6章)
郭硕鸿电动力学习题解答完全版(1_6章)1. 根据算符?的微分性与矢量性推导下列公式(Ar ? Br) = Br × (?× Ar) + (Br ??)Ar + Ar ×(?× Br) + (Ar ??)Br Ar × (?× Ar) = 1 ?Ar 2(Ar ??)Ar2 解1 ?(Av ? Bv) = Bv × (?× Av) + (Bv ??)Av+ Av × (?× Bv) + (Av ??)Bv首先算符?是一个微分算符其具有对其后所有表达式起微分的作用对于本题 ?将作用于 Av 和Bv又?是一个矢量算符具有矢量的所有性质因此利用公式cv × (av ×bv) = av ?(cv ?bv) ? (cv ?av)bv 可得上式其中右边前两项是 ?作用于 v v A 后两项是?作用于 Bv v2 根据第一个公式令 A B 可得证2. 设 u 是空间坐标 x y z 的函数证明f (u) = dfu duAr(u) = ?u ? dArdur ?× Ar(u) = ?u × .dA du证明 1f (u) = ?f (u) er x + ?f (u) er y + ?f (u) er z = df du ? e x + r ?u er y + df ?ur ?e z = df ?u ?u ?x ?y ?zdu ?y du ?z du 2Ar y (u) ?y dAr y (u) du ?Ar x (u) + ?x + ?Ar z z(u) = dAr x (u) ? ?u + ? ?u + dAr z (u) ? ?u rz = ?u ? du ?? Ar(u) = dAz du ?x ?y dz 3r r r e z ? e e ?Ar y )er x + (?Ar ? ?zAr ?Ar x )er z = ?y r rx y ?× Ar(u) = = (? x ? ? )e y + ( y ? ?xA A r z z ?x ?y A y (u) A z (u) ?z ?y ?z ?x r r r A x(u)= (dAr z ? dAr y ?u r dAr x ?u ? dA r r u ? dA u r dAr)e y + (dA u ? du ?z )e x + ( ?u r ? ? r x y z du ?x du ?y )e z = ?u × dudu ?y du ?z du ?x3. 设r = (x ? x ' ) 2+ (y ? y ' ) 2+ (z ? z' ) 2为源点 x'到场点 x 的距离 r 的方向规定为从源点指向场点r ? ' + er ? '+ er ? 1 证明下列结果并体会对源变数求微商 (?'= e ?z ' )与对场变数求zx ?x y ?y 微商(? = er x ? r ? r+ e z ?z)的关系x + e y ?y r r r r r r 1 r ' 1 r r r r rr = ??'r = ,? = ?? = ? ,?×r 3 = 0,?? r = ??' 3 = 0.(r ≠ 0)r r 3 3 r (最后一式在人 r 0点不成立见第二章第五节) 2 求rr,?×rr,(ar ??)rr,?(ar ?rr),??[Er 0 sin(kr ?rr)]及?×[Er 0 sin(krrr)],其中ar,kr 及Er 0均为常矢量证明 ??rr=(x ? x ?x ') + ?(y ? yy ') + ?(z ? z ') =3 ?zr r r e e e x y z ?×rr == 0 ?x x ? x ?y y ? y ?z z ? z' ' 'v(av ??)rr = [(a x ev x + a y ev y + a z ev z ) ? ( e x + ??y ev y + ??z ev z )][(x ? x')ev x + (y ? y')er y + (z ? z')ev z ]x = (a x ? + a y ? + a z )[(x ? x')ev x + (y ? y')er y +(z ? z')ev z ] ? ?x ?y ?z= a x ev x + a y ev y + a z ev z =av(av ?rv) = av × (?×rv) + (av ??)rv + rr × (?×av) + (rv ??)?av= (av ??)rv + rv ×(?×av)+ (rv ?ar)?av= av + rv × (?×av) + (rv ??)?av[Er 0 sin(kr ?rr)] = [?(sin(kr ?rr)]? Er 0 + sin(kr ?rr)(?? Er 0)= [??x sin(kr ?rr)er x + ??y sin(kr ?rr)er y + ??z sin(kr ?rr)er z ]E 0= cos(kr ?rr)(k x er x + k y er y + k z er z )Er 0 = cos(krrr)(krEr) ?×[Er 0 sin(kr ?rr)] = [?sin(kr ?rr)]×Er 0+sin(kr ?rr)?× Er 0 4. 应用高斯定理证明dV ?× fr = ∫S dSr × fr∫应用斯托克斯 Stokes 定理证明∫S dSr ×?φ =∫Ldlr φ证明 1)由高斯定理dV ?? gr = ∫SdSr ? gr∫ V ?g 即(? g ?x ?g ∫ V x + y + z z )dV = ∫ g x dS x + g y dS y + g z dS zy S而?× frdV = [( f z ? ??z f y )ir + ( f x ? ??x f z )rj + ( f y ? ??y f x )kr]dV ? ? ? ∫ V∫ ?y ?z ?x= ∫ [??x ( f y kr ? f z rj) + ??y ( f z ir ? f x kr)+ ??z ( f x rj ? f y ir)]dVr r [( f z dS y ? f y dS z )ir + ( f x dS z ? f z dS x )rj + ( fy dS x ? f x dS y )kr] ( fy kr ? f z rj)dS x + ( f z ir ? f x kr)dS y + ( f x rj ? f y ir)dS z∫ S dS × f= ∫ 又S = ∫ 若令H x = f y kr ? f z rj,H y = f z ir ? f x kr,HZ= f x rj ? f y ir则上式就是HrdV = ∫S dSr ? Hr ,高斯定理则证毕∫V 2)由斯托克斯公式有fr ?dlr = ∫S ?× fr ?dSr ∫fr ?dlr =l ( f x dl x + f y dl y + fzdl z) ∫ ∫l ∫S× fr ?dSr = ∫Sf zf y)dS x+ ( f xf z)dS y+ ( f yf x)dS zz ?z ?x ?x ?y ? ? ? (?y而∫dlr φ=∫l∫SdSr ×?φ= ∫S(dS z)ir + ( dS x)rj + ( ?y dS y )kr ?φ dS ? ?φ ?φ dS ? ?φ ?φ dSφ ?x yzx ?z ?y x ?z r ?φ rj)dS +(?φ r i ? ??φx kr)dS y +(??φx rj ? ?φ?y ir)dSzφ = ∫ ( k ?x ?y ?zz 若令f x = φi , f y = φ j , f z = φk 则证毕5. 已知一个电荷系统的偶极矩定义为Pr(t) = ρ(x ,t)x dV, r ' r ' '∫ V 利用电荷守恒定律?? Jr +ρr ?t = 0证明 P 的变化率为dPr =dt rr 'J(x ,t)dV '∫ V ?Pr = ?ρ r ' r 't x dV r ∫ V ' =? ∫ V ? ' j 'x dV r '' 证明 ?t rt ) x = ?Pr ' ?'rj 'x 'dV ' = ?∫[?' ?(x ' j ) ? (?'x ')?rj ']dV ' = r '( ∫ V ∫ V ( j x' ??' ?(x ' j )dV ' = ∫ j x dV ' ? ∫S xrj ?dSr 若S → ∞,则( )? xj dSr r ∫ = 0,(rj S= 0)r ?t ) y =r ?ρ ,(?ρ?t ) z = j dV ( ∫ j dV y' ∫' 同理即z dPr = r r '∫ j x ,t)dV '( dt V mr × Rr 的旋度等于标量? = mr ? Rr 的梯 6. 若m 是常矢量证明除 R 0 点以外矢量 Ar =rR3R3度的负值即× Ar =其中 R 为坐标原点到场点的距离方向由原点指向场点证明mv × Rv)1 r 1 r 1 v r1 r ?× Av = ?× (= ??×[mv × (? R1 )] = (??mv)? + (mv ??)?[??(? )]m ?[(? )??]mv R 31 = (mv ??)? ,(r ≠ 0)r= ?(mvRv 1 r 1 r 1 r 1 r ) = ??[mv ?(? )] = ?mv ×[?× (? )]? (? )× (?×mv) ? (mv ??)? R 3[(? )??]mv = ?(mv ??)? 1 r 1 r ∴?× Av =7 有一内外半径分别为 r 1和 r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷ρ f 求1 空间各点的电场2 极化体电荷和极化面电荷分布∫ 解 1∫S DrdSr =ρ f dV , (r 2>r>r 1)即D ? 4πr 2 = 43π (r 3 ? r 13)ρ f(r 3 ? r 13)ρ f 3εr 3∴Er= rr,(r 2 > r > r 1) r r Q = 4π (r 23 ? r 13)ρ f ,(r > r 2) 3ε 0f 由 E ?dS =∫ 0 ∴Er = (r 23 ? r 13) 3ε 0r 3 rρ f rr,(r > r 2) r < r 1时 E 0r 2) P ε 0χe Er = ε 0 r E = (ε ?ε 0)Er ε ?εε 0∴ρP = Pr = ?(ε ?ε 0)?? Er = ?(ε ?ε 0)??[ (r 3 ? r 13) 3εr 3 ρ f rr] =ε ?ε 0 ρ f ??(rr ? r r 3 r)1 3ε r 3 = ? ε ?ε 0 ρ f (3? 0) = ?(εε 0 )ρ f 3ε εσ P = P 1n ? P 2n考虑外球壳时 r r 2n 从介质 1指向介质 2 介质指向真空 P 2n = 0r 3 ? r 133εr 3) r 23 ? r 13 σ P = P 1n = (ε ?ε 0) ρ f rr r=r 2= (1? ε 0ε ρ f 3 3r 2 考虑到内球壳时 r r 2σ P = ?(ε ?ε 0) r 3 ? r 1 ρ f r r=r 1 = 0 3 r 3εr 38 内外半径分别为 r 1和 r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流 J f 导体的磁导率为μ 求磁感应强度和磁化电流解Hr ?dlr = I f + ddt∫S Dr ?dSr =I f∫ 当r < r 1时,I f = 0,故Hr = Br = 0l H ?dlr = 2πrH = j f ?dSr = j f π(r 2 ? r 12) r r∫ l∫ S当 r 2>r>r 1时μj f (r 2 ? r 12)2rBv = = μ( r 2 ? r 12r 2)rj f ×rr 2 当 r>r 2时2πrH = πj f (r 22 ?r 12)Br = μ0(r 22 2)rj f ×rrr 1 2r 2 J M = ?× Mr = ?× (χM Hr ) = ?× (μ ? μ0) r μ ?1)?× (rjf ×r2r r ? r 12 )μ0 )H = (μ02r 2 = (μμ ?1)?× Hr = ( μ ?1)rj f ,(r 1 < r < r 2) 0 μ0α r M = nr × (Mr 2 ? Mr 1),(n 从介质1指向介质2在内表面上 M1 = 0,M2 = (μμ ?1) r 2 ?r 12 ) r=r = 02r 21故αM = nr × Mr 2 = 0,(r= r 1) r 在上表面 r r 2时r M = nr × (?Mr 1) = ?nr × Mr 1 r=r 2= ? × r r 2 ? r 12 r j f ×rr r=r 2 = ? r 2 ? r 12 r j ( μ ?1) μr α f r 2 r 2 r 2 2r 0 r 22 ? r 12 r 2= ?(μμ1) jf。
(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学习题集答案-1
电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,=⨯∇r0'''=---∂∂∂∂∂∂z z y y x x e e e zyxxxx, 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为RR P P P P n n P ⋅-=--=--=)0cos ()(12θ,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。
郭硕鸿《电动力学》习题解答完全版(章)
= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2
3ε
r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f
3ε
ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr
∫
∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV
电动力学习题答案第一章电磁现象的普遍规律
第一章 电磁现象的普遍规律1. 根据算符∆的微分性与矢量性,推导下列公式:()()()()()A B B A B A A B A B ∇⋅=⨯∇⨯+⋅∇+⨯∇⨯+⋅∇21()()2A A A A A⨯∇⨯=∇-⋅∇解:矢量性为()()()a b c b c a c a b ⋅⨯=⋅⨯=⋅⨯ ①()()()c a b b c a c a b⨯⨯=⋅-⋅②()()()a b c c a b c b a⨯⨯=⋅-⋅⋅③微商性()d d a dba b b a dtdt dt ⋅=⋅+⋅④()d d a db a b b a dt dt dt⨯=⨯+⨯⑤ 由②得()()()c c c B A B A B A⨯∇⨯=∇⋅-⋅∇⑥()()()c c c A B A B A B⨯∇⨯=∇⋅-⋅∇⑦ ⑥+⑦得()()()()()()c c c c c c B A A B B A A B B A A B ⎡⎤⎡⎤⨯∇⨯+⨯∇⨯=∇⋅+∇⋅-⋅∇+⋅∇⎣⎦⎣⎦()()()c c A B A B A B ∇⋅=∇⋅+∇⋅因为∴上式得()()()()()c c c c A B B A A B B A A B ∇⋅=⨯∇⨯+⨯∇⨯+⋅∇+⋅∇令B A =得22()2()A A A A A ∇=⨯∇⨯+⋅∇ 21()()2A A A A A ∴⨯∇⨯=∇-⋅∇2.设μ是空间坐标x ,y ,z 的函数,证明:()()()df f u u dxud AA u u du d AA u u du ∇=∇∇⋅=∇⋅∇⨯=∇⨯解:①()()()()()()()()()()x y z x y zx y z f u f u e f u e f u e x y z f u u f u u f u u e e e u x u y u z f u u u u e e e x x y z df u u du ∂∂∂∇=++∂∂∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂∂∂∂=++∂∂∂∂=∇②()x y z y x z A u A A A x y zdA dA dA u u u du x du y du z d A u du∂∂∂∇⋅=++∂∂∂∂∂∂=++∂∂∂=∇⋅③()()()()()()()x y z xyz yy x x z z x y zy y x x z z x y ze e e A u x y z A A A A A A A A A e e e y z z x x ydA dA dA dA dA dA u uu u u u e e e du y du z du z du x du x du y d A u du⎛⎫ ⎪∂∂∂⎪∇⨯= ⎪∂∂∂ ⎪ ⎪⎝⎭∂∂∂∂∂∂=-+-+-∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-∂∂∂∂∂∂=∇⨯3.设2r ='x 到场点x 的距离,r 的方向规定为从原点指向场点。
电动力学习题答案
电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。
以下是一些典型的电动力学习题及其答案。
# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。
求它们之间的静电力大小。
解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。
代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。
求距离平面\( d \) 处的电场强度。
解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。
# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。
求点电荷 \( q \) 在该电场中的电势能。
解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。
【全】刘觉平电动力学课后习题答案
第一章三維歐氏空間中的張量目录:习题1.1 正交坐标系的转动 (2)习题1.2 物理量在空间转动变换下的分类 (9)习题1.3 物理量在空间反演变换下的进一步分类 (10)习题1.4 张量代数 (15)习题1.5 张量分析 (21)习题1.6 Helmholtz定理 (35)习题1.7 正交曲线坐标系 (38)习题1.8 正交曲线坐标系中的微分运算 (42)习题1.11、 设三个矢量,,a b c r r r 形成右(左)旋系,证明,当循环置换矢量,,a b c r r r的次序,即当考察矢量,,(,,)b c a c a b r rr r r r 时,右(左)旋系仍保持为右(左)旋系。
证明:()V a b c =⨯⋅r r r,对于右旋系有V>0.当循环置换矢量,,a b c r r r次序时, ()V b c a '=⨯⋅r r r =()0c a b V ⨯⋅=〉rr r 。
(*)所以,右旋系仍然保持为右旋系 同理可知左旋系情况也成立。
附:(*)证明。
由于张量方程成立与否与坐标无关,故可以选取直角坐标系,则结论是明显的。
2、 写出矢量诸分量在下列情况下的变换矩阵:当Cartesian 坐标系绕z 轴转动角度α时。
解:变换矩阵元表达式为 ij i j a e e '=⋅r r1112212213233233cos ,sin ,sin ,cos ,0,1a a a a a a a a αααα===-===== 故()cos sin 0sin cos 0001R ααααα⎛⎫⎪=- ⎪ ⎪⎝⎭3、 设坐标系绕z 轴转α角,再绕新的y 轴(即原来的y 轴在第一次转动后所处的位置)转β角,最后绕新的z 轴(即原来的z 轴经第一、二次转动后所处的位置)转γ角;这三个角称为Euler 角。
试用三个转动矩阵相乘的办法求矢量诸分量的在坐标轴转动时的变换矩阵。
解:我们将每次变换的坐标分别写成列向量,,,X X X X '''''', 则 ()()(),,z y z X R X X R X X R X αβγ'''''''''''''===∴()()()z y z X R R R X γβα''''''=绕y '-轴转β角相当于“先将坐标系的y '-轴转回至原来位置,再绕原来的y-轴(固定轴)转β角,最后将y-轴转至y '-轴的位置”。
《电动力学》课后答案
电动力学答案第一章电磁现象的普遍规律1.根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇A A A A )()(221∇⋅−∇=×∇×A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=c c c c BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+×∇×=⋅∇,所以A A A A A A )()()(21∇⋅−⋅∇=×∇×即A A A A )()(221∇⋅−∇=×∇×A2.设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )(,u u u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ×∇=×∇证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=×∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zx y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)(u A ×∇=3.设222)'()'()'(z z y y x x r −+−+−=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学课后习题解答(参考)
∂ ∂y
∂ ∂z
=
(
∂Az ∂y
−
∂Ay ∂z
)ex
+
(
∂Ax ∂z
−
∂Az ∂x
)ey
+
(
∂Ay ∂x
−
∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y
−
∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z
−
∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x
−
(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r
电动力学答案chapter2
-5-
电动力学习题解答参考
第二章 静电场
4
均匀介质球 容率为 ε 2
电容率为 ε 1
的中心置一自由电偶极子 Pf
r
球外充满了另一种介质
电
求空间各点的电势和极化电荷分布
提示
同上题
φ=
r r Pf ⋅ R 4πε 1 R 3
+ φ ' ,而 φ ' 满足拉普拉斯方程
解
ε1
∂φ内 ∂R
= ε2
∂φ 外 ∂R 2 Pf cosθ l 1 + ∑ lAl R0 Pl 3 4πε 1 R0 2 Pf cosθ B − ∑ (l 1 l l 2 Pl 3 4πε 1 R0 R0
Qf
4πεR
与球面上的极化电荷所产生的电势的
叠加 后者满足拉普拉斯方程 解 一. 高斯法 在球外 而言
R > R0 ,由高斯定理有
r r ε 0 ∫ E ⋅ ds = Q总 Q f + Q P = Q f
对于整个导体球
束缚电荷 Q P = 0)
r ∴E =
Qf 4πε 0R 2 Qf 4πε 0 R + C.(C是积分常数
导体球是静电平衡
是一个常数
ϕ外
R = R0
= ϕ 0 − E 0 R0 cosθ
b 0 b1 + cosθ = C R0 R02
∴ − E 0 R0 cosθ +
b1 3 cosθ = 0即 b1 = E 0 R0 2 R0
-3-
电动力学习题解答参考
第二章 静电场
ϕ外 ϕ0
又由边界条件 −
3 b0 E 0 R0 E 0 Rcosθ + + cosθ R R2
电动力学习题解答
第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。
( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。
解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。
当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。
电动力学考试题和答案
电动力学考试题和答案一、选择题(每题2分,共20分)1. 电场强度的定义式为:A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电场线的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 从无穷远处指向电荷D. 从电荷指向无穷远处3. 电势差的定义式为:A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A4. 电容器的电容定义式为:A. C = Q/UB. C = U/QC. C = QVD. C = UV答案:A5. 电流强度的定义式为:B. I = qtC. I = qVD. I = Vq答案:A6. 欧姆定律的公式为:A. V = IRB. V = R/IC. V = I/RD. V = R*I答案:A7. 磁场强度的定义式为:A. B = F/IB. B = FID. B = Vq答案:A8. 洛伦兹力的公式为:A. F = qvBB. F = BqvC. F = qBvD. F = Bvq答案:C9. 磁通量的定义式为:A. Φ = B*AB. Φ = A*BC. Φ = B/AD. Φ = A/B答案:A10. 法拉第电磁感应定律的公式为:A. E = -dΦ/dtB. E = dΦ/dtC. E = Φ/tD. E = tΦ答案:A二、填空题(每题2分,共20分)1. 电场强度的单位是______。
答案:伏特/米(V/m)2. 电势的单位是______。
答案:伏特(V)答案:法拉(F)4. 电流强度的单位是______。
答案:安培(A)5. 电阻的单位是______。
答案:欧姆(Ω)6. 磁场强度的单位是______。
答案:特斯拉(T)7. 磁通量的单位是______。
答案:韦伯(Wb)8. 电感的单位是______。
答案:亨利(H)答案:假想10. 磁场线是______的线。
答案:闭合三、计算题(每题10分,共60分)1. 一个点电荷Q = 2 × 10^-6 C,距离该点电荷r = 0.1 m处的电场强度是多少?答案:E = kQ/r^2 = (9 × 10^9 N·m^2/C^2) × (2 × 10^-6 C) / (0.1 m)^2 =1.8 × 10^4 N/C2. 一个电容器C = 4 μF,两端电压U = 12 V,求该电容器的电荷量Q。
电动力学作业及参考解答
习题与参考答案第1章 电动力学的数学基础与基本理论1.1 A 类练习题1.1.1 利用∇算符的双重性质,证明(1)()A A A ϕϕϕ∇×=∇×+∇×r r r(2)2()()A A A ∇×∇×=∇∇⋅−∇r r r1.1.2 证明以下几个常用等式,其中()x r x x e ′=−r r ()()y z y y e z z e ′′+−+−r r ,a r为常矢量,(,,)u u x y z =。
(1)3r r ′∇⋅=−∇⋅=r r ,(2)0r ∇×=r,(3)r r r r ′∇=−∇=r ,(4)31r r r ∇=−r ,(5)30r r∇×=r, (6)330r r r r ⋅⋅′∇=−∇=r r (0)r ≠,(7)()a r a ∇⋅=r r r,(8)()dA A u u du∇×=∇×r r 。
1.1.3 从真空麦克斯韦方程出发,导出电荷守恒定律的微分形式和真空中的波动方程。
1.1.4证明均匀介质中的极化电荷密度与自由电荷密度满足关系式0(1/)p f ρεερ=−−。
1.1.5 已知电偶极子电势304p R R ϕπε⋅=r r ,试证明电场强度53013()[4p R R p E R Rπε⋅=−r r r r r 。
1.1.6 假设存在孤立磁荷(即磁单极),试改写真空中的麦克斯韦方程组以包括磁荷密度m ρ和磁流密度m J r的贡献。
答案:D ρ∇⋅=ur , m B ρ∇⋅=u r , m B E J t ∂∇×=−−∂u r u r u r , D H J t∂∇×=+∂ur uu r ur 。
1.1.7 从麦克斯韦方程出发导出洛伦茨规范下的达朗贝尔方程,并证明洛伦茨规范中的ψ满足齐次波动方程,即222210c tψψ∂∇−=∂。
1.1.8 证明:(1)在静电情况下,导体外侧的电场总是与表面垂直;(2)在稳恒电流的情况下,导体内侧的电场总是平行于导体表面。
郭硕红电动力学习题答案__完整版
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3. 设 r =
( x − x ' ) 2 + ( y − y ' ) 2 + ( z − z ' ) 2 为源点 x ' 到场点 x 的距离 r 的方向规定为从 r ∂ r ∂ r ∂ + e y ' + e z ' ) 与对场变数求 ∂x ' ∂y ∂z
源点指向场点 1 证明下列结果 并体会对源变数求微商 (∇ = e x
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
l S
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
《电动力学》课后题答案 第三版 郭硕鸿
微商 (∇ = e x
r ∂ r ∂ r ∂ + ey + e z ) 的关系 ∂x ∂y ∂z r r r r r r 1 r r r ' ' 1 ' r ∇r = −∇ r = , ∇ = −∇ = − 3 , ∇ × 3 = 0, ∇ ⋅ 3 = −∇ 3 = 0.(r ≠ 0) r r r r r r r
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
Hale Waihona Puke D ⋅ 4πr 2 =4π 3 (r − r13 ) ρ f 3
S
若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t
∫
r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t
即
r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
r r r r r r r r ∂Ax (u ) ∂A y (u ) ∂Az z (u ) dAx (u ) ∂u dA y (u ) ∂u dAz (u ) ∂u dA ∇ ⋅ A(u ) = + + = ⋅ + ⋅ + ⋅ = ∇u ⋅ ∂x ∂y ∂z du ∂x du ∂y dz ∂z du
电动力学答案完整
1.7.有一内外半径分别为r i和r2的空心介质球,介质的电容率为£,使介质内均匀带静止由电荷1空间各点的电场;2极化体电荷和极化面电荷分布。
解(i)口D ds「Jf dV ,(「2>r> r i)即:D 4 二r 3 3 3 r -rir3i3①r , 3;r3(r2>r> r i)Q f 由QE-d^ f 4■:(r> r2)―;:卫3亠--E r ,3;°r3(r> r2) r> r i 时,(2) P 二;0 e E 二;0 —E=■:- ;0 E3 3r -r i3;r33;r—尹‘(r2>r>r i)y —f二p =Pn _P2n考虑外球壳时, r= r 2 , n从介质1指向介质 2 (介质指向真空),P2n=0;「p =Rn 二;一;03 3r -r i3 ;r33 ?f考虑内球壳时, r= r i-rj"f r3 r3=0又根据 Dm -D 2n , ( n 从介质 1指向介质 2)在上极板的交面上,D 1 -f 1D 2是金属板,故D 2 =01店11 ;2 12; 1而;-f = 0'2-D ;-D ^-D 2, ( D 1 ■是下极板金属,故D 1 =0 )j 1n = j 2n = j 1 = j 2,(稳定流动)1.11.平行板电容器内有两层介质,它们的厚度分别为 电容率为 q 和£,今在两板接上电动势为 E 的电池,求11 和 12 ,(1)电容器两板上的自由电荷密度 (2)介质分界面上的自由电荷密度 wf 若介质是漏电的,电导率分别为 (71和c 2当电流达到恒定时,上述两问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向 …h E 1 -12 E 2则 J D1^ —■D2n二 E=;任1 - ;2 E 2 = 0(介质表面上二 f=0)故:E 12E1Eh 匚2 I 2 -1即:-CFf 1若是漏电,并有稳定电流时,由11 ;2 12 ;1CT11.14、内外半径分别a 和b 的无限长圆柱形电容器,单位长度电荷为-f ,板间填 充电导率为匚的非磁性物质。
1.电动力学课后习题答案_第一章
电动力学课后习题答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(21∇⋅-∇=⨯∇⨯A 解:(1)由∇的微分性质得()∇⋅A B 可以变成两项,一次对A 作用()∇⋅A A B ,一次对B 作用()∇⋅B A B 。
由∇的矢量性质,()=()()⨯∇⨯∇⋅-⋅∇B A B A B A B ,可得()=()+()∇⋅⨯∇⨯⋅∇B A B A B A B 。
同理()=()+()∇⋅⨯∇⨯⋅∇A A B B A B A ,则:()=()+()=()()()()∇⋅∇⋅∇⋅⨯∇⨯+⋅∇+⨯∇⨯+⋅∇A BA B A B A B B A B A A B A B综上,原式得证。
(2)在(1)的结论式里令=A B ,得A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,即: 21()()2A ⨯∇⨯=∇-⋅∇A A AA2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, u u u d d )(AA ⨯∇=⨯∇ 解:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)()///()()()xy z x y z u xy z A u A u A u ∇⨯=∂∂∂∂∂∂e e e Az x y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂= z x y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=d d u u=∇⨯A3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学第一章习题及其答案
1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普
适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y
y ')j
(z z ')k 为从源点指向场点的矢
量
,
E 0 , k 为常矢量,则
(r 2
a ) =(r 2
a ) (r
a 2r a , )a ) ddrr 2 r a 2r r r
2 r
i
j k (x x ') (y
y ') (z z ') i j y-y' k rr
x
y z 2 2 2 x-x' r z-z' r
r
2(x x ') (x
x ') ,同理,
x (x x ') 2 (y y ') 2
(z z ') 2
r 2 (x x ')2(y y ')2(z z ') 2
(y y ') (x x ') (y
y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') 2 , z
2
2
(z z ') r
r e e e x x x
r (x-x')
r
(y-y') y
(z-z')
3
z
, x y z
x
x ' y y ' z
z '
0, x (a
r )
a (r ) 0 ,
) r r r r 2r r r 0 r rr
( r 1 1 3
r a
,
,
( ) [a x
(x -x' )]
[ a y (y - y')] j [a z (z -z')]
a r i k x y z r
r r r 1
r
1 r r 3 r 2
3
r , ( A )
__0___.
r r
[E 0
sin(k r )] k E
cos(k r )
__0__.
(E 0e ik
r
)
, 当 r
0 时 , (r / r 3) ik E 0 exp(ik
r ) ,
[rf (r )] _0_. [ r f
( r )]
3f (r )
r df (r ) dr
s
3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散
度,以及该矢量在边界上的切向或法向分量,则
在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满
足
4. 电荷守恒定律的微分形式为
J
t
J
0 .
5. 场强与电势梯度的关系式为, E
.对电偶极子而言 ,如已知其在远处的电势为
P r /(4
r 4
E 1 3P r r P
3 ) ,则该点的场强为
.
r 5
r 3 a
(r
a ) 任意一点 D 的散度为 0,
Q 6. 自由电荷 均匀分布于一个半径为 的球体内,则在球外
内 (r
a )任意一点 D 的散度为 3Q
/ 4a 3 .
ar
br 7. 已知空间电场为 E 3 (a ,b 为常数),则空间电荷分布为______.
r
r 2 ar 1 r 1 3 E b
r r r 2
r 2 1 a r 2r r 4b (r )] 0E 0(arr 2 b r ) 0[ r 2
r 3
3a 2r r 4b (r )]0[ a 2 4b (r )] 0[
r 2 r 4 r
a
8. 电流 I 均匀分布于半径为 的无穷长直导线内,则在导线外 (r
a ) 任意一点 B 的旋度的大
小为 0 , 导线内 (r
a )任意一点 B 的旋度的大小为
I / a 2 .
D 9. 均匀电介质(介电常数为 )中 ,自由电荷体密度为 f
与电位移矢量 的微分关系为
D f , 束缚电荷体密度为 P 与电极化矢量 的微分关系为
P
P
,则
P
.
f P 与
f 间的关系为 P
10. 无穷大的均匀电介质被均匀极化,极化矢量为 P ,若在
P
(P 2n P 1n )
2
1 R
(P cos 0)
介质中挖去半径为 R 的球形区域,设空心球的球心到球
P
P R
面某处的矢径为 R ,则该处的极化电荷面密度为
R
P R / R .
q 11. 电量为
的点电荷处于介电常数为 的均匀介质中,则点电荷附近的极化电荷 为 (
/ 1)q .
H 12. 某均匀非铁磁介质中,稳恒自由电流密度为 J f ,磁化电流密度为 J M ,磁导率 ,磁场强度为 ,磁
化强度为M ,则
H
J
f
,
M
J M , J M 与J f 间的关系为 J /
1J f .
M
13. 在 两 种 电 介 质 的 分 界 面 上 , D , E 所 满 足 的 边 值 关 系 的 形 式 为 n
D
2
D
1f
,
- 1 -
长 沙 理 工 大 学 备 课 纸
n
E
2
E
1
0.
14. 介电常数为 的均匀各向同性介质中的电场为 E . 如果在介质中沿电场方向挖一窄缝 ,则缝中
电场强度大小为 E .
15. 介电常数为 的无限均匀的各项同性介质中的电场为 E ,在垂
1 n
2
直于电场方向横挖一窄缝,则缝中电场强度大小为________.
E 缝
D 2n D 1n 0
E 0E 缝
E 2
E 1 sin 1 0
E 缝 E /
, .
E E
E 2E 1 0
16. 在半径为 R 的球内充满介电常数为 的均匀介质,球心
处放一点电荷,球面为接地导体球壳,如果挖去顶点在球 心的立体角等于 2的一圆锥体介质,则锥体中的场强与介 质中的场强之比为_1:1_.
E 2 1
n
E 1
2
1
R
2
极化电荷
D 2n D 1n 0
E 1 E 1
E 2E 2
E 1 : E 2 1:1
自由电荷
17. 在半径为 R 的球内充满介电常数为 的均匀介质,球心处放一点电荷,球面为接地导体球壳,
如果挖去顶点在球心的立体角等于 2 的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质 附近导体壳上的自由电荷密度之比为
/
.
D 2n D 1n 0
E E 1E 2E 2 1
D 0 D 2
内球面上
1 0 2
1
:
2 0
:
1
18. 在 两 种 磁 介 质 的 分 界 面 上 , H , B 所 满 足 的 边 值 关 系 的 矢 量 形 式 为
n
H 2 H 1
f ,
n B 2 B 0 .
1
I
2
19.一截面半径为 b 无限长直圆柱导体,均匀地流过电流 I ,则储存在单位长度导
1
体内的磁场能为__________________.
r
B 2r 0
I
r 22
B b
Ir 2 , 0 2b 22rdr b 0 2
b
W
B I 2r 2
2
2rdr
0I 2r 3dr
4b 4 0I 2b 4 16b 4
0I 2
16
1
20
1
0 42b 4
20.在同轴电缆中填满磁导率为 1,
2
的两种磁介质,它们沿轴各占一半空间。
设电流为 I (如图),
- 2 -。