专题: 板块模型
专题21板块模型动力学分析(解析版)—2023届高三物理一轮复习重难点突破
专题21板块模型动力学分析考点一板块模型的摩擦力分析1.板块模型中对物体所受的摩擦力进行正确的分析与判断是求解的前提。
2.摩擦力的方向沿两物体的接触面,与相对运动或相对运动趋势的方向相反。
1.(多选)如图所示,为长木板,在水平面上以速度v1匀速向右运动,同时物块B在A的上表面以速度匀速v2向右运动,v1和v2以地面为参考系,且A、B接触面粗糙,下列判断正确的是()A.若1=2,A、B之间无摩擦力B.若1>2,A受到B所施加的滑动摩擦力向左C.若1<2,B受到A所施加的滑动摩擦力向右D.若1>2,A、B之间无滑动摩擦力【答案】AB【解析】A.若1=2,A、B之间无摩擦力,A正确;B.若1>2,A受到B所施加的滑动摩擦力向左,B正确;C.若1<2,B受到A所施加的滑动摩擦力向左,C错误;D.若1>2,A、B之间有滑动摩擦力,D错误。
2.(多选)如图所示,物体A、B叠放在水平地面上,水平力F作用在B上,使二者一起向右做匀速直线运动,下列说法正确的是()A.A、B之间无摩擦力B.A受到B施加的摩擦力水平向右C.A、B之间为滑动摩擦力D.地面受到B施加的摩擦力为滑动摩擦力,方向水平向右【答案】AD【解析】ABC.对A受力分析可知,水平方向受合力为零,即B对A无摩擦力,即A、B之间无摩擦力,选项A正确,BC错误;D.对AB整体受力分析可知,地面对B的滑动摩擦力与力F等大反向,即地面对B的滑动摩擦力向左,根据牛顿第三定律可知,地面受到B施加的摩擦力为滑动摩擦力,方向水平向右,选项D正确。
3.(2022·重庆·西南大学附中高二期末)已知A与B的质量分别为A=1kg,B=2kg,A与B间的动摩擦因数1=0.3,B与水平面间的动摩擦因数2=0.2,如图甲、乙所示。
现用大小为12N的水平力F,分别作用在A、B 上,已知最大静摩擦力等于滑动摩擦力,重力加速度=10m/s 2,则各物体所受摩擦力的情况是()A.甲图中,A 不受摩擦力,B 受到地面水平向左的大小为6N 的摩擦力B.甲图中,A 受摩擦力水平向右,大小为3N ;B 受地面的摩擦力水平向左,大小为6N C.乙图中,A 受摩擦力水平向左,大小为8N ;B 受地面的摩擦力水平向左,大小为6N D.乙图中,A 受摩擦力水平向左,大小为3N ;B 受地面的摩擦力水平向左,大小为3N 【答案】D 【解析】根据题意可知,A、B 间的最大静摩擦力为m1=1A =3N 地面与B 间的最大静摩擦力为m2=2A +B =6N AB.甲图中,由于>m2则B 由静止开始运动,假设A、B 保持静止,由牛顿第二定律有−m2=A +B 1解得1=2m s对A,设A、B 间静摩擦力为1,由牛顿第二定律有1=A 1=2N <m1则假设成立,即A、B 一起向右加速运动,则A 受B 水平向右的静摩擦力,大小为2N ,B 受地面水平向左的滑动摩擦力,大小为6N ,故AB 错误;CD.乙图中,根据题意,由于A、B 间最大静摩擦力小于B 与地面间的最大静摩擦力,则A、B 间发生相对运动,对A 分析,可知A 受B 水平向左的滑动摩擦力,大小为3N ,由牛顿第三定律可知,B 受A 向右的滑动摩擦力,大小为3N 小于B 与地面间的最大静摩擦力,则B 仍然静止不动,则B 受地面水平向左的静摩擦力,大小为3N ,故C 错误,D 正确。
第一篇 专题二 微专题2 板块模型的综合分析
微专题2板块模型的综合分析命题规律 1.命题角度:(1)牛顿运动定律在板块模型中的应用;(2)动量定理及动量守恒定律在板块模型中的应用;(3)能量观点在板块模型中的应用.2.常用方法:假设法、整体法与隔离法.3.常考题型:选择题、计算题.1.用动力学解决板块模型问题的思路2.滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.3.应注意区分滑块、木板各自相对地面的位移和它们的相对位移.用运动学公式或动能定理列式时位移指相对地面的位移;求系统摩擦生热时用相对位移(或相对路程).例1(2022·广东省模拟)如图甲所示,一右端固定有竖直挡板的质量M=2 kg的木板静置于光滑的水平面上,另一质量m=1 kg的物块以v0=6 m/s的水平初速度从木板的最左端P点冲上木板,最终物块在木板上Q点(图甲中未画出)与木板保持相对静止,物块和木板的运动速度随时间变化的关系图像如图乙所示.物块可视为质点.求:(1)图乙中v1、v2和v3的大小;(2)整个过程物块与木板之间因摩擦产生的热量.答案(1)4 m/s 3 m/s 2 m/s(2)12 J解析(1)根据题意可知,题图乙中图线a表示碰撞前物块的减速运动过程,图线b表示碰撞前木板的加速过程,图线c表示碰撞后木板的减速过程,图线d表示碰撞后物块的加速过程.物块与挡板碰撞前瞬间,物块的速度大小为v 1,此时木板速度大小v 木=1 m/s 从物块滑上木板到物块与挡板碰撞前瞬间的过程,根据系统动量守恒有 m v 0=m v 1+M v 木 解得v 1=4 m/s物块与挡板碰撞后瞬间,物块的速度为0,木板速度大小为v 2,从物块滑上木板到物块与挡板碰撞后瞬间的过程,根据系统动量守恒有 m v 0=M v 2 解得v 2=3 m/s2 s 末物块与木板共同运动的速度大小为v 3,从物块滑上木板到最终共同匀速运动的过程,根据系统动量守恒有 m v 0=(m +M )v3 解得v 3=2 m/s(2)物块与挡板碰撞前瞬间,系统的动能 E k1=12m v 12+12M v 木2=9 J物块与挡板碰撞后瞬间,系统的动能 E k2=12M v 22=9 J故碰撞过程系统没有机械能损失,物块滑上木板时系统的动能 E k0=12m v 02=18 J最终相对静止时系统的动能 E k3=12(m +M )v 32=6 J所以系统产生的热量 Q =E k0-E k3=12 J.例2 (2022·甘肃金昌市月考)如图所示,一质量M =3 kg 的小车由水平部分AB 和14光滑圆轨道BC 组成,圆弧BC 的半径R =0.4 m 且与水平部分相切于B 点,小物块Q 与AB 段之间的动摩擦因数μ=0.2,小车静止时左端与固定的光滑曲面轨道MN 相切,一质量为m 1=0.5 kg的小物块P 从距离轨道MN 底端高为h =1.8 m 处由静止滑下,并与静止在小车左端的质量为m 2=1 kg 的小物块Q (两物块均可视为质点)发生弹性碰撞,碰撞时间极短.已知除了小车AB 段粗糙外,其余所有接触面均光滑,重力加速度g =10 m/s 2.(1)求碰撞后瞬间物块Q 的速度;(2)求物块Q 在小车上运动1 s 时相对于小车运动的距离(此时Q 未到B 点且速度大于小车的速度);(3)要使物块Q 既可以到达B 点又不会从小车上掉下来,求小车左侧水平长度AB 的取值范围. 答案 (1)4 m/s ,方向水平向右 (2)83m (3)1.5 m ≤L ≤3 m解析 (1)物块P 沿MN 滑下,设末速度为v 0,由机械能守恒定律得m 1gh =12m 1v 02解得v 0=6 m/s物块P 、Q 碰撞,取向右为正方向,设碰后瞬间P 、Q 速度分别为v 1、v 2,由动量守恒定律得m 1v 0=m 1v 1+m 2v 2 由机械能守恒定律得 12m 1v 02=12m 1v 12+12m 2v 22 解得v 1=-2 m/s , v 2=4 m/s故碰撞后瞬间物块Q 的速度为4 m/s ,方向水平向右(2)物块Q 与小车相对运动,可由牛顿第二定律求得两者的加速度 a 2=-μm 2g m 2=-2 m/s 2,a 3=μm 2g M =23m/s 2物块Q 的位移x 2=v 2t +12a 2t 2=3 m小车的位移x 3=12a 3t 2=13 m解得s =x 2-x 3=83m(3)物块Q 刚好到达B 点时就与木板共速时AB 段最长,根据动量守恒定律有 m 2v 2=(m 2+M )v 3 可得共同速度为v 3=1 m/s由能量守恒定律得12m 2v 22=12(m 2+M )v 32+μm 2gL 1解得L 1=3 m物块Q 刚好回到A 点时与木板共速时,AB 段最短根据动量守恒定律可得共同速度仍为v 3= 1 m/s由能量守恒定律得12m 2v 22=12(m 2+M )v 32+2μm 2gL 2解得L 2=1.5 m当AB 段最短时需要验证物块Q 在圆弧上共速时上升高度是否超过R ,由能量守恒定律得 12m 2v 22=12(m 2+M )v 32+μm 2gL 2+m 2gH 解得H =0.3 m<R =0.4 m所以不会从圆弧轨道上滑出,则AB 段的长度范围为1.5 m ≤L ≤3 m.(2022·广东湛江市模拟)在光滑水平面上有一质量为2m 、足够长的小车,小车左端锁定着一块质量为m 的木板,两者一起以v 03的速度匀速向右运动.现有一颗质量也为m 的子弹以v 0的水平初速度从同一方向射入木板.若子弹在木板运动过程中所受到的阻力为恒力且等于其自身重力,重力加速度取g .(1)子弹恰好不从木板中穿出,则木板的长度L 为多少?(2)取木板的长度为5v 0236g ,解除对木板的锁定,如果子弹在木板内运动过程中,木板相对小车发生滑动,要使子弹不能从木板中射出,则木板与小车间的动摩擦因数μ应满足什么条件? 答案 (1)v 026g(2)μ≤0.2解析 (1)木板锁定在车上,子弹在穿入木板的过程,子弹、木板和小车组成的系统动量守恒, 有m v 0+(m +2m )v 03=(m +m +2m )v根据能量守恒F f L =12m v 02+12(m +2m )(v 03)2-12(m +m +2m )v 2又F f =mg 联立解得L =v 026g(2)木板和小车间有相对运动,则对木板和子弹受力分析,由牛顿第二定律得 a 木=F f -2μmg m =(1-2μ)ga 子=F f m =mg m=g故木板向右做匀加速直线运动,子弹向右做匀减速直线运动.子弹恰好不穿出木板,则子弹最终与木板共速且两者相对位移等于木板长度,设子弹与木板共速时的速度为v , 有v -v 03a 木=v 0-v a 子联立解得v =23-μ1-μv 0子弹位移x 子=v 02-v 22g木板位移x 木=v 2-(v 03)22(1-2μ)g ,x 子-x 木=5v 0236g联立以上各式解得μ=0.5或μ=0.2 当μ=0.5时,2μmg =F f木板与小车不会发生相对滑动,舍去.因动摩擦因数越小越难穿出木块,故满足子弹不穿出木板条件为μ≤0.2.专题强化练1.(多选)(2022·河北武安市第一中学高三检测)如图甲所示,小车B 紧靠平台边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上(未冲出),物体和小车的v -t 图像如图乙所示,取重力加速度g =10 m/s 2,则以下说法正确的是( )A .物体A 与小车B 间的动摩擦因数为0.3 B .物体A 与小车B 的质量之比为1∶2C .小车B 的最小长度为2 mD .如果仅增大物体A 的质量,物体A 有可能冲出去 答案 AC解析 物体A 滑上小车B 后做匀减速直线运动,对物体A 分析有μm A g =m A a A ,由v -t 图像可得a A =Δv 1Δt =⎪⎪⎪⎪⎪⎪1-41 m/s 2=3 m/s 2,联立解得μ=0.3,所以A 正确;对小车B 分析有μm A g=m B a B ,由v -t 图像可得a B =Δv 2Δt =⎪⎪⎪⎪⎪⎪1-01 m/s 2=1 m/s 2,联立解得m A m B =13,所以B 错误;小车B 的最小长度为物体A 在小车B 上的最大相对滑动位移,则有L min =x A -x B =4+12×1 m-0+12×1 m =2 m ,所以C 正确;如果仅增大物体A 的质量,物体A 的加速度保持不变,但是小车B 的加速度增大,所以两者达到共速的时间减小了,则物体A 与小车B 的相对滑动位移减小,所以物体A 不可能冲出去,所以D 错误.2.(多选)(2022·福建福州市高三检测)如图所示,质量为M 的长木板A 以速度v 0在光滑水平面上向左匀速运动,质量为m 的小滑块B 轻放在木板左端,经过一段时间恰好从木板的右端滑出,小滑块与木板间动摩擦因数为μ,下列说法中正确的是( )A .若只增大m ,则小滑块不能滑离木板B .若只增大M ,则小滑块在木板上运动的时间变短C .若只增大v 0,则小滑块离开木板的速度变大D.若只减小μ,则小滑块滑离木板过程中小滑块相对地面的位移变大答案AB解析若只增大滑块质量,滑块的加速度大小保持不变,但木板的加速度增大,所以两者达到共速的时间减少了,则滑块在木板上的相对滑动位移减小,所以滑块不能滑离木板,A正确;若只增大长木板质量,木板的加速度减小,以木板为参考系,滑块运动的平均速度变大,即滑块在木板上的运动时间变短,B正确;若只增大木板初速度,滑块的受力不变,滑块的加速度不变,滑块相对木板的平均速度变大,滑块在木板上的运动时间变短,所以滑块离开木板的速度变小,C错误;若只减小动摩擦因数,那么滑块和木板的加速度均减小,相对位移不变,滑块相对木板的平均速度变大,滑块滑离木板的过程所用时间变短,木板相对地面的位移变小,滑块滑离木板过程中滑块相对地面的位移为板长加木板对地位移,故减小,D 错误.3.(多选)(2022·内蒙古海拉尔第二中学高三期末)如图甲所示,粗糙的水平地面上有一块长木板P,小滑块Q放置于长木板上的最右端.现将一个水平向右的力F作用在长木板的右端,让长木板从静止开始运动,一段时间后撤去力F的作用.滑块、长木板的v-t图像如图乙所示,已知滑块与长木板的质量相等,滑块Q始终没有从长木板P上滑下.重力加速度g=10 m/s2.则下列说法正确的是()A.t=9 s时长木板P停下来B.长木板P的长度至少是7.5 mC.滑块Q与长木板P之间的动摩擦因数是0.5D.滑块Q在长木板P上滑行的相对位移为12 m答案AB解析由题图乙可知,力F在t1=5 s时撤去,此时长木板P的速度v1=5 m/s,t2=6 s时两者速度相同,共同速度为v2=3 m/s,t2=6 s前长木板P的速度大于滑块Q的速度,t2=6 s 后长木板P的速度小于滑块Q的速度,0~6 s过程中,以滑块Q为研究对象,由题图乙知a1=0.5 m/s2,由牛顿第二定律得μ1mg=ma1,解得μ1=0.05,5~6 s过程中,以长木板P为研究对象,由题图乙知a2=2 m/s2,由牛顿第二定律得μ2(2m)g+μ1mg=ma2,解得μ2=0.075,从6 s 末到长木板停下来的过程中,由牛顿第二定律得μ2(2m )g -μ1mg =ma 3,解得a 3=1 m/s 2,这段时间Δt 1=v 2a 3=3 s ,所以t =9 s 时长木板P 停下来,故A 正确,C 错误;长木板P 的长度至少是前6 s 过程中滑块Q 在长木板P 上滑行的距离Δx 1=12×5×5 m +12×(5+3)×1 m -12×3×6 m =7.5 m ,故B 正确;在从6 s 末到滑块停下来的过程中,由牛顿第二定律得μ1mg =ma 4,解得a 4=0.5 m/s 2,这段时间Δt 1=v 2a 4=6 s ,所以t 3=12 s 时滑块Q 停下来,6 s 后滑块Q 在长木板P 上滑行的距离Δx 2=12×6×3 m -12×3×3 m =4.5 m ,前6 s 长木板P 速度更大,后6 s 滑块Q 速度更大,则滑块Q 在长木板P 上滑行的相对位移为Δx =Δx 1-Δx 2=3 m ,故D 错误.4.(2022·四川成都市月考)如图,长为L 的矩形长木板静置于光滑水平面上,一质量为m 的滑块以水平向右的初速度v 0滑上木板左端.①若木板固定,则滑块离开木板时的速度大小为v 03;②若木板不固定,则滑块恰好不离开木板.滑块可视为质点,重力加速度大小为g .求:(1)滑块与木板间的动摩擦因数μ; (2)木板的质量M ;(3)两种情况下,滑块从木板左端滑到右端的过程中,摩擦力对滑块的冲量大小之比I 1∶I 2. 答案 (1)4v 029gL(2)8m (3)3∶4解析 (1)木板固定时,滑块做匀减速直线运动,所受摩擦力大小为F f =μmg 由动能定理有-F f L =12m (v 03)2-12m v 02解得μ=4v 029gL.(2)木板不固定时,木板和滑块系统在相互作用过程中动量守恒,设两者共速时的速度为v ,由能量守恒定律有 μmgL =12m v 02-12(m +M )v 2由动量守恒定律有m v 0=(m +M )v 联立两式解得M =8m .(3)规定水平向右的方向为正方向,木板固定时,对滑块由动量定理有 I 1=m (v 03)-m v 0=-23m v 0木板不固定时滑块末速度由(2)知 v =m v 0m +M =v 09由动量定理有I 2=m v -m v 0=m (v 09)-m v 0=-89m v 0解得I 1∶I 2=3∶4.5.(2022·云南省玉溪第一中学高三检测)如图所示,质量M =0.9 kg 的木板A 静止在粗糙的水平地面上,质量m =1 kg 、可视为质点的物块B 静止放在木板的右端,t =0时刻一质量为m 0=0.1 kg 的子弹以速度v 0=50 m/s 水平射入并留在木板A 内(此过程时间极短).已知物块B 与木板A 间的动摩擦因数μ1=0.20,木板A 与地面间的动摩擦因数μ2=0.30,各接触面间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度大小g =10 m/s 2,求:(1)子弹射入木板过程中系统损失的机械能;(2)子弹“停”在木板内之后瞬间A 和B 的加速度大小; (3)最终物块B 停止运动时距离木板A 右端的距离. 答案 (1)112.5 J (2)8 m/s 2 2 m/s 2 (3)1.125 m解析 (1)子弹射中木板A 的过程动量守恒,有m 0v 0=(m 0+M )v 1 由能量守恒可知,子弹射入木板过程中系统损失的机械能为 ΔE =12m 0v 02-12(m 0+M )v 12解得v 1=5 m/s ,ΔE =112.5 J ;(2)子弹“停”在木板内之后瞬间对B 应用牛顿第二定律可得μ1mg =ma B ,对子弹与A 组成的整体应用牛顿第二定律可得μ1mg +μ2(m +m 0+M )g =(m 0+M )a A , 解得a A =8 m/s 2,a B =2 m/s 2;(3)子弹停在木板A 内之后,A 、B 发生相对滑动,A 减速,B 加速, 设经过时间t 1二者共速,有v 1-a A t 1=a B t 1 解得t 1=0.5 s ,此时二者速度为v2=a B t1=1 m/s,故此过程A与B相对地面的位移分别为x A=v1t1-12a A t12,x B=12a B t12,共速后,因为μ1<μ2,故二者分别做匀减速运动,对子弹与A组成的整体应用牛顿第二定律可得μ2(m+m0+M)g-μ1mg=(m0+M)a A′,对B应用牛顿第二定律可得μ1mg=ma B′,解得a A′=4 m/s2,a B′=2 m/s2,共速后A、B继续滑行的距离分别为x A′=v222a A′,x B′=v222a B′,故最终物块B停止运动时距离木板A右端的距离为Δx=(x A+x A′)-(x B+x B′),联立可得Δx=1.125 m.6.(2022·山西晋中市高三期末)如图所示,在水平地面上静置一质量为M=3 kg的木板A,在木板A的上面右侧放置一质量为m=1 kg的木块B(可视为质点).木块B与木板A之间的动摩擦因数μ1=0.1,木板A与地面之间的动摩擦因数μ2=0.2.一个底面光滑、质量也为M=3 kg 的木块C以速度v0=2 m/s与木板A发生弹性碰撞.重力加速度g取10 m/s2.(1)求碰后瞬间木板A获得的速度大小;(2)在木块B与木板A相对运动的过程中,若要保证木块B不从木板A上滑下,求木板A的最小长度.答案(1)2 m/s(2)0.5 m解析(1)设木块C与木板A碰后瞬间速度分别为v1、v2,木块C与木板A发生弹性碰撞,有M v0=M v1+M v212M v02=12M v12+12M v22代入数据解得v 1=0,v 2=v 0=2 m/s(2)碰后木板A 做减速运动,其加速度a 1=-μ1mg +μ2(m +M )g M=-3 m/s 2 木块B 做加速运动,其加速度a 2=μ1mg m=μ1g =1 m/s 2 设二者速度相同时速度为v ,有v -v 2a 1=v a 2解得v =0.5 m/s此过程中木板A 的位移为x 1=v 2-v 222a 1=58m 木块B 的位移为x 2=v 22a 2=18m 二者速度相同后,木板A 继续减速,假设B 相对A 向右滑动,则A 的加速度为a 3=μ1mg -μ2(m +M )g M =-73m/s 2 木块B 向右做减速运动,其加速度a 4=-μ1mg m=-μ1g =-1 m/s 2 因为|a 3|>|a 4|,假设成立.所以速度相同后,木块B 相对木板A 将向右运动,直至停止.A 向右减速到零的位移x 3=0-v 22a 3=356m A 减速到零时,由于μ1mg <μ2(m +M )g ,故保持静止.B 向右减速到零的位移为x 4=0-v 22a 4=18m 即B 先相对A 向左移动了x 1-x 2=0.5 m ,后相对A 向右移动了x 4-x 3=114m , 则要保证木块B 不从木板A 上滑下,木板A 的最小长度为L =x 1-x 2=0.5 m.7.(2022·山东省模拟)如图所示,一倾角为θ=37°的足够长斜面体固定在水平地面上,一质量为M =2 kg 的长木板B 沿着斜面以速度v 0=9 m/s 匀速下滑,现把一质量为m =1 kg 的铁块A轻轻放在长木板B 的左端,铁块恰好没有从长木板右端滑下,A 与B 间、B 与斜面间的动摩擦因数相等,最大静摩擦力等于滑动摩擦力,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:(1)铁块A 和长木板B 共速后的速度大小;(2)长木板的长度;(3)请用数值验证,铁块刚放上长木板左端时与达到共速时系统的总能量相等.答案 (1)6 m/s (2)2.25 m (3)见解析解析 (1)根据动量守恒定律有M v 0=(M +m )v解得v =6 m/s(2)根据题意可知μ=tan θ=0.75对铁块A 受力分析有mg sin θ+μmg cos θ=ma 1解得a 1=12 m/s 2对长木板受力分析有Mg sin θ-μmg cos θ-μ(M +m )g cos θ=Ma 2解得a 2=-6 m/s 2经过时间t 速度相等,有v =v 0+a 2t =a 1t铁块运动位移x 1=v 2t =1.5 m 长木板运动位移x 2=v 0+v 2t =3.75 m 长木板的长度l =x 2-x 1=2.25 m(3)系统动能的变化量ΔE k =12(M +m )v 2-12M v 02=-27 J 铁块重力势能的变化量ΔE p1=-mgx 1sin θ=-9 J长木板重力势能的变化量ΔE p2=-Mgx2sin θ=-45 J长木板与斜面之间摩擦产生的热量Q1=μ(M+m)gx2cos θ=67.5 J铁块与长木板之间摩擦产生的热量Q2=μmgl cos θ=13.5 J因为ΔE k+ΔE p1+ΔE p2+Q1+Q2=0 故系统能量守恒.。
专题18 板块模型(解析版)
2023届高三物理一轮复习重点热点难点专题特训专题18 板块模型特训目标特训内容目标1 无外力板块模型(1T—4T)目标2 无外力板块图像问题(5T—8T)目标3 有外力板块模型(9T—12T)目标4 有外力板块图像问题(13T—16T)一、无外力板块模型1.作图能力是高中物理学习中一项非常重要的能力.对于解决涉及复杂过程的力学综合问题,我们往往可以通过画状态图或v t 图将物理过程展现出来,帮助我们进行过程分析、寻找物理量之间的关系.如图所示,光滑水平面上有一静止的足够长的木板M,一小木块m (可视为质点)从左端以某一初速度0v向右侧运动.若固定木板,最终小木块停在距左侧0S 处(如图所示).若不固定木板,最终小木块也会相对木板停止滑动,这种情形下,木块刚相对木板停止滑动时的状态图可能正确的是图中的()A.B.C.D .【答案】B【详解】A.根据能量守恒,末态物块对地位移一定小于0S ,故A 错误B.小物块匀减速的末速度等于木板加速的末速度,停止相对滑动,所以木板的位移一定小于物块的位移,故B 正确C.根据选项B 的分析,故C 错误D.根据A 的分析,故D 错误,故选B2.长为1m 的平板车放在光滑水平面上,质量相等、长度也为1m 的长木板并齐地放在平板车上,如图所示,开始二者以共同的速度5m/s 在水平面上匀速直线运动。
已知长木板与平板车之间的动摩擦因数为0.5,重力加速度为210m/s ,最大静摩擦力等于滑动摩擦力。
则下列说法正确的是( )A .二者之间没有发生相对滑动,平板车刹车的加速度可能大于25m/sB .为了避免二者之间存在相对滑动,平板车刹车的距离最小为2.5mC .如果平板车突然以26m/s 的加速度匀加速,则经1.4s 长木板从平板车上掉下D .如果平板车突然以26m/s 的加速度匀加速,长木板从平板车上掉下时,平板车的速度为11m/s【答案】BD【详解】A .由题意可知,为了避免二者之间存在相对滑动,由牛顿第二定律对长木板有1mg ma μ=解得215m /s a g μ==此时长木板与平板车加速度大小相等,A 错误;B .对平板车由匀变速直线运动的速度位移公式得212v a x =解得平板车刹车的最小距离为212.5m 2v x a ==选项B 正确;CD .平板车加速后,设经时间t 长木板从平板车上掉下,该过程中平板车的位移22212x vt a t =+长木板的位移为21112x vt a t =+又212lx x -=由以上可解得1s t =此时平板车的速度为211m /s v v a t ='=+选项C 错误,D 正确。
专题讲解-板块模型
板块模型————————————————————————————————作者:————————————————————————————————日期:板块模型一、解题心诀分类别、识套路; 记结论、省功夫; V-T 图,标清楚。
二、类别1、拉上或拉下2、带动带不动3、共速及变速问题三、拉上或拉下问题1、拉上先判下动否,最大摩擦敢承受。
[典例1] 如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 以及B 与地面之间的动摩擦因数均为μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到36 N 的过程中,则( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动解析:先判断B 的最大静摩擦力是否能承受A 给它的滑动摩擦力。
如果能承受,那么不论拉力再大,A 运动再快,B 也巍然不动。
如果承受不住,那么B 就要跟随着A 向前运动。
max 2()16a b f m m g N μ=+=112a f m g N μ==需承受,因为B 能承受A 的最大摩擦力,所以,不论力量多么大,B 都不会动。
[典例2] 如图所示,物体A 叠放在物体B 上,B 置于水平面上,A 、B 质量分别为m A=6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数为μ1=0.2,B 与地面之间的动摩擦因数为μ2=0.1,开始时F =10 N ,此后逐渐增加,在增大到36 N 的过程中,则( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动解析:先判断B 承受不住,所以B 就要跟随着A 向前运动。
专题05 连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)
专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。
高中物理重要方法典型模型突破12-模型专题(4) -板块模型(解析版)
专题十一模型专题(4)板块模型【重点模型解读】一、模型认识类型图示规律分析木板B带动物块A,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B=x A+L物块A带动木板B,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B+L=x A力F作用在物块A上讨论相关的临界情况力F作用在木板B上讨论相关的临界情况二、板块类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
三、注意点:分析“板块”模型时要抓住一个转折和两个关联【典例讲练突破】【例1】如图所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
【点拨】为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B 间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
2023年高考物理二轮复习核心素养微专题(三)模型建构——板块模型
核心素养微专题(三) 模型建构——板块模型【模型解读】滑块和木板组成相互作用的系统,在摩擦力的作用下发生相对滑动,称为板块模型。
板块模型是高中动力学部分中的一类重要模型,也是高考考查的重点,能从多方面体现物理学科素养。
此类模型的一个典型特征是:滑块、木板间通过摩擦力作用使物体的运动状态发生变化。
常见类型如下:类型图示规律分析B 带动A木板B 带动物块A ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +LA 带动B物块A 带动木板B ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时,二者速度相等,则位移关系为x B +L =x AF 作用在A 上力F 作用在物块A 上,先考虑木板B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况 F 作用在B 上力F 作用在木板B 上,先考虑B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况【模型1】 物块、木板上均未施加力【典例1】(2022·山东等级考)如图所示,“L ”形平板B 静置在地面上,小物块A 处于平板B 上的O'点,O'点左侧粗糙,右侧光滑。
用不可伸长的轻绳将质量为M 的小球悬挂在O'点正上方的O 点,轻绳处于水平拉直状态。
将小球由静止释放,下摆至最低点与小物块A 发生碰撞,碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于5°),A 以速度v 0沿平板滑动直至与B 右侧挡板发生弹性碰撞。
一段时间后,A 返回到O 点的正下方时,相对于地面的速度减为零,此时小球恰好第一次上升到最高点。
已知A 的质量m A =0.1 kg,B 的质量m B =0.3 kg,A 与B 的动摩擦因数μ1=0.4,B 与地面间的动摩擦因数μ2=0.225,v 0=4 m/s,取重力加速度g = 10 m/s 2。
板块模型高考知识点
板块模型高考知识点【正文】板块模型是高考物理中的一个重要知识点,主要用于解决题目中涉及到的平衡、稳定性和力的分析问题。
它是一种简化和抽象的模型,通过将物体分解为多个部分,从而更好地理解和研究物体的运动特性。
一、板块模型的基本原理板块模型的基本思想是将物体分解为若干个小块,每个小块都带有自己的质量、形状和位置等特征。
这些小块之间存在相互作用力,通过分析这些力的平衡和合成,就可以得到整个物体的运动情况。
以平衡为例,我们可以将物体划分为若干个平行小块,每个小块都受到重力和支持力的作用。
通过分析每个小块的受力情况,可以确定物体是否处于平衡状态。
这种分块分析的方法可以大大简化问题,使其更易于处理。
二、板块模型的应用板块模型在解决高考物理题中起到了重要的作用。
例如,在研究斜面上物体的运动时,我们可以将斜面分解为水平和竖直两个方向的小块,从而分析物体受力和速度的关系。
此外,板块模型还可以用于分析各种力的合成和分解问题。
例如,对于一个悬挂在天花板上的物体,我们可以将其划分为水平和竖直方向的两个小块,从而分析其受力的方向和大小。
三、板块模型的特点板块模型具有一定的抽象性和简化性。
它不需要考虑物体的具体形状和内部结构,而只需要关注物体的整体特性和相互作用。
这使得板块模型在解决一些复杂问题时非常有效,并且可以应用于不同的情况和条件。
此外,板块模型还可以灵活应用于不同的题型和考点。
无论是平衡问题、稳定性问题还是力的合成问题,都可以采用板块模型来解决。
这种统一的思维框架能够帮助我们更好地理解物理问题的本质,提高解题的能力。
总结:板块模型是解决高考物理题中的常用工具,它通过将物体分解为若干小块,分析小块之间的相互作用力,从而帮助我们理解和解决复杂的运动问题。
板块模型具有简化、抽象的特点,可以应用于不同的情况和考点,对于提高物理解题的能力具有重要意义。
通过学习板块模型,我们可以更好地理解和掌握高考物理中涉及的平衡、稳定性和力的分析问题。
2024-2025学年高一物理必修第一册(人教版)专题提升9传送带模型板块模型
角度2倾斜传送带问题
【例题2】 (多选)(2024山东东营高一期末)机场地勤工作人员利用传送带从飞机
上卸行李。如图所示,以恒定速率v1=0.6 m/s运行的传送带与水平面间的夹角
α=37°,转轴间距L=3.17 m。工作人员沿传送带方向以速度v2=1.6 m/s从传送带
顶端推下一件小包裹(可视为质点)。小包裹与传送带间的动摩擦因数μ=0.8。
典例剖析
角度1光滑水平面上的板块模型
【例题3】 (多选)(2024河南郑州高一联考)如图所示,物块A放在木板B上,木板
B放在光滑的水平面上。已知mA=2 kg,mB=4 kg,A、B间动摩擦因数μ=0.3。
对物块A施加一水平向右的拉力F,g取10 m/s2。下列说法正确的是( AD )
A.当拉力0<F<6 N时,物块A相对木板B静止
拉力0<F<6 N时,物块A相对木板B静止;当拉力F>F0=9 N时,物块A相对木
板B滑动,A正确,B错误。当拉力F=7.5 N<F0时,物块A相对木板B静止,此时
整体的加速度a1= + =1.25 m/s2,木板B受到物块A的摩擦力
Ff1=mBa1=5 N,C错误。当拉力F=12 N>F0时,物块A相对木板B滑动,木板B
重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,设最大静摩擦力等于滑动摩
擦力。下列说法正确的是( BC )
A.小包裹刚滑上传送带时的加速度大小为12.4 m/s2
B.小包裹在传送带上运动的时间为3.2 s
C.小包裹相对于传送带滑行的距离为1.25 m
D.如果传送带以相同的速率顺时针转动,小包裹将不能滑至传送带低端
板块模型的知识点总结
板块模型的知识点总结1. 板块模型的定义板块模型是一种管理和组织企业的方法论,它将一个企业的组织结构分解成若干个相对独立的板块。
每个板块都有自己的业务范围、目标和决策权,它们之间可以自主地进行合作和竞争。
板块模型不仅可以提高企业的灵活性和响应速度,还可以激发员工的创造力和激励效果。
通过将一个复杂的组织结构分解成若干个独立的板块,企业可以更加高效地运营和管理。
2. 板块模型的优点(1) 提高效率:板块模型将一个大型的组织结构分解成若干个相对独立的板块,每个板块都有自己的业务范围和目标,从而可以更加专注地进行管理和运营。
这样一来,企业可以更加高效地运营和管理,提高生产效率和经营效果。
(2) 提高灵活性:板块模型可以提高企业的灵活性和响应速度。
每个板块都可以根据自己的需要和市场变化做出决策,从而更加及时地调整战略和业务方向。
这样一来,企业可以更加快速地适应市场变化,保持竞争优势。
(3) 激发员工的创造力:板块模型给予了每个板块更大的自主权和决策权,这样一来,员工可以更加自由地发挥自己的创造力和创新能力。
这种自由度和激励效果可以激发员工的潜能,从而提高企业的创新能力和竞争力。
(4) 降低管理层次:板块模型将一个大型的组织结构分解成若干个相对独立的板块,每个板块都有自己的业务范围和目标,这样一来,可以大大降低管理的层次和成本。
这样一来,企业可以更加高效地运营和管理,提高生产效率和经营效果。
(5) 提高员工的激励效果:板块模型给予了每个板块更大的自主权和决策权,这样一来,员工可以更加自由地发挥自己的创造力和创新能力。
这种自由度和激励效果可以激发员工的潜能,从而提高企业的创新能力和竞争力。
3. 板块模型的缺点(1) 容易导致板块之间的内耗:板块模型强调将一个大型的组织结构分解成若干个独立的板块,每个板块都有自己的业务范围和目标,这样一来,很容易导致板块之间的内耗。
在实际操作中,不同的板块之间往往会出现资源竞争和利益冲突,从而影响企业的整体利益。
板块模型(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题02板块模型目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一结合牛顿定律与运动学公式考察不受外力板块模型中的多过程运动 (2)热点题型二结合牛顿定律与运动学公式考察受外力板块模型中的多过程运动 (7)热点题型三结合新情景考察板块模型思想的迁移运用 (9)类型一以竖直面为情境构板块模型考动力学知识及相对运动的理解 (9)类型二结合斜面模型综合考查板块模型中的多过程多运动问题 (10)类型三综合能量观点考查板块模型 (13)类型四电磁学为背景构建板块模型 (16)三.压轴题速练 (21)一,考向分析1.概述:滑块和滑板叠加的模型简称为“板块模型”这两个简单的“道具”为考查学生的物质观念、运动与相互作用观念能量观念展现了丰富多彩的情境,是高中物理讲、学、练、测的重要模型之一。
无论是高考还是在常见的习题、试题中“板块模型”的模型的身影都随处可见,而且常考常新。
对于本专题的学习可以比较准确地反映学生分析问题、解决问题的能力和学科核心素养。
2.命题规律滑块—滑板模型,涉及摩擦力分析、相对运动、摩擦生热、多次相互作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,所以高考试卷中经常出现这一类型。
3.复习指导分析滑块—滑板类模型时要抓住一个转折和两个关联。
一个转折——滑块与滑板达到相同速度或者滑块从滑板上滑下是受力和运动状态变化的转折点。
两个关联——转折前、后受力情况之间的关联和滑块、滑板位移与板长之间的关联。
一般情况下,由于摩擦力或其他力的转变,转折前、后滑块和滑板的加速度都会发生变化,因此以转折点为界,对转折前、后进行受力分析是建立模型的关键。
4.模型特点涉及两个物体,并且物体间存在相对滑动。
5.两种位移关系滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长。
设板长为L,滑块位移大小为x1,木板位移大小为x2同向运动时:L=x1-x2反向运动时:L=x1+x2二.题型及要领归纳热点题型一结合牛顿定律与运动学公式考察不受外力板块模型中的多过程运动【例1】一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a)所示。
物理高三板块模型知识点
物理高三板块模型知识点引言:在学习物理的过程中,板块模型是一个重要的概念。
它可以帮助我们理解地球上的地壳运动以及地震、火山等地质现象。
本文将介绍物理高三板块模型的相关知识点,帮助读者更好地理解和掌握该概念。
一、板块模型的定义和基本概念1. 板块模型是指将地球表面划分成若干个大型板块,并认为这些板块在地球内部存在相对运动的理论模型。
2. 地球板块模型的形成和演化与地球上的地壳构造、地震和火山活动等密切相关。
3. 板块模型的核心理论是“地壳构造学”和“板块构造学”。
二、板块模型的分类1. 根据地壳运动方向和速度的不同,板块模型可以分为三种类型:边界运动型、内部运动型和混合型。
2. 边界运动型板块模型:板块间的相对滑动速度较快,形成了较明显的地壳运动现象,如反射地震带、弧后盆地等。
3. 内部运动型板块模型:板块内部的相对滑动速度较快,形成了内部断层和地壳运动现象,如火山地震、岩浆侵入等。
4. 混合型板块模型:同时具有边界运动型和内部运动型特征的板块模型。
三、板块模型的主要特征和作用1. 板块模型具有边界界线清晰、板块间相对运动、构造形态分明等特征。
2. 板块模型对地球上的地壳变形、地震和火山活动等地质现象起到了重要的控制作用。
3. 板块模型还可以解释地球表面的地理分布、陆地形态、海底地形等自然地理现象。
四、板块构造运动的主要类型1. 板块碰撞:两个板块的边界相互碰撞,形成山脉、高原等地形。
2. 板块俯冲:一块板块向下俯冲入地幔,形成深海槽、弧形火山等地形。
3. 板块扩张:两个板块的边界相互脱离,形成中海峡、洋脊等地形。
五、世界著名的板块边界带1. 环太平洋地震带:包括环太平洋地区的海沟、火山带以及日本、菲律宾等地的地震活动。
2. 阿尔卑斯-喜马拉雅地震带:沿着欧亚大陆的冲突带,包括阿尔卑斯山脉和喜马拉雅山脉。
3. 土耳其-伊朗-印度尼西亚地震带:包括土耳其、伊朗以及印度尼西亚等地的地震活动。
结论:板块模型是物理高三学习中的重要知识点,它可以帮助我们理解地球的地壳运动、地质现象以及自然地理现象。
高中物理-动量 动量定理专题“板块模型”难点分析与突破
动量动量定理专题
“板块模型”难点分析与突破
授课内容:
板块模型:
成立条件:光滑水平面;动量守恒;能量守恒:有内能板块运动分析:
问:M、m分别做什么运动?
答:m做_____运动;
M做_____运动
问:M和m的末状态是什么?
答:两种情况:___________; ___________
v-t图像
(1)共速
(2)m从M上离开
问:这两个图像有哪些相同之处?
答:_____和_____
Q =_______________
例题1 质量为m 的子弹以速度v 0水平射入质量为M 的木块,并停在木块
内。
设子弹与木块相互作用力大小为f 。
求: ①求共同速度;
②求系统损失的机械能;
③求子弹进入木块的深度。
若只增加木块的质量,子弹是否一定能穿出?上述各量如何变化?
若子弹能穿出木块,增大子弹速度,子弹是否一定能穿出?若能穿出,穿
出时间、木块速度等如何变化?
例题2 如图所示,质量为20kg 的平板小车的后端放有质量为10kg 的
小铁块,它与车之间的动摩擦因数为0.5。
开始时,车以速度6m/s 向左
在光滑的水平面上运动,铁块以速度6m/s 向右运动。
(g =10m/s 2) 求:
(1) 小车与铁块共同运动的速度;
(2) 小车至少多长,铁块不会从小车上掉下去;
(3) 铁块向右运动的最大位移。
例题2还可以问:
(4)铁块向右运动的最大位移时,小车的速度?小车的位移?经过的时
间?产生的内能等。
共
v M m mv )(0+=Q v M m mv ++=220)(2
121共。
2022-2023学年人教物理高一上学期分层练习专题3 板块模型带讲解
专题 板块模型一、无外力板块模型1. (2022·江苏·海安高级中学高一期中)如图甲所示, 质量M 为2kg 的长木板B 静止在水平面上。
某时刻质量m=6kg 的小物块A, 以大小v0=4m/s 的初速度, 从木板的左侧沿木板上表面滑上木板。
已知A 与B 上表面之间的动摩擦因数μ1=0.2, B 与水平面间的动摩擦因数μ2=0.1, 取重力加速度g=10m/s2, 求:(1)物块A 刚滑上木板时, 物块A 的加速度大小a1、木板的加速度大小a2;(2)物块A 在木板上滑行的距离L ;(3)木板在地面上滑行的总位移x 。
/(1), ;(2)2m ;(3)3m【详解】(1)对A 由牛顿第二定律得11mg ma μ=解得212m/s a =对B 由牛顿第二定律得122mg M m g Ma μμ-(+)=解得(2)设经过时间t1后, A.B 速度相等01121v a t a t -=解得故A.B 的位移分别为212112B x a t =1A B L x x =-解得 L =2m(3)设A.B 速度相等后一起做匀减速运动, 对A.B 整体由牛顿第二定律得对A 由牛顿第二定律得, 小于最大静摩擦力, 假设成立2232B v x a =12B B x x x =+解得x =3m2. (2021·天津·高一期末)如图所示, 一质量为M=2kg 的木板B 静止在水平地面上, 其左端上表面紧靠(不相连)一固定斜面轨道的底端, 轨道与水平面间的夹角θ=37°, 一质量为m=2kg 的物块A (可看做质点)由斜面上端距轨道底端4m 处由静止释放, 物块A 从斜面底端运动到木板B 左端时速度大小保持不变, 已知物块A 未从木板B 的右端滑出, 物块A 与斜面轨道间的动摩擦因数为, 与木板B 上表面间的动摩擦因数为μ2=0.3, 木板与水平地面间的动摩擦因数为μ3=0.1(sin37°=0.6, cos37°=0.8, g 取10m/s2)求:(1)物块A 刚滑上木板B 时的速度大小;(2)物块A 从刚滑上木板B 相对木板B 静止所用的时间;(3)当物块A 与木板B 最终停止在水平地面后, 现用水平力F 向右拉动木板, 为使物块与木板一起运动而不发生相对滑动, 求拉力F 大小的取值范围? /(1)4m/s ;(2)1s ;(3)4N 16N F ≤≤【详解】(1)对物块在斜面上下滑阶段受力分析, 根据牛顿第二定律可得1sin mg f ma θ-=N cos 0F mg θ-=解得 21sin cos 2m a g g θμθ=-=物块做匀加速直线运动可得21112v a x =解得(2)物块A 滑上木板B 之后, 物块和木板分别受力分析, 根据牛顿第二定律, 对物块A 则有A 2mg ma μ=对木板B 则有物块做匀减速运动, 木板做匀加速运动, 当两物体共速时相对静止, 可得1A A 1v v a t =-B B 1v a t =A B =v v 解得(3)木板与地面之间有最大静摩擦力, 要水平力F 能够拉动物块与木板一起运动, 水平力F 最小值则有 要使物块与木板两物体不分离一起运动, 水平力F 有最大值, 对整体则有3max ()()F M m g M m a μ-+=+对物块A 则有2mg maμ=联立解得 max 16N F =因此则有水平拉力F 的取值范围为二、4N 16N F ≤≤有恒定外力板块模型3. (2022·河南·新密市第二高级中学高一阶段练习)(多选)如图所示, 质量为m 的木块在质量为M 的长木板上, 受到向右的拉力F 的作用而向右滑行, 长木板处于静止状态, 已知木块与木板间的动摩擦因数为μ1, 木板与地面间的动摩擦因数为μ2, 下列说法正确的是( )/A. 木板受到地面的摩擦力的大小一定是, 方向向左B. 木板受到地面的摩擦力的大小一定是, 方向向右C. 当时, 木板便会开始运动D.无论怎样改变F的大小, 木板都不可能运动AD【详解】AB. 由于木块在木板上向右滑动, 故木块一定受到向左的滑动摩擦力的作用, 且因木板静止不动, 一定受到地面的静摩擦力, 方向水平向左, 大小为A正确, B错误;CD.无论F多大, 当木块相对于木板向右滑动时, 木块对木板的滑动摩擦力大小不变, 故木板都不可能向右运动, C错误, D正确。
板块模型PPT课件
地壳向两侧推移。
03
板块构造学说
在大陆漂移学说和海底扩张学说的基础上提出,认为地球的岩石圈被分
割成若干巨大的刚性板块,即岩石圈板块。这些板块在地幔对流的作用
下不断运动,发生相互碰撞或张裂。
03
板块模型与地震活动
地震产生原因及类型
地震产生原因
地震是由于地球内部岩石受力超过其承受极限而突然破裂、释放能量所引起的 自然现象。板块运动是地震产生的主要原因,包括板块间的相互碰撞、挤压、 分离等。
两个板块沿水平方向相对 滑动,形成转换断层和地 震活动带,如圣安德烈斯 断层。
板块运动方式
01
02
03
04
扩张运动
在离散边界,板块向两侧扩张 ,形成新的洋壳。
俯冲运动
在汇聚边界,一个板块向下俯 冲到另一个板块之下,形成海
沟和火山弧。
碰撞运动
在汇聚边界,两个板块相互碰 撞挤压,形成高大山脉和地震
活动带。
深海探测与板块构造
随着深海探测技术的不断发展,未来有望 揭示更多关于海底板块构造的细节和机制
。
板块构造与资源环境
深入研究板块构造与资源环境的关系,有 助于指导矿产资源的勘探和开发,以及环
境保护和治理工作。
地震预测与防灾减灾
提高地震预测的准确性和时效性,对于减 轻地震灾害的影响具有重要意义。
跨学科综合研究
板块构造学说发展历程
01
大陆漂移学说
由德国科学家魏格纳提出,认为地球上所有大陆在中生代以前曾经是统
一的巨大陆块(联合古陆),在新生代又分裂漂移成现在的海洋和陆地
。
02
海底扩张学说
认为海岭是新的大洋地壳诞生处,地幔物质从海岭顶部的巨大开裂处涌
第五章牛顿运动定律之板块模型问题专题课件高一上学期物理
∵小物块恰好没有脱离小车 ∴小物块到达小车最左端时与小车共速,即小物块先向左减速到0,再向 右加速到与小车共速
物体:am =1 m/s2 方向向右 小车:aM =0.5 m/s2 方向向右
A的加速度可以无限增大, 但是B的加速度有最大值
A的质量为m1,B的质量为m2,AB间的动摩擦因素为 μ1,B与地板的动摩擦因素为 μ2,
fAB
F
f地
fAB
AB之间的最大静摩擦fABmax= μ1m1g ;B和地面最大静摩擦f地max = μ2(m1+m2)g (1)fABmax<f地max,B不可能动 ①当 F<fABmax,A、B均静止。 ②当F>fABmax时,B不动,A在B上面匀加速滑动。
A的质量为m1,B的质量为m2,AB间的动摩擦因素为 μ1,B与地板的动摩擦因素为 μ2, 最大静摩擦等于滑动摩擦。
fAB
f地
fAB
情景2:木块A以一定初速度滑上原来静止在地面上的木板B。 对A:fAB= μ1m1g 方向向左 ,aA= μ1g,A做匀减速 对B:fAB= μ1m1g 方向向右,f地max = μ2(m1+m2)g ,方向向左 (1)若μ1m1g ≤ f地max,则B不会动 ①若B足够长,A将会在B上一直匀减速到0停下,不会滑落 ②若B不够长,A将会在B的右端滑落
①分段法:物块向左减速到0的时间t1=3s,设再过t2与小车共速 ∴amt2 = v0-aM(t1+t 2) ∴t2=1s ∴t总=4s
②全过程法:取向右为正方向,设共速的时间为t, 则共速时:物块的速度为vm=-v0+amt总 ;小车的速度vM=v0-aM t总
专题4.3 板块模型(解析版)
第四部分重点模型与核心问题深究专题4.3 板块模型目录模型一动力学中水平面上的板块模型 (1)类型1水平面上受外力作用的板块模型 (2)类型2水平面上具有初速度的板块模型 (5)模型二斜面上的板块模型 (9)模型三板块模型与动量、能量的综合问题 (13)类型1无外力作用的板块模型 (15)类型2有外力作用的板块模型 (15)专题提升训练 (17)模型一动力学中水平面上的板块模型水平面上的板块模型是指滑块和滑板都在水平面上运动的情形,滑块和滑板之间存在摩擦力,发生相对运动,常伴有临界问题和多过程问题,对学生的综合能力要求较高。
【例1】如图所示,质量为M=4 kg的木板长L=1.4 m,静止放在光滑的水平地面上,其右端静置一质量为m=1 kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数μ=0.4,今用水平力F=28 N向右拉木板。
要使小滑块从木板上掉下来,力F作用的时间至少要多长?(不计空气阻力,取g=10 m/s2)【答案】 1 s【解析】设t1时刻撤掉力F,此时滑块的速度为v2,木板的速度为v1,t2时刻木板与滑块达到最终速度v3,如图所示阴影部分的面积为板长L,则在0~t1的过程中,由牛顿第二定律有对滑块:μmg =ma 2,v 2=a 2t 1对木板:F -μmg =Ma 1,v 1=a 1t 1撤去力F 后,木板的加速度变为a 3,则μmg =Ma 3由v t 图像知L =12(v 1-v 2)t 1+12(v 1-v 2)(t 2-t 1)=12(v 1-v 2)t 2 t 2时刻木板与滑块速度相等,即v 1-a 3(t 2-t 1)=v 2+a 2(t 2-t 1)联立可得t 1=1 s 。
【方法总结】求解水平面上的板块模型的三个关键(1)两个分析:仔细审题,清楚题目的物理过程,对每一个物体进行受力分析和运动过程分析。
(2)求加速度:准确求出各个物体在各个运动过程的加速度,注意两个运动过程的连接处的加速度可能突变。
专题 滑块—木板模型(板块模型)(课件)(共54张PPT)
1.模型特点 涉及两个发生相对滑动的物体. 两种位移关系 滑块由滑板的一端运动到另一端的过程中 若滑块和滑板同向运动,位移之差等于板长; 若滑块和滑板相向运动,位移之和等于板长.
设板长为L,滑块位移x1,滑板位移x2 x1
同向运动时:
运动演示
L=x1-x2
x2 L=x1+x2
相向运动时:
x1 x2
模型特征 滑块—滑板模型(如图a所示),涉及两个物体间的相对滑动,题目涉及摩擦力 分析、相对运动、摩擦生热、多次相互作用等,属于多物体、多过程问题,综 合性较强,对能力要求较高,频现于高考试卷中。另外,常见的子弹射击木块 (如图b)、圆环在直杆上滑动(如图c)都属于滑块—滑板类问题,处理方法与滑 块—滑板模型类似。
专题 滑块—木板模型 (板块模型)
人教版(2019) 高一上
综合模型 滑块——木快板模型
运动和力观点
功能பைடு நூலகம்点 动量观点
三大
四大
思路
问题
木板+木块
模型
突出----
独立性、规律性、关联性
抓住----
两个加速度 两个位移 三个关系
1、板块用力拉 2、块在板上滑 3、板块相向动 4、弹碰情景加
1.概念:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。 问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定 的关系。 2.模型的特点: 滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板 在摩擦力的相互作用下发生相对滑动。
到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速
度a,得到如图乙所示的a-F图像,已知g取10 m/s2,则 ( )
A.木板B的质量为1 kg B.滑块A的质量为4 kg C.当F=10 N时木板B的加速度为4 m/s2 D.滑块A与木板B间动摩擦因数为0.1
高考物理板块模型知识点
高考物理板块模型知识点物理是高考中一个重要的科目,其中的板块模型知识点是考试中的重点内容。
本文将详细介绍高考物理板块模型知识点,帮助同学们更好地掌握相关知识,提高考试成绩。
一、基础概念1. 板块模型的概念板块模型是基于地球外部硬壳结构特征和地震波传播规律提出的一种地球内部结构模型。
它将地球分为若干个坚硬的板块,这些板块围绕着地球表面的板块边界进行相对运动。
2. 板块边界的类型板块边界主要包括三种类型:构造边界、转型边界和消亡边界。
构造边界是两个板块相互碰撞的地方,转型边界是两个板块横向滑动的地方,消亡边界是因为一个板块向地幔下沉而消亡。
二、板块构造1. 大陆板块的特点大陆板块主要由地壳和上地幔组成,其特点是厚度较大、密度较低、构成成分复杂,包括岩石、土壤和水。
大陆板块的运动速度较慢,通常是每年几厘米到十几厘米。
2. 海洋板块的特点海洋板块是地球表面最薄的板块,主要由海洋壳组成,包括海底扩张的次级板块。
海洋板块的厚度较小、密度较大,构成成分以玄武岩为主。
海洋板块的运动速度较快,通常是每年几十厘米到一百多厘米。
三、板块边界及地震活动1. 构造边界构造边界主要发生在两个板块相互碰撞的地方。
在构造边界上,有三种主要的板块相互关系:大陆与大陆碰撞、大陆与海洋碰撞以及海洋与海洋碰撞。
这些板块相互碰撞会引发强烈的地震活动,例如中国的兰州地震。
2. 转型边界转型边界主要发生在两个板块横向滑动的地方,例如美洲中部的圣安德烈亚斯断裂带。
转型边界通常会引发剧烈的地震活动,特点是地震烈度高、范围广但面积相对较小。
3. 消亡边界消亡边界是因为一个板块向地幔下沉而消亡。
在这种边界上,板块会发生俯冲运动,促使地震的发生。
消亡边界通常位于大洋深处,世界上许多海沟就形成于此。
四、板块运动与自然灾害1. 板块运动与地震板块运动是地震的主要原因之一。
当板块之间发生相对运动时,会产生巨大的地震能量,导致地质应力的释放。
世界上许多地震都与板块运动有关,例如中国的唐山大地震和美国的旧金山地震。
高考小专题:板块模型
高考小专题:板块模型1. 如图,两个滑块A 和B 的质量分别为m A =1kg 和m B =5kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4kg ,与地面间的动摩擦因数为μ1=0.1。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3m/s 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10m/s 2。
求(1)B 与木板相对静止时,木板的速度;(2)A 、B 开始运动时,两者之间的距离。
(1)1m/s ; (2)1.9m2.一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。
己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦。
物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
取重力加速度的大小g=10m/s 2,求:(1)物块与木板间;木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小。
(1) μ1=0.20,μ2=0.30 (2) 1.125m3.(15课标1)(20分)一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a)所示。
t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1s 时木板与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。
已知碰撞后1s 时间内小物块的v-t 图线如图(b)所示。
木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求 (1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;(3)木板右端离墙壁的最终距离。
(1)μ1=0.1,μ2=0.4(2)Δs=6.0m (3)s =-6.5m4、一木块静止在光滑水平面上,一颗子弹沿水平方向入射木块,子弹进入木块的最大深度为2cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
s2 s1
L
s2 s1
〖典例 1〗:如图所示,A 是小木块,B 是长木板,A、B 质 量均为 0.2 kg,木块 A 以某一初速度 V0=1.2m/s 滑 上原来静止的长木板.已知 A、B 间动摩擦因数为 0.4, B 与地面间动摩擦因数 0.1,木板足够长.最大静摩擦 力等于滑动摩擦力,g=10m/s2. (1)从滑块滑上长木板到滑块与木板具有相同速度所需 的时间及相对位移?
x
B=
(v
0+v
) ( 2
t1+t2)
=(2+1.2)×(0.5+0.3) m 2
=1.28 m B 板的长度 l=x A +x B =1.6 m
〖典例 3〗.如图所示,质量 M=8 kg 的小车放在水平光滑的平 面上,在小车左端加一水平推力 F=8 N.当小车向右运动的速 度达到 1.5 m/s 时,在小车前端轻轻地放上一个大小不计、质量 为 m=2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小 车足够长.求:(取 g=10 m/s2) (1)放上小物块后,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度? (3)从小物块放在小车上开始,经过 t=1.5 s 小物块通过的位移大 小为多少?
(2)开始阶段 A 相对地面向左做匀减速运动,设 到速 度为零时 所用时 间为 t1,则 v 0 =aAt1 ,解 得 t1=v 0/aA=0.50 s B 相对地面向右做匀减速运动
x =v 0t1-12aBt21=0.875 m
(3)A 先相对地面向左匀减速运动至速度为零, 后相对地面向右做匀加速运动,加速度大小仍
高三物理第一轮总复习
第三章 牛顿运动定律
第三讲 牛顿运动定律的综合应用
“滑块—滑板”模型
典型模型 “滑块—滑板”模型
1.模型特点:涉及两个物体,并且物体间存在相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运
动,位移之差等于板长;反向运动时,位移之和等于板长.
3.“滑块—滑板”模型问题的分析思路
答案:(1)2 m/s2 0.5 m/s2 (2)1 s (3)2.1 m
解析:(1)小物块的加速度am=μg=2 m/s2 小车的加速度aM=F-Mμmg=0.5 m/s2. (2)由amt=v0+aMt得t=1 s. (3)在开始1 s内小物块的位移:x1=12amt2=1 m 最大速度:v=amt=2 m/s 在接下来的0.5 s内小物块与小车相对静止,一起做匀加速
〖典例 2〗.如图所示,质量 M=4.0 kg 的长木板 B 静止在光滑 的水平地面上,在其右端放一质量 m=1.0 kg 的小滑块 A(可视为 质点).初始时刻,A、B 分别以 v0=2.0 m/s 向左、向右运动, 最后 A 恰好没有滑离 B 板.已知 A、B 之间的动摩擦因数μ=0.40, 取 g=10 m/s2.求: (1)A、B 相对运动时的加速度 aA 和 aB 的大小与方向; (2)A 相对地面速度为零时,B 相对地面运动已发生的位移大小 x; (3)木板 B 的长度 L.
(1)aA=4.0 m/s2,水平向右 aB=1.0 m/s2,水平向左
(2)0.875 m (3)1.6 m
(1)A、B分别受到大小为μmg的摩擦力作用,根据牛顿第二定 律 对A有μmg=maA 则aA=μg=4.0 m/s2 方向水平向右 对B有μmg=MaB 则aB=μmg/M=1.0 m/s2 方向水平向左
(2)滑块滑上长木板后相对地面运动的最大位移?
(1)0.2s;0.12m (2)0.24m
板块模型方法小结:
1.求a=?
2.当两个物体速度相同时,特别注意摩擦力f 的“突变”,判断两个物体间是静摩擦f?还 是滑动摩擦f?判断方法:假设两个物体有共 同加速度a,求解两个物体间的静摩擦f是否 超过最大静摩擦f?若没超过最大静摩擦f, 则两个物体以共同加速度a运动。
运动且加速度:a=M+F m=0.8 m/s2
这0.5 s内的位移:x2=vt1+12at21=1.1 m 通过的总位移x=x1+x2=2.1 m.
•aAt2= v B-aBt2
•解得t2= v B/(aA+aB)=0.3 s
•共同速度v =aAt2=1.2 m/s
•从开始到A、B速度相等的全过程,利用平均速度公式可
知A向 2
t1+t2)
=(2-1.2)×(0.5+0.3) m 2
=0.32 m
B 向右运动的位移
为 aA=4.0 m /s2 B 板向右一直做匀减速运动,加速度大小为 aB =1.0 m /s2
•当A、B速度相等时,A滑到B最左端,恰好没有滑离木板 B,故木板B的长度为这个全过程中A、B间的相对位移.
•在A相对地面速度为零时,B的速度
•v B= v 0-aBt1=1.5 m/s
•设由A速度为零至A、B速度相等所用时间为t2,则