小学数学六年级《圆柱的体积》优秀教学设计
圆柱的体积教案【优秀7篇】
圆柱的体积教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!圆柱的体积教案【优秀7篇】作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。
《圆柱的体积》教学设计
《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。
拓展教材内容,初步了解直柱体的相关知识。
2、过程与方法:利用教材空间,为学生搭建思维平台。
让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。
3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。
教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。
教学难点:正确理解圆柱体积计算公式的推导过程。
教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。
1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。
生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。
】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。
生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。
生3:圆柱体在水中必须完全浸没,而且水还不能溢出。
【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。
】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。
师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。
3.1.3《圆柱的体积》(教案)2023-2024学年数学六年级下册
3.1.3《圆柱的体积》(教案)20232024学年数学六年级下册作为一名经验丰富的教师,我始终相信“寓教于乐”的教学理念。
今天,我要分享的是3.1.3《圆柱的体积》这一课的教学设计。
一、教学内容本节课的教学内容主要包括六年级下册数学教材中的第三章“圆柱与圆锥”,第一节“圆柱的体积”。
在这一节中,学生需要学习圆柱体积的计算公式,并通过实际操作,理解圆柱体积的求解过程。
二、教学目标1. 理解圆柱体积的概念,掌握圆柱体积的计算公式;2. 能够运用圆柱体积的计算公式解决实际问题;3. 培养学生的动手操作能力和团队协作能力。
三、教学难点与重点本节课的重点是圆柱体积计算公式的理解和运用,难点是理解圆柱体积的求解过程。
四、教具与学具准备1. 圆柱模型;2. 直尺、圆规等绘图工具;3. 计算器;4. 练习题。
五、教学过程1. 实践情景引入:我会拿出一个圆柱模型,让学生观察并描述圆柱的特点,引导学生思考圆柱体积的求解方法。
2. 讲解圆柱体积的概念和计算公式:我会用PPT展示圆柱体积的定义和计算公式,让学生跟随我的讲解,理解圆柱体积的求解过程。
3. 例题讲解:我会选取一道典型的例题,讲解求解圆柱体积的步骤,让学生通过例题,理解圆柱体积的求解方法。
4. 随堂练习:我会设计一些练习题,让学生在课堂上练习,巩固所学知识。
5. 动手操作:我会让学生分组,利用教具和学具,自己动手求解圆柱体积,培养学生的动手操作能力和团队协作能力。
六、板书设计板书设计主要包括圆柱体积的计算公式和相关知识点,以便学生随时查阅。
七、作业设计答案:(1)282.7cm³;(2)502.4cm³。
八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看是否达到了教学目标,学生是否掌握了圆柱体积的计算方法。
同时,我会设计一些拓展延伸题目,让学生课后思考,进一步巩固所学知识。
重点和难点解析在上述教学设计中,有几个关键的细节是需要特别关注的。
《圆柱的体积》数学教学设计(优秀4篇)
《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
小学六年级数学教案《圆柱的体积》(精选13篇)
小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。
小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2024年小学六年级数学精彩教案《圆柱的体积》
2024年小学六年级数学精彩教案《圆柱的体积》一、教学内容本节课选自小学六年级数学教材下册第七章《立体几何》第三节《圆柱的体积》。
详细内容包括:圆柱的定义、圆柱体积的计算公式、通过实例理解圆柱体积的应用。
二、教学目标1. 让学生掌握圆柱的定义,理解圆柱体积的计算公式。
2. 培养学生运用圆柱体积公式解决实际问题的能力。
3. 激发学生对立体几何的学习兴趣,提高空间想象力。
三、教学难点与重点重点:圆柱体积的计算公式及其应用。
难点:理解圆柱体积公式的推导过程,运用公式解决实际问题。
四、教具与学具准备教具:圆柱体模型、剪刀、尺子、胶带等。
学具:练习本、铅笔、直尺、圆规等。
五、教学过程1. 实践情景引入利用圆柱体模型,展示生活中的圆柱形状物体,如水杯、药瓶等,引导学生发现圆柱的特点。
2. 探索圆柱体积公式(1)引导学生观察圆柱体模型,思考如何计算其体积。
(2)带领学生一起推导圆柱体积公式,通过剪切、展开、计算等步骤,得出体积公式:V = πr²h。
3. 例题讲解结合实际例子,讲解圆柱体积公式的应用,如计算水杯的容积等。
4. 随堂练习发给学生练习题,让学生独立完成,巩固圆柱体积的计算方法。
(1)回顾本节课所学内容,强调圆柱体积公式及其应用。
(2)拓展延伸:引导学生思考如何计算其他立体几何体积,如圆锥、长方体等。
六、板书设计1. 圆柱的定义2. 圆柱体积公式:V = πr²h3. 例题解析4. 随堂练习七、作业设计(1)底面半径为5cm,高为10cm的圆柱。
(2)底面半径为3cm,高为6cm的圆柱。
(3)底面半径为4cm,高为8cm的圆柱。
答案:(1)V = πr²h = 3.14 × 5² × 10 = 785cm³(2)V = πr²h = 3.14 × 3² × 6 = 169.56cm³(3)V = πr²h = 3.14 × 4² × 8 = 401.92cm³2. 课后思考:如何计算一个圆柱的表面积?八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,让学生掌握了圆柱体积的计算方法。
人教版六年级下册数学《圆柱的体积》教案6篇
人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具推导圆柱体积公式的圆柱教具一套。
教学过程【复习导入】1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。
【新课讲授】1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。
②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方体的高就是圆柱的高,没有变化。
故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
《圆柱的体积》教学设计(精选9篇)
《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
2024年人教版数学六年级下册圆柱的体积说课稿3篇
人教版数学六年级下册圆柱的体积说课稿3篇〖人教版数学六年级下册圆柱的体积说课稿第【1】篇〗一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。
在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。
学生经过思考、讨论、交流,找到了解决的方法。
而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。
在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。
在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。
那么怎样来切割呢?此时采用小组讨论交流的形式。
同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。
在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。
同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。
这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
不足之处:在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。
在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。
数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。
小学六年级数学《圆柱的体积》教案一等奖范文
小学六年级数学《圆柱的体积》教案一等奖范文1、小学六年级数学《圆柱的体积》教案一等奖范文教学内容:北师大版数学六年级下册5——6页。
教学目标:1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学重点:目标1。
教学难点:目标2。
教学过程:活动一:复习旧知,巩固学过的公式。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?4、出示圆柱体的模型,说说它有什么特征?活动二;探究新知。
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)要解决这个问题,就是求什么?2、圆柱的表面积包括哪几部分?3、圆柱的表面积的计算关键在哪一部分?4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?3)师;圆柱的侧面积就是求长方形的面积。
用长乘宽。
4)长就是圆柱的底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
活动三:新知识的运用。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:侧面积:2╳3.14╳10╳30=1884(平方厘米)底面积:3.14╳10╳10=314(平方厘米)表面积:1884+314╳2=2512(平方厘米)要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。
这种题如果求整数,一般用进一法。
3、练一练。
书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。
小学六年级数学《圆柱的体积》教案(优秀9篇)
小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。
六年级下册数学教案-《圆柱的体积》人教版
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
《圆柱的体积》教案【6篇】
《圆柱的体积》教案【6篇】《圆柱的体积》数学教案篇一第二课时教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。
2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。
3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。
教学重点能根据学生自己测量的数据进行圆柱体积的计算。
教学难点给出圆柱底面周长如何计算圆柱的体积。
教具准备学生自备的茶叶筒或露露瓶。
教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。
师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。
学生同桌合作测量并计算。
2.交流测量数据的方法和计算的结果。
3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。
如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。
师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。
或用皮尺测量。
请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。
二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。
三、家庭作业1.练一练的第4小题。
2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积第三课时容积教学目标1.结合具体事例,经历探索容积计算问题的过程。
2.掌握计算容积的方法,能解决有关容积的简单实际问题。
3.在解决容积问题的过程中,体验数学与日常生活的密切联系。
《圆柱的体积》(教案)六年级下册数学人教版
《圆柱的体积》(教案)六年级下册数学人教版在今天的数学课上,我们将一起探索圆柱的体积。
这是小学数学六年级下册的教学内容,我们将使用人教版的教材。
一、教学内容我们将在第107页的圆柱一节中学习圆柱的体积。
具体内容包括圆柱的定义、底面半径和高对体积的影响,以及圆柱体积的计算方法。
二、教学目标通过这节课,我希望孩子们能够理解圆柱体积的概念,掌握圆柱体积的计算方法,并能运用到实际问题中。
三、教学难点与重点重点是圆柱体积的计算公式,难点是理解底面半径和高对体积的影响。
四、教具与学具准备我已经准备好了圆柱模型、直尺、铅笔等教具,孩子们需要准备好练习本和笔。
五、教学过程我会通过一个实践情景引入:拿一个圆柱形的杯子,填满水,然后倒进一个与之等底等高的长方体杯子中,让孩子们观察水的体积变化,从而引出圆柱体积的概念。
接着,我会详细讲解圆柱体积的计算方法,并举例说明。
比如,假设一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积就是π×3×3×5。
然后,我会让孩子们进行随堂练习,计算几个给定的圆柱体积。
在这个过程中,我会逐一解答他们的问题,帮助他们理解并掌握计算方法。
六、板书设计板书上将画出一个圆柱的示意图,标注出底面半径和高,并在旁边写出圆柱体积的计算公式。
七、作业设计1. 底面半径为4厘米,高为6厘米的圆柱。
2. 底面半径为5厘米,高为8厘米的圆柱。
答案:1. π×4×4×6 = 301.44(立方厘米)2. π×5×5×8 = 628.32(立方厘米)八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看看孩子们是否掌握了圆柱体积的计算方法。
同时,我也会鼓励他们在生活中观察和运用圆柱体积的知识。
重点和难点解析在上述的教学设计中,有几个重点和难点是我认为需要特别关注的。
让孩子们通过实践情景引入圆柱体积的概念,这个环节的设计旨在激发他们的兴趣,并直观地感受体积的变化。
《圆柱的体积》教案5篇
《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《圆柱的体积》教案八篇
《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。
现把它撷取下来与各位同行共赏。
……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。
(举起的手放下了一大半。
很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。
但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。
老师便顺水推舟,让他们来讲。
)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。
而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。
真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。
推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。
那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。
)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。
)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。
《圆柱的体积》优秀教案教学设计
《圆柱的体积》优秀教案教学设计《圆柱的体积》优秀教案教学设计发布者:叶青柏教学内容:圆柱体积公式的推导教学目的:1. 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。
2.能够运用公式正确地计算圆柱的体积。
教具准备:圆柱的体积公式演示课件教学过程:一、复习回顾1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。
)2、长方体的体积怎样计算?学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?二、回忆导入师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?学生相互讨论,思考应怎样进行转化。
说出自己想到的方法。
师:这节课我们就让我们一起来研究圆柱的体积。
板书课题:圆校的体积三、新课讲授师:看到这个标题你想知道的什么?学生回答后老师出示教学目标及重难点1、圆柱体积计算公式的推导。
师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。
)“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。
展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”生:长方形。
六年级下册《圆柱的体积》教学设计
六年级下册《圆柱的体积》教学设计教学内容:苏教版数学第12册p25 例4和相对应的练习教学目标:1、知识技能结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能使用计算公式解决简单的实际问题。
让学生经历观察、实验、猜测、证明等数学活动过程,发展合情推理水平和初步的演绎推理水平,渗透数学思想,体验数学研究的方法。
3、情感态度价值观通过圆柱体积计算公式的推导、使用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和使用圆柱体积计算公式教学难点:圆柱体积公式的推导过程教学准备:课件光盘等底的烧杯、长方体、正方体玻璃容器教学过程:一、目标导学,猜测推理1.出示光盘,这是什么图形?(圆形)提问:这个圆,能够知道什么?(半径、直径、周长、面积)2.在桌面上,在一张光盘上叠加一些光盘,发现,这些光盘形成了一个什么图形?(圆柱)。
继续叠加,提问:圆柱在变化吗?(变高了,体积变大了)追问:什么没有变?(底面积)猜测:圆柱的体积会和什么相关?(底面积和高)3、出示和(内底相等)光盘的烧杯,倒入和圆柱光盘等高的水(1)提问:它们之间有什么关系?(体积相等)那么,烧杯里的水有多少呢?你有什么好办法?(生:把烧杯里的水分别倒入长方体、正方体玻璃器皿中,计算长方体、正方体的体积)(2)你觉得圆柱的体积和什么相关系?(长方体和正方体体积相关)(设计意图:从生活情景入手,初略感知圆柱的体积与底面积和高相关。
通过猜测,并在实验、交流中建立初步的圆柱体积与长方体和正方体体积的计算方法相关的直观感知。
然后顺势提出“如何计算圆柱体的体积”这个全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,为学生经历了“做数学”的过程做铺垫。
)二、图柱转化,自主探究,验证猜测。
(材料:圆柱体积木、圆柱体插拼教学具、课件)1、教师出示一个烧杯,烧杯里的水有多少呢?体积你们会算吗?2、提示:(1)以前学过的长方体和正方体的体积,对我们研究圆柱体体积有协助吗?(2)你觉得圆柱的体积和什么相关系?你能猜一猜圆柱的体积怎样计算吗?3、小组合作交流:怎样将圆柱体转化成一个长方体呢?4、小组代表汇报(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)5、演示操作(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的体积教学目标:1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
学情分析:本节教材是在学生会推导圆的面积公式,认识了圆柱,会计算圆柱的侧面积和表面积得基础上,进一步从体积方面丰富学生对圆柱的感受和认识教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法教学前思:。
这部分内容是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。
例4安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。
二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。
三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
练习七的第1题巩固圆柱的体积公式,第2-4题解决实际问题的过程中进一步理解和掌握圆柱的体积公式,感受数学知识的应用价值。
第5题动手操作,把所学知识应用到实际生活,第6-9题,提高应用公式的能力,体会底面积、侧面积、表面积和容积概念及计算中的联系和区别,思考题进一步培养学生的空间想象能力和综合应用数学知识解决实际问题的能力。
教学过程:一、复习引新。
我们以前学过哪些立体图形?生答:长方体和正方体。
它们的体积是怎么求的?长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。
长方体和正方体的体积相等吗?为什么?生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?生答:拼成的物体越来越接近长方体。
追问:为什么?生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?出示讨论题。
1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?板书:长方体体积底面积高圆柱体积底面积高9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?为什么?生答:体积相等,都是用底面积×高。
V=sh三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?2、练一练。
这两题,你打算怎么计算?生答:不知道底面积,要先算出底面积,再乘高。
3.14×2²×5=62.8(平方厘米)3.14×(6÷2)²×8=226.08(平方厘米)3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。
它的容积是多少立方米?问:这道题和前面做的有什么不同?怎么计算?生答:这是求容积的。
所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)²×4(2)3.14×(6÷2)²×7(3)3.14×(5÷2)²×10问:你能不求出结果直接比较出大小吗?生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?3.14×3²×5×1=141.3(千克)141.3千克<150千克答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?给孩子留下思考的痕迹----《圆柱的体积》教学反思《圆柱的体积》这部分内容是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。
自己感觉在这部分内容的教学中应注重学生的探索过程,在充分积累学习经验的基础上得出圆柱体积的计算公式。
但在实际的操作过程中却发现了很多的问题。
1.学生并不能结合之前圆面积计算公式的探索方法来探索圆柱的体积计算方法。
2.并不是每一个学生都能理解圆柱的体积与切割后长方体体积之间的关系。
【反思】一、让操作更详实,留下思考的痕迹《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。
组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。
尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。
但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。
在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。
我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。
毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系数学观察力,是新课标中对提出学生应必备的一种重要数学能力。
学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。
这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。
就如在圆柱的体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。
如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时。