(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档

合集下载

高考数学不等式恒成立问题中的参数求解技巧

高考数学不等式恒成立问题中的参数求解技巧

高考数学不等式恒成立问题中的参数求解技巧第一篇:高考数学不等式恒成立问题中的参数求解技巧不等式恒成立问题中的参数求解技巧在不等式中,有一类问题是求参数在什么范围内不等式恒成立。

恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。

其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。

本文通过实例,从不同角度用常规方法归纳,供大家参考。

一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。

2例1对于x∈R,不等式x-2x+3-m≥0恒成立,求实数m的取值范围。

2解:不妨设f(x)=x-2x+3-m,其函数图象是开口向上的抛物线,为了使f(x)≥0(x∈R),只需22]。

∆≤0,即(-2)-4(3-m)≤0,解得m≤2⇒m∈(-∞,2变形:若对于x∈R,不等式mx+2mx+3>0恒成立,求实数m的取值范围。

2f(x)=mx+2mx+3。

①当m=0时,3>0,显然成立。

②当m>0时,此题需要对m的取值进行讨论,设3)。

则△<0⇒0<m<3。

③当m<0时,显然不等式不恒成立。

由①②③知m∈[0,的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。

22f(x)=ax+bx+c,由aax+bx+c>0关键点拨:对于有关二次不等式(或<0)的问题,可设函数2f(x)=x-2kx+2,在x≥-1时恒有f(x)≥k,求实数k的取值范围。

例2已知函数解:令F(x)=f(x)-k=x-2kx+2-k,则F(x)≥0对一切x≥-1恒成立,而F(x)是开口向上的抛物线。

含参不等式恒成立问题中求参数取值范围的几种常见方法

含参不等式恒成立问题中求参数取值范围的几种常见方法

含参不等式恒成立问题中求参数取值范围的几种常见方法【摘要】:不等式是贯穿高中数学的一根主线,高考对不等式的考察注重与函数相结合.运用函数思想、分类讨论思想、数形结合等思想对问题予以解决,此类问题往往多出现在解答题中,而在某一小问中又多于含参不等式恒成立问题中求参数取值范围形式为主,对此本文就此类恒成立问题中出现的常见方法做出了简单地归纳总结.【关键词】:含参不等式恒成立构造函数法1.二次函数法例1.已知函数,当时,恒成立,求实数的取值范围.解:要使在上恒成立由一元二次函数的性质可知:或解得∴满足题意的实数的取值范围为评注:与二次函数有关恒成立问题通常采用数形结合的方法求解,一元二次不等式在上恒成立,一元二次不等式在上恒成立,不等式在给定区间上恒成立则2.分离变量构造函数法例2.已知函数. 求(1) 的最小值;(2)若对所有 ,恒成立,实数 的取值范围.解:(1)由题意 令 得列表如下:- 0 +极小值∴由上表得(2) 在 上恒成立即 在 上恒成立∴令列表如下:-0+极小值由表得∴实数的取值范围为评注:由不等式恒成立求解参数取值范围的问题也常采用分离参数求最值的方法予以解决,即要使恒成立,只需即可;要使恒成立,只需即可,但应参数便于分离,并且构造的函数便于求最值.3.直接构造函数法例3.(渭南市16级高三市一模)已知函数,设,当时,恒成立,求实数的取值范围.解:由题意得对任意的,恒成立设∴在上恒成立即当时,时,,∴在单调递减,故满足题意当时,当时,∴在单调递减,故也满足题意当时,若,即,在上递减,在上递增,故无最大值,不满足题意若,即,在上递增,无最大值,故也不满足题意综上所述:实数的取值范围为评注:在解决某些含参不等式恒成立问题时,若分离参数会遇到讨论的麻烦或参数容易分离但构造的函数的最值不易求出,此时也可直接构造函数,结合条件求其最值进而确定参数的取值范围.4.变换主元法例4.已知函数,若 .(1)当时,不等式恒成立,求的范围;(2)当时,不等式恒成立,求的取值范围.解:(1)不等式变形为令函数要使,则由一次函数性质可知:解得的取值范围为:(2)∵∴∴不等式可化为又∵∴即的取值范围为评注:解决含参不等式恒成立问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题简化.解决不等式恒成立问题时,通常要借助于函数思想构造出适当的函数,利用函数的性质转化为求函数的最值来求解参数的取值范围.参考文献:[1] 黄艳珍.有关不等式恒成立问题的探析[J].考试(教研版):2008(01).[2] 顾冬梅.不等式恒成立问题的常用解法[J].新课程学习(基础教育):2010(01).[3] 朱峰.不等式恒成立问题中参数范围的求法[J].中学数学研究:2010(02).。

恒成立条件下参数范围的求解策略

恒成立条件下参数范围的求解策略

作用:帮助理解 问题本质,简化 计算过程,提高 解题效率
价值:培养数学 思维,提高数学 素养,为解决实 际问题提供有效 方法
应用:在恒成立 条件下,通过数 形结合,可以更 直观地找到参数 范围,提高解题 准确性。
转化思想在求解策略中的运用与提升
01
转化思想概述:将复杂问题转化为简单问题,便于 求解
应用场景及注意事项
方程不等式与最值问题
A
B
C
D
应用场景:求解线性方 程组、不等式组、线性
规划等问题
注意事项:选择合适的 求解方法,如消元法、
矩阵法等
求解策略:根据问题特 点,选择合适的求解策 略,如穷举法、二分法

结果验证:求解完成后, 需要对结果进行验证, 确保其正确性和有效性
函数单调性与奇偶性
数形结合法是一种将数学问题与 图形相结合的解题方法。
数形结合法适用于求解恒成立条 件下的参数范围等问题。
A
B
C
D
通过将数学问题转化为图形,可 以更直观地理解问题,从而找到
解题思路。
数形结合法可以帮助我们更好地 理解和掌握数学知识,提高解题
能力。
判别式法
原理:利用判别式方 程求解参数范围
步骤:
建立判别式方程
参数范围的应用
数形结合与分类讨论
数形结合:利用 图形直观地表示 问题,便于分析 和求解
分类讨论:根据 问题的特点,将 问题进行分类, 分别讨论
实例分析:通过 具体的实例,展 示数形结合与分 类讨论在求解策 略中的应用
结论:数形结合 与分类讨论是求 解恒成立条件下 参数范围的有效 策略,可以提高 求解效率和准确 性。
主元思想
主元思想是一 种求解线性方 程组的方法, 通过选取一个 主元,将方程 组转化为主元 方程,从而简 化求解过程。

高中数学求参数取值范围题型与方法总结归纳

高中数学求参数取值范围题型与方法总结归纳

参数取值问题的题型与方法一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

解:原不等式即:4sinx+cos2x<45-a -a+5,要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转化成求f(x)=4sinx+cos2x 的最值问题。

f(x)= 4sinx+cos2x=-2sin 2x+4sinx+1=-2(sinx -1)2+3≤3,∴45-a -a+5>3即45-a >a+2,上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a<8. 另解:a+cos2x<5-4sinx+45-a 即a+1-2sin 2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1],整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。

设f(t)= 2t 2-4t+4-a+45-a 则二次函数的对称轴为t=1,∴f(x)在[-1,1]内单调递减。

∴只需f(1)>0,即45-a >a -2.(下同)例3.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,试求APPB的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB =BAx x -,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.思路1: 从第一条想法入手,AP PB =BA x x -已经是一个关系式,但由于有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.解1:当直线l 垂直于x 轴时,可求得51-=PB AP ;当l与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l的方程为:3+=kx y ,代入椭圆方程,消去y得()045544922=+++kx x k,解之得 .4959627222,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得952≥k ,所以51592918112-<-+-≤-k ,综上 511-≤≤-PB AP . 思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于21x x PB AP-=不是关于21,x x 的对称关系式。

含参不等式恒成立问题中_求参数取值范围一般方法-推荐下载

含参不等式恒成立问题中_求参数取值范围一般方法-推荐下载

2
在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,
则可利用分类讨论的思想来解决。
例 3、若 x 2, 2时,不等式 x2 ax 3 a 恒成立,求 a 的取值范围。
解:设 f x x2 ax 3 a ,则问题转化为当 x 2, 2时, f x的最小值非
之间的包含关系来求解,即:m, n f a, g a ,则 f a m 且 g a n ,
不等式的解即为实数 a 的取值范围。

5、当
x
解: 1 loga x 1


1 3
,
3

时,
loga
x
f x min
min
1 恒成立,求实数 a
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

《导数》解答题:三种常见方法解决不等式恒成立求参数范围.doc

《导数》解答题:三种常见方法解决不等式恒成立求参数范围.doc

《导数》解答题:三种常见方法解决不等式
恒成立求参数范围
这是一道与三角函数相关的导数题,先看题吧
第一问是比较常见的已知不等式恒成立,求参数的取值范围问题,此种题型常见的解法有三种
方法一:移项,含参求导,分类讨论,这种方法的难点在于如何搞清楚分类讨论的标准【结合三角函数的图像】方法二:分离参数,转化为函数最值问题,可能需要用到洛必达法则
方法三:利用代入几个特殊值【取交集】,先猜再证
第二问是不等式的证明问题,看似与第一问没关系,但实质上必然要利用第一问的结论【如果用不到的话,出题者也不会把这看似没关系的两个小问放在同一个题目中】,是“暗示”,更是“明示”
利用第一问中的端点值,然后放缩,还需结合到等差数列的前n项和。

求不等式恒成立问题中参数的取值范围的“妙招”

求不等式恒成立问题中参数的取值范围的“妙招”

思路探寻思路探寻式恒成立问题中参数的取值范围时,可将“数”与“形”结合起来,根据代数式的几何意义画出几何图形,借助图形来讨论不等式成立的条件,从而达到解题的目的.在研究图形时,要关注一些极端情形,以及临界的情形,如相交、相切等.例4.设x ∈[-4,0],若不等式x (-4-x )<43x +1-a 恒成立,求a 的取值范围.解:设y 1=x (-4-x ),则(x +2)2+y 21=4(y 1≥0),该式可表示是如图所示的上半圆.设y 2=43x +1-a ,其图象为直线.由图可知,要使不等式恒成立,需使半圆始终在直线的下方,即使圆心(-2,0)到直线4x -3y +3-3a =0的距离d =|-8+3-3a|5>2,且1-a >0,可得a <-5,即a 的取值范围为()-∞,-5.我们将y 1=x (-4-x )看作上半圆,将y 2=43x +1-a 看作一条直线,将问题转化为求使半圆恒在直线下方时的a 的取值范围.根据图形找出临界情形:圆与直线相切,求得此时a 的取值范围,即可解题.借助图象分析问题,不仅可以使解题变得更加简单,还会使解题思路更加明朗.四、分类讨论在求不等式恒成立问题中参数的取值范围时,经常要用到分类讨论法对参数进行分类讨论.在解题时,要首先明确参数对不等式的影响,确定分类的标准;然后分几类情况对问题进行讨论,求得每种情况下的结果;最后汇总所得的结果.例5.当x ∈[2,8]时,不等式log 2a -1x >-1恒成立,求a 的取值范围.解:(1)当2a 2-1>1时,由题意知12a 2-1<x 恒成立,即12a 2-1<x min ;因为x ∈[2,8],所以12a 2-1<2,解得a ∈(-∞,-1)⋃(1,+∞);(2)当0<2a 2-1<1时,由题意知12a 2-1>x 恒成立,即12a 2-1>x max ;因为x ∈[2,8],所以12a 2-1>8,解得a ∈(-34,-)⋃(34);故a∈(-∞,-1)⋃(-34,-)⋃(34)⋃(1,+∞).根据对数函数的性质,可知需分2a 2-1>1和0<2a 2-1<1两种情况进行讨论,才能求得参数a 的取值范围.在进行分类讨论时,要有明确的讨论思路,逐层逐级进行讨论,避免出现遗漏或重复讨论某种情况.五、利用判别式在求二次不等式恒成立问题中参数的取值范围时,可把问题化为一元二次不等式在实数集上恒成立的问题,用判别式法求解.一般地,二次函数f (x )=ax 2+bx +c 恒大于0⇔ìíîa >0,Δ<0,f (x )=ax 2+bx +c 恒小于0⇔{a <0,Δ<0.据此建立关于参数的不等式,解该不等式即可求得参数的取值范围.例6.若不等式2x 2+2mx +m4x 2+6x +3<1对一切x ∈R 恒成立,求实数m 的取值范围.解:因为4x 2+6x +3=(2x +32)2+34>0在R 上恒成立,所以2x 2+2mx +m4x 2+6x +3<1⇔2x 2+2mx +m <4x 2+6x +3⇔f (x )=2x 2+(6-2m )x +3-m >0;要使得f (x )恒大于0,需使Δ=(6-2m )2-8(3-m )<0,解得1<m <3,故实数m 的取值范围为m ∈(1,3).由于4x 2+6x +3>0在R 上恒成立,于是原问题可转化为一元二次函数f (x )=2x 2+(6-2m )x +3-m 在R 恒大于0的问题,由二次函数的图象可知当a >0时,Δ<0,用判别式法即可解题.虽然由恒成立的不等式求参数的取值范围问题较为复杂,但是同学们只要熟练掌握上述五种求解思路,明确其适用条件,根据解题需求选用合适的方法、思路进行求解,就能有效地提升解题的效率.本文系2021年度云南省教育科学规划单位资助课题“基于深度学习的高中数学课堂教学策略研究”(课题批准号:BE21028)阶段性研究成果.(作者单位:云南省曲靖市民族中学)53。

高中数学恒成立问题中含参范围的求解策略

高中数学恒成立问题中含参范围的求解策略

恒成立问题中含参范围的求解策略周云才数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。

一、分离参数——最值化对于某些恒成立问题,可将其中的参数分离出来,将原问题转化为)x (f a >(或)x (f a <)在给定区间上恒成立max )x (f a >⇔(或min )x (f a <),从而将原问题转化为求函数的最大值或最小值问题。

例1 当]1,(x -∞∈时,不等式0124)a a (x x 2>++-恒成立,求实数a 的取值范围。

解析:因04x >,所以x x 22141a a ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛->-对]1,(x -∞∈恒成立,即有max x x22141a a ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛->-,由于x x 2141)x (f ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=在]1,(-∞上是增函数,所以当1x =时,432141)x (f 11max -=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=,所以.23a 2103a 4a 443a a 22<<-⇒<--⇒->-例2 设c b a >>且ca m cb 1b a 1-≥-+-恒成立,求实数m 的取值范围。

解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫ ⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a ( .4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。

恒成立问题中参数范围的求解方法

恒成立问题中参数范围的求解方法

恒成立问题中参数范围的求解方法摘要:恒成立问题,在高中数学中较为常见。

这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,实际上只要紧紧“抓住题型”,这类求恒成立时的参数范围将迎刃而解。

关键词:恒成立;参数范围;取值范围;求解方法恒成立问题,在高中数学中较为常见。

这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

此类问题解法灵活、综合性强,部分考生常感到无从下手,茫然不知所措,那么到底如何解决这类问题呢?实际上只要紧紧“抓住题型”,这类求恒成立时的参数范围将迎刃而解。

一、数形结合数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。

我们知道,函数图象和不等式有着点评:在不等式中出现了两个字母及,而我们都习惯把看成是一个变量,作为常数。

本题可以转换视角,可将视作自变量,则上述问题即可转化为在某一范围内关于的一次函数大于恒成立的问题。

此类题本质上是利用了一次函数在闭区间上的图象是一条线段,故只需保证该线段两端点均在x轴上方(或下方)即可。

三、化归二次函数法根据题目要求,构造二次函数。

结合二次函数实根分布等相关知识,求出参数取值范围。

点评:分离参数后,方向明确,思路清晰能使问题顺利得到解决。

由上可见,含参不等式恒成立问题因其覆盖知识点多,方法也多种多样,但其核心思想还是等价转化,抓住了这点,才能以“不变应万变”,当然这需要我们不断的去领悟、体会和总结。

作者简介:范增康,任教于河南省三门峡市陕县陕州中学。

作者单位:河南省三门峡市陕县陕州中学邮政编码:472000。

恒成立问题中参数范围的求解方法

恒成立问题中参数范围的求解方法

恒成立问题中参数范围的求解方法作者:范增康来源:《中学课程辅导·教学研究》2013年第13期摘要:恒成立问题在高中数学中较为常见。

这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,实际上只要紧紧抓住“题型”,这类求恒成立时的参数范围的问题便将迎刃而解。

关键词:恒成立;参数范围;取值范围;求解方法中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2013)13-0123恒成立问题,在高中数学中较为常见。

这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

此类问题解法灵活、综合性强,部分考生常感到无从下手,茫然不知所措,那么到底如何解决这类问题呢?实际上只要紧紧抓住“题型”,这类求恒成立时的参数范围的题目便将迎刃而解。

一、数形结合数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。

我们知道,函数图象和不等式有着密切的联系:1. f(x)>g(x)函数f(x)图象恒在函数g(x)图象上方;2. f(x)函数f(x)图象恒在函数图象g(x)下上方。

例1. 设x∈[0,4],若不等式≥ax恒成立,求a的取值范围。

解析:设y1=x(4-x),则(x-2)2+y2=4(y1≥0),它表示的是圆心为(2,0),半径为2的半圆(如图所示)。

另设y2=ax,它的几何意义是一条经过原点,斜率为a的直线,将两者图象画在同一坐标系下,根据不等式≥ax的几何意义,要使得半圆恒在直线l的上方(包括相交),当且仅当时a例2.设f(x)=, g(x)=x+1-a,若恒有f(x)≤g(x)成立,求实数a的取值范围。

解析:在同一直角坐标系中作出f(x)及g(x)的图象,如图所示,f(x)的图象是半圆(x+2)2+y2=4(y≥0),g(x)的图象是平行的直线系4x-3y+3-3a=0。

高中含参不等式的恒成立问题整理版

高中含参不等式的恒成立问题整理版

三在x [句 ]
上恒成立
b 2a

b 2a

b 2a

f 心理 三 三
f 心 理 三
f
心x理
三在x
[ 句
]
上恒成立
f f
心 理 心理
三 三
(2)当
a
三 时,
f
心x理
三在x
[ 句
]
上恒成立
f f
心 理 心理
三 三
f
心x理
三在x
[句 ]
上恒成立
b 2a

b 2a
分析:若将不等号两边分别设成两个函数,则左边为二次函数,右边为对数函数,故可以采用数形结合借助图象
位置关系通过特指求解 a的取值范围。
解:设 T:f (x) =(x 1)2 ,T:g(x) log x ,则 T的图象为右图所示的抛物线,要使对一切 x (1,2f)(x,) <g(x)
1
2
a
1
恒成立即 T的图象一定要在 T的图象所的下方,显然 a>1并,且必须也只需 g(2) f (2)
解:要使 (a 2)x 2 2(a 2)x 4 0 对于 x R恒成立,则只须满足:
a 2 0 (1) 4(a 2)2 16(a 2) 0 或
a 2 0 (2) 2(a 2) 0
4 0
a 2 解(1)得 2 a 2
,解(2) a =2
∴参数 a 的取值范围是-2< a 2.
的最值问题:
若对于 取值范围内的任一个数都有
恒成立,则

若对于 取值范围内的任一个数都有
恒成立,则
.

1.已知函数
f

高中数学恒成立问题中参数范围的求法

高中数学恒成立问题中参数范围的求法

一、变换主元法
2
例1、已知函数f(x)=x+(a-6)x+9-3a,当-1≤a≤1时,f(x)>0恒成立,求x的取值范围。

二、判别式法
2 2
例2、已知函数f(x)=lg[x+(a-1) x+a 的定义域是实数集R,求实数a的取值范围
三、分离参数法例3、不等式x+ax+1≥0,对x (0, ]恒成立,求实数a 的取值范围221
四、利用根的分布例4(同例3)、不等式x+ax+1≥0,对x (0, ]恒成立,求实数a 的取值范围
212
五、数形结合法
x
例5、若函数f(x)=a-x-a(a>0,且a≠1)恒有两个零点,求实数a的取值范围
2
例6、当1<x<2时,不等式(x-1)<logx恒成立,求实数a的取值范围
六、根据函数的奇偶性、周期性等性质•若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)•(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T,则对一切定义域•中的x,f(x)=f(x+T)恒成立。

分析:告诉我们偶函数的条件,即相当于告诉我们一个恒成立问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒成立问题中含参范围的求解策略数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。

一、分离参数——最值化1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值.例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+−2>1在x ∈[2 ,+∞)上恒成立,即a>−+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=−+ ,当x=2时,=2 ,所以a>22在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值范围.问题还是转化为函数求最值.例2 已知x ∈(−∞ ,1]时,不等式1++(a −)>0恒成立,求a 的取值范围.解 令=t ,∵x ∈(−∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为<,要使上式在t ∈(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)==+=− 又t ∈(0 ,2] ∴∈[) ∴=f(2)=∴< , ∴−<a<例3 设c b a >>且ca mc b 1b a 1-≥-+-恒成立,求实数m 的取值范围。

解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (.4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。

二、数形结合——直观化对于某些不容易分离出参数的恒成立问题,可利用函数的图像或相应图形,采用数形结合的思想,直观地反应出参数的变化范围。

例4 设])1k 2,1k 2(I ,I x ()k 2x ()x (f k k 2+-∈-=表示区间,对于任意正整数k ,直线ax y =与)x (f 恒有两个不同的交点,求实数a 的取值范围。

解析:作出2)k 2x ()x (f -=在区间]1k 2,1k 2(+-上的图像,由图像知,直线ax y =只能绕原点O 从x 正半轴旋转到过点)1,1k 2(A +的范围,直线AO 的斜率为,1k 2101k 201+=-+-于是实数a 的取值范围是.1k 21a 0+≤<例5、当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,求a 的取值范围。

分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。

解:设y 1=(x-1)2,y 2=log a x,则y 1的图象为右图所示的抛物线,要使对一切x ∈(1,2),y 1<y 2恒成立,显然a>1,并且必须也只需当x=2时y 2的函数值大于等于y 1的函数值。

故log a 2>1,a>1,∴1<a ≤2.数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。

例6、若不等式23log 0a x x -<在10,3x ⎛⎫∈ ⎪⎝⎭内恒成立,求实数a 的取值范围。

解:由题意知:23log a x x <在10,3x ⎛⎫∈ ⎪⎝⎭内恒成立,在同一坐标系内,分别作出函数23y x =和log a y x =观察两函数图象,当10,3x ⎛⎫∈ ⎪⎝⎭时,若1a >函数log a y x =的图象显然在函数23y x =图象的下方,所以不成立;当01a <<时,由图可知,log a y x =的图象必须过点11,33⎛⎫ ⎪⎝⎭或在这个点的上方,则,11log 33a ≥ 127a ∴≥1127a ∴>≥ 综上得:1127a >≥三、变更主元——简单化对含多个变量问题,有时变换主元与次元的位置,常能达到避繁就简的目的。

例7对于满足≤2的所有实数p,求使不等式恒成立的x 的取值范围. 分析:在不等式出现了两个字母x 及p,关键在于把哪个字母看成一个变量.另一个作为常数.显然可将p 视作自变量,则上述问题可转化为在[-2 ,2]内关于p 的一次函数大于0恒成立问题.解:原不等式可化为(x −1)p+−2x+1>0 .设f(p)= (x −1)p+−2x+1,则 f(p)在[−2 ,2] 上恒大于0,故有 即解得例8对于]1,1[a -∈,不等式1a x 2axx 21212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛恒成立,求实数x 的取值范围。

解析:不等式⇔⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛-++1a x 2axx 21212不等式1a x 2ax x 2-+>+即)1x (a )1x (2-->-对于]1,1[a -∈恒成立。

记2)1x ()1x (a )a (f -+-=,则问题转化为一次函数(或常数函数)在区间[-1,1]内恒为正的x 应满足的条件。

由⎩⎨⎧>>-0)1(f 0)1(f 得 0x 0)1x ()1x (0)1x ()1x (22<⇔⎪⎩⎪⎨⎧>-+->---或.2x > 故实数x 的取值范围是 ).,2()0,(+∞-∞Yx yo 1 2y 1=(x-1)2 y 2=log a x恒成立问题中含参范围的求解策略较多,但主要有以上三种常见方法,其实质是一种等价转化的思想,可见,只要我们在解题中善于归纳和总结,就一定会积累更多的经验和方法,从而更好地提高我们的解题能力。

四、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有10)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ; 20)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例9.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。

所以实数a 的取值范围为),31()1,(+∞--∞Y 。

若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

例10.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。

解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立; 当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。

综上可得实数m 的取值范围为)1,3[-。

五、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。

例3、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。

解:设()23f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。

(1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ⎛⎫=-=--≥ ⎪⎝⎭62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤(3) 当22a-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-综上所得:72a -≤≤六、利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围。

例5、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围。

解:1log 1a x -<<Q(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩3a ∴≥(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤综上所得:103a <≤或3a ≥易混题㈠、能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A>;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B<.例1、已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______(答:1a >)例2、若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .第二个填空是不等式能成立的问题. 设()a ax x x f --=2.则关于x 的不等式32-≤--a ax x 的解集不是空集()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f ,即(),3442min -≤+-=a a x f 解得6a ≤-或2a ≥ 例3、已知函数()x x f ln =,()bx ax x g +=221,0≠a . 若2=b ,且()()()x g x f x h -=存在单调递减区间,求a 的取值范围;分析及解只研究第(I )问.x ax x x h b 221ln )(,22--==时, 则.1221)(2xx ax ax x x h -+-=--=' 因为函数()h x 存在单调递减区间,所以()0h x '<有解.由题设可知,()x h 的定义域是()+∞,0 ,而()0<'x h 在()+∞,0上有解,就等价于()0<'x h 在区间()+∞,0能成立,即x x a 212->, ()+∞∈,0x 成立, 进而等价于()x u a min>成立,其中()xx x u 212-=. 由()x xx u 212-=1112-⎪⎭⎫⎝⎛-=x 得,()1min -=x u .于是,1->a ,由题设0≠a ,所以a 的取值范围是()()+∞-,00,1Y例4、不等式220kx k +-<有解,求k 的取值范围。

相关文档
最新文档