高三文科数学数列专题
2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)
数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.4(2023·湖南邵阳·统考三模)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n a n +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .5(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .2【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=1(2021·山东济宁市·高三二模)已知数列{a n}是正项等比数列,满足a3是2a1、3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;log,求数列{b n}的前n项和T n.(2)若b n=-1n⋅2a2n+12【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.n n+13(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.2(2022·湖北省鄂州高中高三期末)已知数列a n前n项和满足a1=1,a n+a n+1=2n;数列b n为S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。
高考文科数学数列经典大题训练(附答案)
1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
高三数列知识点与题型总结文科
数列考点总结第一部分求数列的通项公式一、数列的相关概念与表示方法见辅导书 二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式;等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法;求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列;求数列通项的基本方法是:累加法和累乘法; 一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一;若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式; 例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中fn 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若fn 是关于n 的一次函数,累加后可转化为等差数列求和; ②若fn 是关于n 的二次函数,累加后可分组求和;③若fn 是关于n 的指数函数,累加后可转化为等比数列求和; ④若fn 是关于n 的分式函数,累加后可裂项求和;例3.已知数列}{n a 中,0>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.练习3已知数列{}n a 满足112,12nn n a a a a +==+,求数列{}n a 的通项公式;二、累乘法 1、适用于:1()n na f n a +=累乘法是最基本的二个方法之二;若1()n n a f n a +=,则31212(1)(2)()n na aa f f f n a a a +===,,,两边分别相乘得,1111()nn k a a f k a +==⋅∏例4已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式;例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n n=1,2,3,…,则它的通项公式是n a =________. 三、待定系数法适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数; 1.形如(,1≠+=+c d ca a n n ,其中a a =1型1若c=1时,数列{n a }为等差数列; 2若d=0时,数列{na }为等比数列;3若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系dca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法阶差法:有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a n n n -=-+,再利用类型1即可求得通项公式.我们看到此方法比较复杂.例6、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a的通项公式;2.形如:nn n q a p a +⋅=+1其中q 是常数,且n ≠0,1①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:i.两边同除以1+n p .目的是把所求数列构造成等差数列即:nnn n n qp p q a p a )(111⋅+=++,令n n n p a b =,则n n n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q .目的是把所求数列构造成等差数列;即:qq a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构造成等差数列设)(11n n n n p a p q a ⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p ≠q,否则待定系数法会失效; 例7、已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式;练习3.2009陕西卷文已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;Ⅱ求{}n a 的通项公式;答案:1{}n b 是以1为首项,12-为公比的等比数列;21*521()()332n n a n N -=--∈;总结:四种基本数列 1.形如)(1n f a a n n =-+型等差数列的广义形式,见累加法;2.形如)(1n f a a n n =+型等比数列的广义形式,见累乘法;3.形如)(1n f a a n n =++型1若da a n n =++1d 为常数,则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法两式相减得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.4.形如)(1n f a a n n =⋅+型1若pa a n n =⋅+1p 为常数,则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例8.数列{na }满足01=a ,na a n n 21=++,求数列{an}的通项公式.例9.已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列的通项公式.第二部分数列求和一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: 11+2+3+4+…+n =; 21+3+5+7+…+2n -1=n 2;32+4+6+8+…+2n=n2+n.二、非等差、等比数列求和的常用方法1.倒序相加法如果一个数列{a n},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,等差数列的前n项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,等比数列的前n项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.小题能否全取1.2012·沈阳六校联考设数列{-1n}的前n项和为S n,则对任意正整数n,S n=2.等差数列{a n}的通项公式为a n=2n+1,其前n项的和为S n,则数列的前10项的和为A.120 B.70C.75 D.1003.数列a1+2,…,a k+2k,…,a10+20共有十项,且其和为240,则a1+…+a k+…+a10的值为A.31 B.120C.130 D.1854.若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为________.5.数列,,,…,,…的前n项和为________.例1等比数列{a n}中,a123,且a1,a2,a3中的任何两个数不在下表的同一列.1求数列{a n}2若数列{b n}满足:b n=a n+-1n ln a n,求数列{b n}的前2n项和S2n...例2 已知数列{a n}n2a6=8a3.1求a n;2求数列{na n}的前n项和T n.2.已知等比数列{a n}的前n项和为S n,且满足S n=3n+k.1求k的值及数列{a n}的通项公式;2若数列{b n}满足=4+ka n b n,求数列{b n}的前n项和T n.T n=.例3 已知数列{a n}n1n n1求数列{a n}的通项公式;2设b n=,求数列{b n}的前n项和T n.3.在等比数列{a n}中,a1>0,n∈N,且a3-a2=8,又a1、a5的等比中项为16.1求数列{a n}的通项公式;2设b n=log4a n,数列{b n}的前n项和为S n,是否存在正整数k,使得+++…+<k对任意n∈N恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.课后练习题1.已知数列{a n}的前n项和S n=n2-6n,则{|a n|}的前n项和T n=A.6n-n2B.n2-6n+182.若数列{a n}满足a1=2且a n+a n-1=2n+2n-1,S n为数列{a n}的前n项和,则log2S2012+2=________.3.已知递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.1求数列{a n}的通项公式;2若b n=a n log a n,S n=b1+b2+…+b n,求S n.4.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.1求数列{a n}的通项;2求数列{2a n}的前n项和S n.S n=2n+1-2.2.设函数fx=x3,在等差数列{a n}中,a3=7,a1+a2+a3=12,记S n=f,令b n=a n S n,数列的前n项和为T n.1求{a n}的通项公式和S n;2求证:T n<.3.已知二次函数fx=x2-5x+10,当x∈n,n+1n∈N时,把fx在此区间内的整数值的个数表示为a n.1求a1和a2的值;2求n≥3时a n的表达式;3令b n=,求数列{b n}的前n项和S n n≥3.5-.。
高考文科数学大题专题练习 (3)
第7页
3.(2019·长郡中学月考)设数列{an}的前n项和为Sn,且Sn= n2-n+1,在正项等比数列{bn}中,b2=a2,b4=a5.
(1)求{an}和{bn}的通项公式; (2)设cn=anbn,求数列{cn=S1=1; 当n≥2时,an=Sn-Sn-1=(n2-n+1)-[(n-1)2-(n-1)+1]
第6页
b1=3对上式也成立,所以bn=n(n+2),即
1 bn
=
1 n(n+2)
=
121n-n+1 2,
所以Tn=
1 2
[
1-13
+
12-14
+
13-15
+…+
n-1 1-n+1 1
+
1n-n+1 2]=12(1+12-n+1 1-n+1 2)=34-2(n+21n)+(3n+2).
第14页
5.(2019·郑州市第一次质量预测)已知数列{an}为等比数 列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式; (2)令cn=bn·4bn+1+an,求数列{cn}的前n项和Sn.
第15页
解析 (1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)= 12,∴a1a2a3=212.
设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2= 26·q3=212,解得q=4,∴an=4·4n-1=4n.
高三文科数学第一轮复习数列专题.docx
数列专题姓名: _____________ (一)数列求和学号: _____________1.公式法。
(直接用等差、等比数列的求和公式求和)n(a 1a n )n(n 1)na 1 (q 1)na 1 ; S nn ) (q 1)S n22da 1 (1 q公比含字母时一定要讨论1 q例 1(1):已知等差数列.... { a n } 满足 a 1 1, a 23 ,求前 n 项和 S n .例 1(2):已知等比数列.... { a n } 满足 a 11, a 2 3 ,求前 n 项和 S n .练习 1( 1) .设 f (n)2 2427210L23 n 10 ( nN ) ,则 f (n) 等于()A. 2(8n1) B.2 (8n 1 1) C.2(8n 3 1)D. 2 (8n 41)777 7练习 1( 2) . 求和: 1+ 3 + 7 + 9 + K + (2 n - 1)2.分组求和法c n = a n + b n , a n 、 b n 是等差或等比数列,则采用分组求和法1111 例 3:求数列1, 2+, 3+ , 4++⋯ + nn 1 的前 n 项和 S n .2 482练习 2(1):已知数列 { a n } 是 3+ 2-1,6+ 22- 1,9+ 23- 1,12+24 -1,⋯,写出数列 { a n } 的通项公式并求其前 n 项和 S n .练习 2( 2):求和: (2 - 3? 5- 1 ) (4 - 3? 5- 2 ) L + (2 n - 3? 5- n ) .3.错位相减法:(乘以式中的公比q ,然后再进行相减) a n等差 , b n等比 , 求 a1b1 a 2b2a n b n的和 .例 3.求和S n 1 2x 3x2L nx n 1( x 1 0 )(提示:分类讨论, x1和 x 1 两种情况)练习 3( 1)化简:S n 1 21 2 2 2n2n123n练习 3(2) .求和:S n23na a a a练习3(3). 设{ a n}是等差数列,{b n } 是各项都为正数的等比数列,且a1b1 1 , a3b521 ,a5 b3 13 (Ⅰ)求 { a n} , { b n } 的通项公式;(Ⅱ)求数列a n的前 n 项和S n.b n4.裂项相消法 ( 把数列的通项拆成两项之差、正负相消剩下首尾若干项)常见拆项:1 11;1 1 ( 1 1 ) 1= 1 ( 1- 1 )n(n 1) nn 1n(n2)2 n n 2 ; n(n + k) k n n + k11111111]()[(2n 1)( 2n 1) 2 2n 1 2n 1 ; n(n 1)( n2) 2 n(n 1) ( n 1)(n2)例 4(1).数列 { a n } 的前 n 项和为 S n ,若 a n1,则 S 5 等于( )n(n 1)A . 1B .5C .1D .16630例 4(2) . 已知数列 { a n } 的通项公式为 a n1,求前 n 项的和.nn11,求前 n 项的和.练习 4( 1).已知数列 { a n } 的通项公式为 a nn(n 1)练习 4( 2).若数列的通项公式为 b n1n 项和为 _________.,则此数列的前 (2n1) (2n 1)练习 4( 3)已知数列a n: 1 ,12 , 1 23 , ⋯ , 1 2 3 L 9, ⋯ , 若 b n 1,23 34 4410 10 1010a nan 1那么数列 b n 的前 n 项和 S n 为()A .n B. 4n C.3n D. 5n n1n 1n 1n 1练习 4( 4).已知数列 { a n } 的通项公式为 a n =n1,设 T n11 L1 ,求 T n .2a 1 a 3a 2 a 4a nan 2练习 4( 5).求 11 1 14 1,(n N * ) 。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高三数学数列文科知识点和高考题专练
数列一、基本概念:1、数列:一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数。
数列的通项公式也就是相应函数的解析式。
有穷数列:_____________________________; 无穷数列:___________________________. 递增数列:_____________________________; 递减数列:___________________________. 常数列:_______________________________. 摆动数列:___________________________. 数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.2、等差数列:从第2项起,每一项与它的前一项的差等于同一个常数。
这个常数称为等差数列的公差.定义1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥,其中d 为公差.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d -=+;⑤nm a a d n m-=-.等差数列的前n 项和:①()12n n n a a S +=;②()112n n n S na d -=+. 3、等差数列的性质:1) 当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和1(1)2n n n S na d -=+21()22d d n a n =+-是关于n 的二次函数常数项0.2)若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.3) 若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).4) 当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a += 4、等比数列:从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比. 定义1(n n a q q a +=为常数),其中0,0n q a ≠≠或11n n n n a aa a +-=(2)n ≥,其中q 为公比.等比中项:在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.通项公式的变形:①n m n m a a q -=;②()11n na a q --=;③11n na q a -=;④n m n m a q a -=.等比数列{}n a 的前n 项和:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.6、等比中项的性质: 1) 若项数为()*2n n ∈N ,则S q S =偶奇.2)n n m n m S S q S +=+⋅.3) n S ,2n n S S -,32n n S S -成等比数列.4) 若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.二、基本运算:1、数列的通项的求法:1) 公式法:①等差数列通项公式;②等比数列通项公式。
高三数列知识点与题型总结(文科)说课讲解
数列考点总结第一部分求数列的通项公式一、数列的相关概念与表示方法(见辅导书)二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
求数列通项的基本方法是:累加法和累乘法。
一、累加法1.适用于:1()nna a f n ----------这是广义的等差数列累加法是最基本的二个方法之一。
若1()nn a a f n (2)n ,则21321(1)(2)()nna a f a a f a a f n 两边分别相加得111()nnk a a f n 例1已知数列{}n a 满足11211nn a a n a ,,求数列{}n a 的通项公式。
例2已知数列{}n a 满足112313nnn a a a ,,求数列{}n a 的通项公式。
练习1.已知数列n a 的首项为1,且*12()nna a n n N 写出数列n a 的通项公式.答案:12n n练习 2.已知数列}{n a 满足31a ,)2()1(11n n n a a nn ,求此数列的通项公式.答案:裂项求和na n12评注:已知a a 1,)(1n f a a nn,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
例3.已知数列}{n a 中, 0n a 且)(21nnna n a S ,求数列}{n a 的通项公式.练习3 已知数列{}n a 满足112,12nnn a a a a ,求数列{}n a 的通项公式。
高三文科数学数列专题复习共17页文档
12(1)变式
本次统考理9:已知等差数列 an 的前n项和为 S n , 若M、N、P三点共线,O为坐标原点,且 ONa15OM a6OP
(直线MP不过点O),则 S 20 等于(B )
A.15 B.10 C.40 D. Nhomakorabea0本次统考理20:已知数列
bn 满足
第一课时 等差数列与等比数列 一、基础自测
二轮P47 1、2、3、4、5 P51 1、2、3、4、7、8
小结: 1、基本量 a1、d(q) 2、准确运用通项公式、求和公式
注:等差等比求和公式的运用条件与特点 3、等差等比数列的性质
二、典例分析 二轮P49 例2 变式训练 例3 变式训练
三、体验高考 巩固提高
三、体验高考 巩固提高
二轮P59 6、7 P60 10 二轮P63 2 P64 5
小结: 1、 2、
3、
END
bn1
11 2bn 4
且 b1
7 2
,Tn
为 bn 的前n项和。
求证:数列
b
n
1 2
是等比数列,并求
bn
、T n
第二课时 数列通项与求和
一、基础自测 二轮P53 1、2、3、4
二轮P59 1、2、3、4 二轮P60 9、10 二、典例分析 二轮P55 例1 变式训练
高考文科数学数列专题讲解及高考真题精选(含答案)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n =⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列1.数列的有关概念:(1) 数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数N*或它的有限子集{1,2,3,…,n }上的函数。
(2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
如:221n a n =-。
(3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n -1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩ 5.等差数列与等比数列对比小结:等差数列等比数列一、定义1(2)n n a a d n --=≥1(2)nn a q n a -=≥ 二、公式1.()11n a a n d =+-()(),n m a a n m d n m =+->2.()12n n n a a S +=()112n n na d -=+1.11n na a q -=,()n m n m a a q n m -=-2.()()()11111111n n nna q S a q a a qq qq =⎧⎪=-⎨-=≠⎪--⎩ 三、性质1.,,2a b c b a c ⇔=+成等差,称b 为a 与c 的等差中项2.若m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+3.n S ,2n n S S -,32n n S S -成等差数列1.2,,a b c b ac ⇔=成等比,称b 为a 与c 的等比中项2.若m np q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅3.n S ,2n n S S -,32n n S S -成等比数列6.在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值。
高中数学数列中的奇偶项问题(解析版)精选全文完整版
数列中的奇偶项问题一、真题剖析【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=_____ ________【试题情景】本题属于课程学习情景,本题以数列中的两项之间的关系为载体,考查数列中的项。
【必备知识】本题考查数列中的递推公式以及通项公式,并项求和等问题·【能力素养】本题考查空间想象能力、逻辑思维能力和运算能力,考查的学科素养是理想思维和数学探索,对n为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a1表示,由偶数项递推公式得出偶数项的和,建立a1方程,求解即可得出结论.【答案】7【解析】a n+2+(-1)n a n=3n-1,当n为奇数时,a n+2=a n+3n-1;当n为偶数时,a n+2+a n=3n-1.设数列a n的前n项和为S n,S16=a1+a2+a3+a4+⋯+a16=a1+a3+a5⋯+a15+(a2+a4)+⋯(a14+a16)=a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)+(5+17+29+41)=8a1+392+92=8a1+484=540,∴a1=7.故答案为:7.二、题型选讲题型一、分段函数的奇偶项求和例1.(2022·南京9月学情【零模】)(本小题满分10分)已知正项等比数列{a n}的前n项和为S n,S3= 7a1,且a1,a2+2,a3成等差数列.(1)求{a n}的通项公式;(2)若b n=a n,n为奇数,n,n为偶数,求数列{bn}的前2n项和T2n.【解析】(1)因为数列{a n}为正项等比数列,记其公比为q,则q>0.因为S3=7a1,所以a1+a2+a3=7a1,即a3+a2-6a1=0,因此q2+q-6=0,解得q=2或-3,从而q=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又a1,a2+2,a3成等差数列,所以2(a2+2)=a1+a3,即2(2a1+2)=a1+4a1,解得a1=4.因此a n=4×2n-1=2n+1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)因为b n=a n,n为奇数,n,n为偶数,所以T2n=(b1+b3+⋯+b2n-1)+(b2+b4+⋯+b2n)=(a1+a3+⋯+a2n-1)+(2+4+⋯+2n)=(22+24+⋯+22n)+(2+4+⋯+2n))⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分=4×1-4n1-4+(2+2n)n2=n2+n+4n+1-43.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分变式1.(2022·江苏南京市金陵中学高三10月月考)已知等差数列{a n}前n项和为S n(n∈N+),数列{b n}是等比数列,a1=3,b1=1,b2+S2=10,a5-2b2=a3.(1)求数列{a n}和{b n}的通项公式;(2)若c n=2S n,n为奇数b n,n为偶数,设数列{c n}的前n项和为T n,求T2n.【答案】(1)a n=2n+1,b n=2n-1;(2)1+22n+13-12n+1.【解析】【分析】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q(q≠0),根据等差等比数列通项公式基本量的计算可得结果;(2)求出S n=n(3+2n+1)2=n(n+2),代入可得c n=2n(n+2)=1n-1n+2,n为奇数2n-1,n为偶数,再分组求和,利用裂项求和和等比数列的求和公式可求得结果.【详解】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q(q≠0),∵a1=3,b1=1,b2+S2=10,a5-2b2=a3,∴q+3+3+d=103+4d-2q=3+2d ,∴d=2,q=2,∴a n=2n+1,b n=2n-1;公众号:高中数学最新试题(2)由(1)知,S n=n(3+2n+1)2=n(n+2),∴c n=2n(n+2)=1n-1n+2,n为奇数2n-1,n为偶数,∴T2n=1-13+13-15+⋅⋅⋅+12n-1-1 2n+1+(21+23+25+⋅⋅⋅+22n-1)=1-12n+1+2(1-4n) 1-4=1+22n+13-12n+1.变式2.(2022·山东·潍坊一中模拟预测)已知数列a n满足a12+a222+⋅⋅⋅+a n2n=n2n.(1)求数列a n的通项公式;(2)对任意的n∈N∗,令b n=2-n,n为奇数22-n,为偶数,求数列bn的前n项和S n.【解析】(1)当n=1时,得a12=12,解得a1=1;当n≥2时,可得a12+a222+⋅⋅⋅+a n2n=n2n①a1 2+a222+⋅⋅⋅+a n-12n-1=n-12n-1②,由①-②,得a n2n=n2n-n-12n-1=2-n2n,a n=2-n,当n=1时,a1=2-1=1也符合,所以数列a n的通项公式为a n=2-n.(2)由(1)知b n=2-n,n为奇数22-n,为偶数.当n为偶数时,S n=1+-1+-3+⋅⋅⋅+2-n-1+20+2-2+⋅⋅⋅+22-n=1+3-nn22+1-14 n21-14=4-nn4+431-12n=-3n2+12n+1612-13×2n-2;当n为奇数时,S n=S n+1-b n+1=-3n+12+12n+1+1612-13×2n-1-21-n=-3n2+6n+2512-43×2n-1.综上所述,S n =-3n 2+6n +2512-43×2n -1,n 为奇数-3n 2+12n +1612-13×2n -2,n 为偶数 .变式3.(2022·湖南省雅礼中学开学考试)(10分)已知数列{a n }满足n 2a n +12+12,为正奇数,2a n 2+n 2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由.(2)求证:数列a 2n2n是等差数列,并求数列{a 2n}的通项公式.【解析】(1)由题意可知,a 1=12a 1+12+12=12a 1+12,所以a 1=1,a 2=2a 22+22=2a 1+1=3,a 3=32a 3+12+12=32a 2+12=5,a 4=2a 42+42=2a 2+2=8,因为a 3-a 2=2,a 4-a 3=3,a 3-a 2≠a 4-a 3,所以数列{a n }不是等差数列.又因为a 2a 1=3,a 3a 2=53,a2a 1≠a 3a 2所以数列{a n }也不是等比数列.(2)法一:因为对任意正整数n ,a 2n +1=2a 2n+2n ,a 2n +12n +1-a 2n2n =12,a 22=32,所以数列a 2n2n是首项为32,公差为72的等差数列.从而对 n ∈N *,a 2n2n =32+n -12,a 2n=(n +2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).法二:因为对任意正整数n ,a 2n +1=2a 2n+2n ,得a 2n +1-(n +3)2n =2[a 2n-(n +2)2n -1],且a 21-(1+2)21-1=a 2-3=0所以数列{a 2n-(n +2)2n -1}是每项均为0的常数列,从而对∀n ∈N *,a 2n=(n +2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).∀n ∈N *,a 2n2n =n +22,a 2n +12n +1-a 2n2n =n +32-n +22,a 22=32,所以数列a 2n2n是首项为32,公差为12的等差数列题型二、含有(-1)n 类型公众号:高中数学最新试题例2.【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2.变式1.【2022·广东省深圳市育才中学10月月考】已知数列a n的前n项和为S n,且对任意正整数n,a n =34S n+2成立.(1)b n=log2a n,求数列b n的通项公式;(2)设c n=-1n+1n+1b n b n+1,求数列c n的前n项和T n.【答案】(1)a n=22n+1;(2)T n=1413+-1n+112n+3.【解析】【分析】(1)利用数列a n与S n的关系,即可求得数列a n的通项公式,代入b n=log2a n,即可求得数列b n的通项公式;(2)由(1)可知c n=14-1n+112n+1+12n+3,分n为奇数和偶数,分别求和.【详解】(1)在a n=34S n+2中令n=1得a1=8.因为对任意正整数n,a n=34S n+2成立,所以a n+1=34S n+1+2,两式相减得a n+1-a n=34a n+1,所以a n+1=4a n,又a1≠1,所以a n为等比数列,所以a n=8⋅4n-1=22n+1,所以b n=log222n+1=2n+1.(2)c n=-1n+1n+12n+12n+3=14-1n+14n+42n+12n+3=14-1n+112n+1+12n+3当n为偶数时,T n=1413+15-15+17+17+19-⋯-12n+1+12n+3=1413-12n+3,当n为奇数时,T n=1413+15-15+17+17+19-⋯+12n+1+12n+3=1413+12n+3.所以T n=1413+-1n+112n+3.变式2.(2021·山东济宁市·高三二模)已知数列a n是正项等比数列,满足a3是2a1、3a2的等差中项,a4 =16.公众号:高中数学最新试题(1)求数列a n 的通项公式;(2)若b n =-1 n 2a 2n +1log ,求数列b n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列a n 是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-L -2n -1 +2n +1 =-3+5 +-7+9 +L +-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+L +-1 n 2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+L +-1 n +12n +1 所以2T n =-3+2-1 2+-1 3+L +-1 n --1 n +12n +1=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n =n +1 -1 n -1,n ∈N *变式3.(2022·湖北·黄冈中学二模)已知数列a n 中,a 1=2,n a n +1-a n =a n +1.(1)求证:数列a n +1n是常数数列;(2)令b n =(-1)n a n ,S n 为数列b n 的前n 项和,求使得S n ≤-99的n 的最小值.【解析】(1)由n a n +1-a n =a n +1得:na n +1=n +1 a n +1,即a n +1n +1=a n n +1n n +1∴a n +1n +1=a n n +1n -1n +1,即有a n +1+1n +1=a n +1n,∴数列a n +1n 是常数数列;(2)由(1)知:a n +1n =a 1+1=3,∴a n =3n -1,∴b n =(-1)n 3n -1即b n =3n -1,n 为偶数-3n -1 ,n 为奇数,∴当n 为偶数时,S n =-2+5 +-8+11 +⋯+-3n -4 +3n -1 =3n2,显然S n ≤-99无解;当n 为奇数时,S n =S n +1-a n +1=3n +1 2-3n +1 -1 =-3n +12,令S n ≤-99,解得:n ≥66,结合n 为奇数得:n 的最小值为67.所以n 的最小值为67.题型三、a n +a n +1类型例3.(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z ,b n =3n -1;(2)58n -5 9n8.【解析】【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,公众号:高中数学最新试题又b2=3,∴n≥2时,b n=3n-1,b1=1=30,∴b n=3n-1;(2)由(1)得c n=n3n-1,n=2k-1,k∈Zn-13n-1,n=2k,k∈Z,T2n=1×30+3×32+5×34+⋅⋅⋅+2n-1⋅32n-2+1×31+3×33+5×35+⋅⋅⋅+2n-1⋅32n-1= 41×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2设K n=1×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2①则9K n=1×32+3×34+5×36+⋅⋅⋅+2n-1⋅32n②①-②得-8K n=1+232+34+⋅⋅⋅+32n-2-2n-1⋅32n=5+8n-59n-4,K n=5+8n-59n32,∴T2n=58n-59n8变式1.(2022·江苏苏州·高三期末)若数列a n满足a n+m=a n+d(m∈N*,d是不等于0的常数)对任意n∈N*恒成立,则称a n是周期为m,周期公差为d的“类周期等差数列”.已知在数列a n中,a1=1,a n+a n+1=4n+1(n∈N*).(1)求证:a n是周期为2的“类周期等差数列”,并求a2,a2022的值;(2)若数列b n满足b n=a n+1-a n(n∈N*),求b n的前n项和T n.【答案】(1)证明见解析;a2=4;a2022=4044(2)T n=2n+1,n为奇数, 2n,n为偶数.【解析】【分析】(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),即可得到答案;(2)对当n分为偶数和奇数进行讨论,进行并求和,即可得到答案;(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),所以a n周期为2,周期公差为4的“类周期等差数列”,由a1+a2=5,a1=1,得a2=4,所以a2022=a2+(2022-2)×2=4+4040=4044.(2)由b n=a n+1-a n,b n+1=a n+2-a n+1,得b n+1+b n=a n+2-a n=4,当n为偶数时,T n=(b1+b2)+(b3+b4)+⋯+(b n-1+b n)=4⋅n2=2n;当n为奇数时,T n=b1+(b2+b3)+(b4+b5)+⋯+(b n-1+b n)=3+4⋅n-12=2n+1.综上所述,T n=2n+1,n为奇数, 2n,n为偶数.变式2.(2022·江苏新高考基地学校第一次大联考期中)(10分)已知等差数列{a n}满足an+an+1= 4n,n∈N*.(1)求{a n}的通项公式;(2)设b1=1,bn+1=a n,n为奇数,-b n+2n,n为偶数,求数列{bn}的前2n项和S2n.【答案】(1)a n=2n-1;(2)4n-13+4n-3.【解析】【分析】(1)设等差数列a n的公差为d,由已知可得a n+1+a n+2=4n+1与已知条件两式相减可得a n+2-a n=4=2d求得d的值,再由a1+a2=4求得a1的值,利用等差数列的通项公式可得a n的通项公式;(2)当n为奇数时,b n+1=2n-1,当n为偶数时,b n+1+b n=2n,再利用分组并项求和以及等比数列的求和公式即可求解.【小问1详解】因为a n+a n+1=4n,所以a n+1+a n+2=4n+1,所以a n+2-a n=4,设等差数列a n的公差为d,则a n+2-a n=4=2d,可得d=2,当n=1时,a1+a2=a1+a1+2=4,可得a1=1,所以a n=1+2n-1=2n-1.【小问2详解】当n为奇数时,b n+1=a n=2n-1,当n为偶数时,b n+1+b n=2n,所以S2n=b1+b2+b3+b4+b5+b6+b7+⋯+b2n-2+b2n-1+b2n=1+22+24+26+⋯+22n-2+22n-1-1=20+22+24+26+⋯+22n-2+22n-1-1=201-4n1-4+4n-3=4n-13+4n-3.三、追踪训练1.(2022·江苏苏州市八校联盟第一次适应性检测)若数列{a n}中不超过f(m)的项数恰为b m(m∈N*),则称数列{b m}是数列{a n}的生成数列,称相应的函数f(m)是数列{a n}生成{b m}的控制函数.已知a n=2n,且f(m)=m,数列{b m}的前m项和S m,若S m=30,则m的值为()公众号:高中数学最新试题A.9B.11C.12D.14【答案】B【解析】由题意可知,当m为偶数时,可得2n≤m,则b m=m2;当m为奇数时,可得2n≤m-1,则bm=m-12,所以b m=m-12(m为奇数)m2(m为偶数),则当m为偶数时,S m=b1+b2+⋯+b m=12(1+2+⋯+m)-12×m2=m24,则m24=30,因为m∈N*,所以无解;当m为奇数时,S m=b1+b2+⋯+b m=S m+1-b m+1=(m+1)24-m+12=m2-14,所以m2-14=30,因为m∈N*,所以m=11,故答案选B.2.【2022·广东省深圳市第七高级中学10月月考】(多选题)已知数列a n满足a n+1+a n=n⋅-1 n n+12,其前n项和为S n,且m+S2019=-1009,则下列说法正确的是()A.m为定值B.m+a1为定值C.S2019-a1为定值D.ma1有最大值【答案】BCD【解析】【分析】分析得出a2k+a2k+1=2k⋅-1k2k+1,由已知条件推导出S2019-a1=-1010,m+a1=1,可判断出ABC选项正误,利用基本不等式可判断D选项的正误.【详解】当n=2k k∈N∗,由已知条件可得a2k+a2k+1=2k⋅-1k2k+1,所以,S2019=a1+a2+a3+⋯+a2019=a1+a2+a3+a4+a5+⋯+a2018+a2019=a1-2+4-6+8-⋯-2018=a1+2×504-2018=a1-1010,则S2019-a1=-1010,所以,m+S2019=m+a1-1010=-1009,∴m+a1=1,由基本不等式可得ma1≤m+a122=14,当且仅当m=a1=12时,等号成立,此时ma1取得最大值14.故选:BCD.3.(2022·江苏南通市区期中)(多选题)已知数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,则A.{a2n-1}是等比数列B.5i=1a2i−1+2=-10C.{a2n}是等比数列D.10i=1a i=52【答案】ACD【解析】由题意可知,数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,所以a n+2=1-(-1)n+2a n=2+2a n,n为奇数2a n,n为偶数,所以a3=2+2×(-2)=-2,a4=2×2=4,a5=2+2×(-2)=-2,a6=2×4=8,a7=2+2×(-2)=-2,a8=2×8=16,a9=2+2×(-2)=-2,a10=2×16=32,⋯,所以{a2n-1}={-2},是等比数列,故选项A正确;5i=1a2i−1+2=(a1+a3+a5+a7+a9)+2×5=-2×5+2×5=0,故选项B错误;对于选项C,{a2n}={2n}是等比数列,故选项C正确;对于选项D,10i=1a i=-2+2-2+4-2+8-2+16-2+32=52,故选项D正确,综上,答案选ACD.4.(2022·江苏海门中学、泗阳中学期中联考)已知数列{a n}满足a n+1+(-1)n a n=2n+1,则a1+a3+a5+⋯+a99=.【答案】50【解析】【分析】根据所给递推关系,可得a2n+1+a2n=4n+1,a2n-a2n-1=4n-1,两式相减可得a2n+1+a2n-1=2.即相邻奇数项的和为2,即可求解.【详解】∵a n+1+(-1)n a n=2n+1,∴a2n+1+a2n=4n+1,a2n-a2n-1=4n-1.两式相减得a2n+1+a2n-1 =2.则a3+a1=2,a7+a5=2,⋯,a99+a97=2,∴a1+a3+a5+⋯+a99=25×2=50,故答案为:505.(2021·天津红桥区·高三一模)已知数列a n的前n项和S n满足:S n=2a n+(-1)n,n≥1.(1)求数列a n的前3项a1,a2,a3;(2)求证:数列a n+23⋅-1n是等比数列:(3)求数列(6n-3)⋅a n的前n项和T n.【详解】(1)当n=1时,有:S1=a1=2a1+-1⇒a1=1;当n=2时,有:S2=a1+a2=2a2+-12⇒a2=0;当n=3时,有:S3=a1+a2+a3=2a3+-13⇒a3=2;综上可知a1=1,a2=0,a3=2;(2)由已知得:n≥2时,a n=S n-S n-1=2a n+(-1)n-2a n-1-(-1)n-1化简得:a n=2a n-1+2(-1)n-1公众号:高中数学最新试题上式可化为:a n+23(-1)n=2a n-1+23(-1)n-1故数列a n+23(-1)n是以a1+23(-1)1为首项,公比为2的等比数列.(3)由(2)知a n+23(-1)n=132n-1∴a n=13⋅2n-1-23(-1)n6n-3⋅a n=2n-12n-1-2-1n=2n-1⋅2n-1-2⋅(-1)n⋅(2n-1)当n为偶数时,T n=1⋅20+3⋅21+⋅⋅⋅+(2n-1)⋅2n-1-2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)]令A n=1⋅20+3⋅21+⋅⋅⋅+(2n-1)⋅2n-1,B n=2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)] A n=1⋅20+3⋅21+5⋅22⋅⋅⋅+(2n-3)⋅2n-2+(2n-1)⋅2n-1①2A n=1⋅21+3⋅22+⋅⋅⋅⋅⋅⋅+(2n-3)⋅2n-1+(2n-1)⋅2n②则①-②得-A n=20+2⋅21+2⋅22⋅⋅⋅+2⋅2n-1-(2n-1)⋅2n=1+221+22⋅⋅⋅+2n-1-(2n-1)⋅2n=1+2⋅21-2n-11-2-(2n-1)⋅2n=-3+(3-2n)⋅2n∴A n=3+(2n-3)⋅2n10B n=2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)]=2⋅2⋅n2=2n所以T n=A n-B n=3+(2n-3)⋅2n-2n.当n为奇数时,A n=3+(2n-3)⋅2nB n=2[-1+3-5+⋅⋅⋅-(2n-5)+(2n-3)-(2n-1)] =22⋅n-12-2n+1=-2n所以T n=A n-B n=3+(2n-3)⋅2n+2n综上,T n=3+(2n-3)⋅2n-2n,n为偶数, 3+(2n-3)⋅2n+2n,n为奇数.6.(2022·山东烟台·高三期末)已知数列a n满足a1=4,a n+1=12a n+n,n=2k-1a n-2n,n=2k(k∈N*).(1)记b n=a2n-2,证明:数列b n为等比数列,并求b n的通项公式;(2)求数列a n的前2n项和S2n.【答案】(1)证明见解析;b n =12n -1,n ∈N *;(2)S 2n =-2n 2+6n +6-32n -1.【解析】【分析】(1)根据给定的递推公式依次计算并探求可得b n +1=12b n,求出b 1即可得证,并求出通项公式.(2)由(1)求出a 2n ,再按奇偶分组求和即可计算作答.(1)依题意,b n +1=a 2n +2-2=12a 2n +1+2n +1 -2=12a 2n -2×2n +2n +1 -2=12a 2n -1=12(a 2n -2)=12b n,而b 1=a 2-2=12a 1+1-2=1>0,所以数列b n 是以1为首项,12为公比的等比数列,b n =12n -1,n ∈N *.(2)由(1)知,a 2n =b n +2=12 n -1+2,则有a 2+a 4+⋅⋅⋅+a 2n =1-12 n1-12+2n =2-12n -1+2n ,又a 2n =12a 2n -1+2n -1,则a 2n -1=2a 2n -2(2n -1),于是有a 1+a 3+⋅⋅⋅+a 2n -1=2(a 2+a 4+⋅⋅⋅+a 2n )-2×1+(2n -1)2×n =22-12n -1+2n -2n 2=-2n 2+4n +4-22n -1,因此,S 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(a 2+a 4+⋅⋅⋅+a 2n )=-2n 2+4n +4-22n -1+2-12n -1+2n =-2n 2+6n +6-32n -1,所以S 2n =-2n 2+6n +6-32n -1.公众号:高中数学最新试题。
高三文科数学数列专题复习PPT课件
bn1
12bn
1 4
且 b1
7 2
,Tn
为 bn 的前n项和。
求证:数列
b
n
1 2
是等比数列,并求
bn
ቤተ መጻሕፍቲ ባይዱ
、T n
3
第二课时 数列通项与求和
一、基础自测 二轮P53 1、2、3、4 二轮P59 1、2、3、4 二轮P60 9、10
二、典例分析 二轮P55 例1 变式训练
4
三、体验高考 巩固提高
14
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
15
二轮P52 9 P53 12(1)
12(1)变式
2
本次统考理9:已知等差数列 an 的前n项和为 S n , 若M、N、P三点共线,O为坐标原点,且 ONa15OM a6OP
(直线MP不过点O),则 S 20 等于(B )
A.15 B.10 C.40 D.20
本次统考理20:已知数列 bn 满足
二轮P59 6、7 P60 10 二轮P63 2 P64 5
5
6
7
8
9
10
11
12
13
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
第一课时 等差数列与等比数列 一、基础自测
二轮P47 1、2、3、4、5 P51 1、2、3、4、7、8
高考文科数学数列分析真题
高考文科数学数列分析真题在高考文科数学考试中,数列分析一直是考生们头疼的难题之一。
数列是数学中非常重要的内容之一,也是考察学生逻辑思维和分析能力的重要手段。
在高考文科数学试卷中,数列分析常常作为必考题目出现,考生必须熟练掌握数列的基本概念、性质和求解方法才能顺利应对。
下面将结合历年高考文科数学试题,对数列分析相关内容进行深入探讨。
首先我们来回顾一下数列的基本概念。
数列是按照一定顺序排列的一组数,其中每个数称为数列的项。
数列中的每两个相邻项之间有着确定的规律,这种规律可以用一个公式或递推关系式来表示。
常见的数列包括等差数列、等比数列、斐波那契数列等,每种数列都有其特定的性质和求解方法。
在解题过程中,考生需要根据题目给出的条件,确定数列的类型和规律,进而应用相应的知识进行分析和求解。
接下来我们以历年高考文科数学试题为例,来看一些典型的数列分析题目。
这些题目涵盖了数列的各种性质和应用,考生们可以通过研究这些题目,深入理解数列的相关知识点,提高解题能力。
1. 【2018年湖南高考文科数学】已知等差数列的第1项是a,公差为d,若数列的前3项形成一个等比数列,且这3个项构成一个等比数列的条件唯一确定,求该等差数列的第n项。
解析:首先根据题意,设等差数列的前3项为a, a+d, a+2d,根据等比数列的性质,我们可以列出以下方程:(a+d)/a = (a+2d)/(a+d)通过整理方程,我们可以得到解a=-d,并且根据等差数列的递推关系式an=a1+(n-1)d,我们可以得到等差数列的第n项为an=-d(n-1)。
因此,该等差数列的第n项为-d(n-1)。
2. 【2017年陕西高考文科数学】已知数列{an}满足条件a1=1,an=an-1+n(1+an-1),求a2017的值。
解析:根据题意,我们可以列出递推关系式an=an-1+n(1+an-1),代入已知条件a1=1,我们可以递推得到a2017的值。
我们可以通过编程或手工计算,依次求解出数列的前几项,最终得到a2017的值。
重庆高考文科数学数列题型总结
重庆高考文科数学数列题型总结重庆高考文科数学数列题型总结在重庆高考文科数学考试中,数列是一个常见的题型,占据了很大的比重。
数列题通常要求考生找出数列的通项公式、前n 项和、递推关系等等。
下面是一些重庆高考中常见的数列题型总结。
1. 等差数列等差数列是最基础也是最常见的数列题型之一。
等差数列的通项公式是An=A1+(n-1)d,其中An表示第n项,A1表示第一项,d表示公差。
在解答等差数列题时,一般需要考生通过已知的信息求解未知的值。
2. 等比数列等比数列是另一种常见的数列题型。
等比数列的通项公式是An=A1*r^(n-1),其中An表示第n项,A1表示第一项,r表示公比。
在解答等比数列题时,一般需要考生确定公比,然后通过已知的信息求解未知的值。
3. 数列的递推关系数列的递推关系是数列题中的另一个重点考点。
在判断数列的递推关系时,一般需要考生观察数列中的规律,并通过已知的前几项来推断出数列的递推关系。
常见的数列递推关系有线性递推关系、二次递推关系、指数递推关系等等。
4. 数列的前n项和数列的前n项和是数列题中的另一个重要考点。
在求解数列的前n项和时,一般需要考生根据数列的递推关系和数列的前几项来计算出前n项的和。
对于等差数列,其前n项和的公式是Sn=n/2*(A1+An),对于等比数列,其前n项和的公式是Sn=A1*(1-r^n)/(1-r)。
5. 综合题综合题是数列题中的一种较为复杂的题型,一般需要考生综合运用已学习到的数列知识来解决。
综合题往往是将多个数列混合在一起,考生需要根据已知信息找出不同数列的递推关系,并计算出数列的通项公式、前n项和等等。
在解答数列题时,考生需要注意以下几点:首先,要善于观察数列中的规律,找出数列的递推关系;其次,要灵活运用数列的公式,计算出数列的通项公式和前n项和;再次,要善于归纳总结,提高解题的效率;最后,要注意计算精度,以免计算错误导致答案不准确。
总之,在重庆高考文科数学考试中,数列是一个重要的题型,考生需要熟练掌握数列的概念、性质和解题技巧。
高三文科数学数列专题
105
7
.
15 5 2
15 120 120 8
故
11
17
L
( m>4).
a4 a5
am 8
12. an 2n 23 ; 59415 .
4/4
11. an n 2 7n 6 ;bn 4( 1 ) n 1 2 ;不存在.
2
2
13. (1) a1 1 , a 2 0 , a 3 2 ;
( 2) an
2 [ 2n 2 ( 1)n 1 ] 3
( 3)由已 知得 :
1 1L a4 a5
1 am
31 2 [ 22 1
1 23 1
L
1 2m 2 ( 1)m ]
an
( 1)求证 : 数列 { bn} 为等差数列;
( 2)求数列 { an } 的通项公式 .
4. 在数列 a n 中, a n 0 , a1 1 ,且当 n 2 时, an 2Sn Sn 1 0 . 2
( 1)求证数列
1
为等差数列;
Sn
( 2)求数列 an 的通项 a n ;
( 3)当 n 2 时,设 bn
( 1)求数列 { an} 的通项公式; ( 2)若以 P1, P2, P3,L , Pn 为项构成数列 { Pn} ,试求 { Pn} 的前 8 项之和 A8(写出具体数值) .
13. 已知数列 { an} 的前 n 项和 Sn 满足: Sn 2a n ( 1) n , n 1.
⑴写出求数列 { an} 的前 3 项 a1 , a 2 , a3 ;
n1
1
2
an ,求证:
(b2 b3
n
2(n 1) n 1
1
高考文科数学数列知识点
高考文科数学数列知识点高考文科数学中,数列是一个重要的知识点。
数列是数学中研究一系列有序数值的规律性变化的概念,也是数学应用中广泛使用的工具。
掌握好数列知识点,不仅可以在高考中得分,还能提升数学思维能力。
本文将从数列的基本概念、数列的分类以及数列的应用三个方面来探讨数列知识点。
首先,数列的基本概念是理解数列知识的基础。
数列由一列有序的数按一定的规律排列而成。
数列中的每个数称为项,按顺序排列的项称为项的位置。
项的位置可以用正整数表示,第一个位置为1,第二个位置为2,依次类推。
数列可以通过一个通项公式来表示,通项公式中包含一个变量n,用于表示数列中任意一项的位置。
根据通项公式,可以求出数列中的任意一项的值。
接下来,数列可以根据项之间的关系进行分类。
等差数列是最常见的数列之一。
等差数列中,每一项与前一项的差值都相等。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为第一项,d为公差,n为项的位置。
等比数列是另一种常见的数列。
等比数列中,每一项与前一项的比值都相等。
等比数列的通项公式为an = a1 * q^(n-1),其中a1为第一项,q为公比,n为项的位置。
同时,数列还可以是递增数列、递减数列、周期数列等,每一种数列都有自己独特的特点和规律。
最后,数列在实际生活中有着广泛的应用。
数列的应用涉及到许多领域,如经济、工程、生物等。
举个例子,金融领域中的利率计算就可以用到等比数列。
假设某银行的年利率为5%,以每年复利计算,我们可以建立一个等比数列,其中第一项为存款本金,公比为1+0.05。
通过数列的通项公式可以推算未来几年的存款金额。
另外,数列还可以用来解决生活中的一些问题,如等差数列可以用来计算等差数列求和,从而实现快速计算。
总的来说,掌握好高考文科数学中的数列知识点对于学生来说是至关重要的。
数列的基本概念、分类以及应用都是需要掌握的内容。
通过深入理解数列的概念和运算规律,不仅有助于解决数学题目,还能提升数学思维能力,培养逻辑思维和问题解决能力。
数学高考知识点文科数列
数学高考知识点文科数列数学高考知识点:文科数列在数学高考中,数列作为一个重要的知识点,经常出现在文科题目中。
学好数列的相关知识,对于提高数学成绩以及理解一些实际问题具有重要意义。
本文将介绍文科数列的概念、性质以及在高考中的应用。
1. 数列的定义和概念数列是按一定顺序排列的一系列数的集合。
常见的数列有等差数列、等比数列、递归数列等。
其中,等差数列是指一个数列中每个数都等于前一个数加上同一个常数,等比数列是指一个数列中每个数都等于前一个数乘以同一个常数,递归数列是指一个数列中每个数都是前面若干个数通过某种递推关系得到的。
2. 数列的性质(1)通项公式和前n项和公式对于等差数列和等比数列而言,我们可以通过找到一个通项公式来表示数列中的每一项,从而方便计算。
例如,对于等差数列an=a1+(n-1)d,其中a1表示第一项,d表示公差,n表示项数。
同样地,等比数列an=a1*r^(n-1),其中a1表示第一项,r表示公比,n表示项数。
另外,对于文科数列题目,我们还需要求解前n项和。
例如,对于等差数列Sn=(a1+an)n/2,其中a1和an分别表示第一项和第n项,n表示项数。
同样地,对于等比数列Sn=a1*(1-r^n)/(1-r),其中a1表示第一项,r表示公比,n表示项数。
(2)常用数列的性质和公式等差数列和等比数列都有一些常用的性质和公式,对于文科数列题目的解答非常有帮助。
例如,等差数列的任意三项a,b,c满足b=(a+c)/2,利用这个性质可以解决一些关于等差数列的问题。
同样地,等比数列的任意三项a,b,c满足b^2=ac,利用这个性质也可以解决一些关于等比数列的问题。
3. 数列在高考中的应用文科数列作为高考数学中的一个重要知识点,经常出现在选择题、填空题以及解答题中。
在解题过程中,我们需要通过对数列的性质和公式的理解和应用,灵活地解决问题。
(1)选择题在选择题中,常见的数列题型有填空题和选择题。
对于填空题,我们需要根据数列相关的公式、性质,找到相应的通项公式或者前n项和公式,并计算出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008届高三文科数学第二轮复习资料
——《数列》专题
1.等差数列}{n a 的前n 项和记为n S ,已知50,302010==a a .
(1)求通项n a ;
(2)若242=n S ,求n ;
(3)若20-=n n a b ,求数列}{n b 的前n 项和n T 的最小值.
2.等差数列}{n a 中,n S 为前n 项和,已知75,7157==S S .
(1)求数列}{n a 的通项公式;
(2)若n S b n n =
,求数列}{n b 的前n 项和n T .
3.已知数列}{n a 满足11=a ,)1(211
1>+=--n a a a n n n ,记n n a b 1=. (1)求证:数列}{n b 为等差数列;
(2)求数列}{n a 的通项公式.
4.在数列{}n a 中,0≠n a ,2
11=a ,且当2≥n 时,021=⋅+-n n n S S a . (1)求证数列⎭
⎬⎫⎩⎨⎧n S 1为等差数列;
(2)求数列{}n a 的通项n a ;
(3)当2≥n 时,设n n a n n b 1--
=,求证:n
b b b n n n 1)(12)1(2132<+⋅⋅⋅++-<+.
5.等差数列}{n a 中,2,841==a a .
(1)求数列}{n a 的通项公式;
(2)设||||||21n n a a a S +++= ,求n S ;
(3)设*)()
12(1N n a n b n n ∈-=,*)(21N n b b b T n n ∈+++= ,是否存在最大的整数m 使得对任意*N n ∈,均有32m T n >
成立,若存在,求出m 的值,若不存在,请说明理由.
6.已知数列)}1({log 2-n a 为等差数列,且9,331==a a .
(1)求}{n a 的通项公式;
(2)证明:
11...1112312<-++-+-+n n a a a a a a .
7.数列{}n a 满足*1129,21(2,)n n a a a n n n N -=-=-≥∈.
(1)求数列{}n a 的通项公式;
(2)设n n a b n =
,则n 为何值时,{}n b 的项取得最小值,最小值为多少?
8.已知等差数列}{n a 的公差d 大于0,且52,a a 是方程027122=+-x x 的两根,数列}{n b 的前n 项和为n T ,且n n b T 211-=.
(1)求数列}{n a ,}{n b 的通项公式;
(2)记n n n b a c =,求证:对一切+∈N n ,有3
2≤
n c .
9.数列{}n a 的前n 项和n S 满足23n n S a n =-.
(1)求数列{}n a 的通项公式n a ;
(2)数列{}n a 中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,
请说明理由.
10. 已知数列{}n a 的前n 项和为n S ,设n a 是n S 与2的等差中项,数列{}n b 中,11b =,点1(,)n n P b b +在
直线2y x =+上.
(1)求数列}{n a ,}{n b 的通项公式
(2)若数列{}n b 的前n 项和为n B ,比较12111n
B B B +++ 与2的大小; (3)令1212n n n
b b b T a a a =+++ ,是否存在正整数M ,使得n T M <对一切正整数n 都成立?若存在,求出M 的最小值;若不存在,请说明理由.
11. 设数列{}n a .}{n b 满足:3,4,6332211======b a b a b a ,且数列}{1n n a a -+
*)(N n ∈是等差数列,{b n -2}是等比数列.
(Ⅰ)求数列}{n a ,}{n b 的通项公式;
(Ⅱ)是否存在*N k ∈,使)2
1,0(∈-k k b a .若存在,求出k ;若不存在,说明理由.
12. 将等差数列{}n a 的项按如下次序和规则分组,第一组为1a ,第二组为23,a a ,第三组为4567,,,a a a a ,
第四组 ,第n 组共有12n -项组成,并把第n 组的各项之和记作n P (1,2,3,)n = ,已知236P =-,40.P =
(1)求数列{}n a 的通项公式;
(2)若以123,,,,n P P P P 为项构成数列{}n P ,试求{}n P 的前8项之和8A (写出具体数值).
13. 已知数列{}n a 的前n 项和n S 满足:n n n a S )1(2-+=,1≥n .
⑴写出求数列{}n a 的前3项321,,a a a ;
⑵求数列{}n a 的通项公式;
⑶证明:对任意的整数m >4,有4511178
m a a a +++< . 参考答案
1.102+=n a n ;11=n ;n T 的最小值为:-20.
2.3-=n a n ; 4
92n n T n -=.
3.121-=
n a n .
4.)2(2212≥--
=n n
n a n .
5.⎩⎨⎧>+-≤-=)
5(409)5(922n n n n n n S n ; 7=m .
6.12+=n n a .
7. 282+=n a n ;5=n 时,最小为553.
8.12-=n a n ,1)3
1(32-⋅=
n n b .
9.3261-⋅=-n n a ;不存在.
10.n n a 2=;12-=n b n ;存在3=m .
11.2
672+-=n n a n ;2)21(41+=-n n b ;不存在.
12.232-=n a n ; 59415.
13. (1)2,0,1321===a a a ;
(2)])1(2[3
212---+=n n n a (3)由已知得:232451113111[]221212(1)m m
m a a a -+++=+++-+-- 23111111[]2391533632(1)m m -=++++++-- 11111[1]2351121
=+++++ 11111[1]2351020
<+++++ 511(1)1452[]12312
m --=+-514221[]23552m -=+- 51311131041057()1552151201208
m -=-<=<= . 故4511178
m a a a +++< ( m >4).。