三相异步电动机几种调速方式通用版

合集下载

三相异步电动机的变极调速控制

三相异步电动机的变极调速控制

SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?

三相异步电动机的三种调速方法

三相异步电动机的三种调速方法

三相异步电动机的三种调速方法三相异步电动机是工业生产中常用的一种电动机,其具有结构简单、可靠性高、维护方便等优点,因此被广泛应用于各种机械设备中。

在实际应用中,为了满足不同的工作要求,需要对三相异步电动机进行调速。

本文将介绍三相异步电动机的三种调速方法。

一、电压调制调速法电压调制调速法是一种常用的三相异步电动机调速方法。

该方法通过改变电动机的供电电压来实现调速。

具体来说,当需要降低电动机的转速时,可以降低电动机的供电电压,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以提高电动机的供电电压,从而提高电动机的转速。

电压调制调速法的优点是调速范围广,调速精度高,且不会对电动机的机械结构产生影响。

但是,该方法需要使用特殊的电压调制器,成本较高,且在低速运行时容易出现电动机振动和噪音等问题。

二、变频调速法变频调速法是一种基于电子技术的三相异步电动机调速方法。

该方法通过改变电动机的供电频率来实现调速。

具体来说,当需要降低电动机的转速时,可以降低电动机的供电频率,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以提高电动机的供电频率,从而提高电动机的转速。

变频调速法的优点是调速范围广,调速精度高,且在低速运行时不会出现电动机振动和噪音等问题。

同时,该方法还可以实现电动机的软启动和停机,延长电动机的使用寿命。

但是,该方法需要使用特殊的变频器,成本较高。

三、转子电阻调速法转子电阻调速法是一种基于电动机本身结构的三相异步电动机调速方法。

该方法通过改变电动机转子电阻来实现调速。

具体来说,当需要降低电动机的转速时,可以增加电动机转子电阻,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以减小电动机转子电阻,从而提高电动机的转速。

转子电阻调速法的优点是成本低,调速范围广,且不需要使用特殊的调速器。

但是,该方法会对电动机的机械结构产生影响,同时在低速运行时容易出现电动机振动和噪音等问题。

三相异步电动机的调速方法有电压调制调速法、变频调速法和转子电阻调速法。

浅谈三相异步电动机的几种调速方法

浅谈三相异步电动机的几种调速方法

浅谈三相异步电动机的几种调速方法发表时间:2015-09-22T14:17:24.733Z 来源:《电力设备》第01期供稿作者:秦为惠[导读] 中国神华神东煤炭集团公司在调速的过程中,涉及到一定的能耗问题。

其中高效调速和低效调速方式是两种比较常见的调速形式,但是二者之间的差异相对较大。

秦为惠(中国神华神东煤炭集团公司 719315)摘要:在电动机机器设备应用的过程中,三相异步电动机是比较常见的机械类型。

但是从使用的过程中可以看出,三相异步电动机只有不断进行调速,才能够保证电动机运行的高效性。

三相异步电动机在应用的过程中,如果调速方式得到了改进和完善,通常情况下就可以直接达到省电的标准,符合可持续发展的基本要求。

本文中,笔者主要对三相异步电动机的调速方式进行深入介绍和分析,仅供参考。

关键词:三相异步电动机;调速方法;变频器在电动机应用的过程中,变频器调速设备是比较常见的辅助设备类型。

在使用的过程中,可以有效地提升三相异步电动机的使用性能,可见,这两种设备共同应用极大地提升了三相异步电动机的发展前景。

在对三相异步电动机进行调速的过程中,在提升电动机工作性能的基础上,也存在着一定的缺陷性。

接下来,笔者就对这一电动机类型进行深入介绍和分析,希望能够给相关的电动机应用工作人员提供借鉴和参考。

1.常用三相异步电动机的调速方法研究在使用三相异步电动机的过程中,必然会涉及到各种不同类型的调速方式,其中比较典型的就是变极对数,定子调压,定子变频等等。

在调速的过程中,涉及到一定的能耗问题。

其中高效调速和低效调速方式是两种比较常见的调速形式,但是二者之间的差异相对较大。

对于高效调速来说,指针的转差率保持不变,并不会出现损耗。

对于多速电动机以及变频调速来说,主要采用的是串级调速的形式。

在调速的过程中,如果出现了转差损耗的现象,则说明采用的是低效调速的形式。

其中,比较典型的就是转子串电阻调速方法,能量的消耗量相对较低。

另外,电磁离合器,液力耦合器等设备都需要进行调速。

三相异步电动机启动制动和调速

三相异步电动机启动制动和调速


软启动器的工作原理简单,它通过软硬件方法,实时检测定子电流、 电压、功率因数或电动机的转矩值,经过计算得到一个准确的晶闸管 的移相角,使加在电动机上的电压或启动电流按某一规律变化(如斜 坡电压软启动、恒流软启动等),优化异步电动机的启动性能。软启
动器也可用PWM方式实现。
21
4.2 三相异步电动机的制动
复杂度 最简单
一般 简单 较复杂
适用性 电机小于7.5kW
任意容量,轻载 正常 ,频繁启动 大容量,大负载
15
Y
自耦变压器
3 1 k

改善结构
通过改变鼠笼式异步电动机的结构,既减小启动电流,又能获得较大 的启动转矩,即通过改变结构来改善电动机的启动性能。
1、增大转子电阻 这种电动机又称为高转差率鼠笼型异步电动机,其转子导条不用普通 的铝条,而是采用电阻率较高的铝合金(ZL-14),通过适当加大转 子导条的电阻来改善启动性能。
如同直流电动机一样,异步电动机制动的目的有两个: • 使传动系统迅速减速或停车; • 限制位能性负载的下放速度。
如果三相异步电动机的电磁转矩Te和转速n的方向相反,电动机便 处于制动状态。在制动状态下,电动机的电磁转矩起反抗旋转的作 用,为制动性转矩。
异步电动机的制动方法有:回馈制动、反接制动和能耗制动 。
n0 n s n0
n n0 (1 s)
1、直流电动机使用静差率,利用理想空载转速和转速(转速降)来
描述,它们都是转子的转速,是机械运动;
2、异步电动机使用转差率,利用旋转磁场的转速和转子的转速来描述, 同步转速非机械转速,也不是理想空载转速;
3、转差率与空载转速无关,更不能等同于转速降。
U L 3U P UL UP

浅谈绕线式三相异步电动机的调速控制

浅谈绕线式三相异步电动机的调速控制
功率绕线电机中多采用此启动器。 • 缺点:1、对电压稳定性要求高,稍低即难起动。
2、不能连续起动,连续启动时间间隔为1 分钟左右。
3、频敏包易烧毁,对绝缘要求高。
三、串极调速启动
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机 的转差,达到调速的目的。 • 原速理前:后假转定子异电步流电近机似的保外持不加变电。源若电在压转E0子不回变路,中负引载入转一矩个都频不率变与,转则子电电机势在相调 同,而相位相同或相反的附加电势E1则转子电流I0为:
I0=(E0±E1)/ R0 (式4) R0= (R2+X0)1/2 E0-转子开路相电势;R2-转子回路电阻;X0-转子旋转时每相漏抗; 当机电的机一在个正常常数运,行所时以,改转变差附率加s电很势小E,1就故可R2以>改X0变,转忽差略率X0s,,上从式而中实,现E调0取速电。动 实际E0±E1≈常数(式四) 势同相步设位串当相级E反调1=时速0时,(电小E动1于为机额负运定,行转改于数变额)E定1(的转即大速s小>,,0即)可n,在=当n额0附,s定=件s转0电,数当势以附与下件转调电子速势相,与电这转势称子相为相位低电相 同时,E1为正,改变E1的大小,可在额定转数以上调速,这称为超同步串级 调速(大于额定转数)(即s<0)。
P
sP
M
KM
KM1
逆变器
整流器
R
图能实现无级平滑调 速,低速时机械特性也比较硬,但是在运行中也必须要注 意以下两点:
• 1、必须有严格的启动和切换顺序,由于硅原件的赖压 和额定电流的影响,必须保证电机转速达到规定的最低转 速以上时才允许切换至串级调速运行状态,启动顺序是: 给控制回路送电,接通逆变器主电源转子接入频敏变阻器 (起保护作用),接通定子电源,启动电机,电机加速至 规定转速时切换至串调运行,此后立即切断频敏变阻器。

三相电机七种调速方式

三相电机七种调速方式

三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式一、手动控制调速手动控制是一种最普遍的三相异步电动机调速方式。

它依靠加装变压器、电阻器或多脉冲变压器等器件,调节其输入电压、输入频率或输出电压,从而在一定范围内实现电动机的速度调节。

手动控制调速简单易行,但需要对其进行操作并且无法在一定时间内快速响应,因此其调速效果难以满足大功率调速应用的需求。

二、电压型调速又称为调压调速,它利用晶闸管、继电器等智能控制器调节电动机供电输入电压或输出电压,控制电动机转速。

这种调速方式具有精度高、响应快的优点,而且兼容性好,可实现精细调节。

三、频率型调速频率型调速是运用变频器将变频器输入电源的固定频率变换为可调的变频电源,并通过变频器控制电动机转速。

变频器能够调节电动机速度,实现电机无极调速,从而应用广泛。

此外,特别适用于中低速大扭矩的电动机。

四、矢量控制调速矢量控制调速又称为磁场定向控制调速。

它是一种高精度、高响应速度的调速方式,它利用磁场定向技术,利用电机开机后的瞬态响应,精确测量电机位置并控制电机转速。

与其它调速方式相比,矢量控制调速能够实现缓启动、粘滑保护,并且可以自动调整电磁场大小和角度,实现高速、高精度的调速。

五、惯量调节法惯量调节法是利用电动机惯性和输出转矩的反比关系控制电动机转速的,通常应用于重载起动场景中的电动机调速。

它适用于一些运行要求高的场合,在某些情况下,可达到更好的调速效果,但一般不适用于低速调节。

六、PWM调速PWM调速广泛应用于三相异步电动机调速中,它结合了电压调速和频率调速的优点,而且具有成本低、可靠性高等优点。

PWM调速采用高频脉冲宽度调制技术,调节输出电压的宽度,从而控制电动机转速。

PWM调速还可以实现过流保护、欠压保护等,应用性强。

以上为六种三相异步电动机的调速方式,每种调速方式都有其适用的场合。

根据实际应用需求,选择合适的调速方式可以实现电动机稳定、高效的工作。

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

5.5 异步电动机调速特性

5.5 异步电动机调速特性

采用恒磁通调压调速(也称恒转矩调速)。
即:
U1 f1
4.44N1kw1m
常数
分析:
当 f1↑时,再继续保持U1/f1=常数比较困难,因为 f1>50Hz时,UΦ↑> U1N不允许,这样只能保持UΦ不变。
f1↑→ Xm↑→ Im↓→ Φm↓→T↓ ,而 f1↑→n↑, P =TΩ属恒功率调速。所以工频以上采用恒压调速。
已知:n0=60f/p,当 f 改变,n0和n都将改变。 1.变频变压调速:
UΦ EΦ 4.44 f N1kw1Φ
当 f↓而UΦ不变时,Xm↓→ Im↑→ Φm↑→I0→I1↑ 引起电动机过热。
而Im↑→cosφ1↓Φm↑→pFe↑造成电动机带载能力 下降。
为了克服上述缺点,在工频(50Hz)以下调速时,
5.5 三相异步电动机的调速方法与特性
依据:
n
n0 (1 s)
60 f p
(1 s)
三相异步电动机的调速大致可以分成以下几种类型:
(1)改变转差率s调速,包括降低电源电压、绕线式异步 电动机转子回路串电阻等方法; (2)改变旋转磁场同步转速调速,包括改变定子绕组极 对数、改变供电电源频率等方法; (3)双馈调速,包括串级调速,属改变理想空载转速的 一种调速方法; (4)利用滑差离合器调速。
R M 3~
Rf
K2
+ -
(3)能耗制动时的机械特性:
2
3n 1 ns
Tmax2 Tmax1
0
Tz
T
(4)特点: 机械特性过原点,即n=0时T=0。能迅速、准确停车。
反馈制动、反接制动和能耗制动。
5.6.1 反馈制动 由于某种原因异步电动机的运行速度高于它的同步速

三相异步电动机的启动、制动与调速

三相异步电动机的启动、制动与调速

三相异步电动机的启动、制动与调速摘要:随着人类对生活环境和生产生活能耗比的重视,绿色、节能、环保成为人们长久发展的共识,在生产生活中能耗最高的当属电动机。

提高电动机的功率因数一直是国家电网的要求,降低能耗也是国家环保一直努力的方向。

自从世界上出现第一台电动机开始,电机控制问题就伴随着人们的生产生活,而且在实际生产生活中,电动机的应用存在的很多的电能浪费现象,合理的控制电机的运转是节约能耗的关键点。

三项异步电动机应用十分广泛,三项异步电动机的控制包括启动、制动、和调速,合理的控制这三个过程是降低能耗的关键,当然还有提升电动机的生产工艺。

其中启动控制方式有软启动、降压启动、直接启动、转子串电阻启动、转子串频敏变阻器启动。

制动方式有反接制动、能耗制动、回馈制动。

传统的调速方式有变极调速、变转差率调速,还有现在流行的变频调速、适量控制、和直接转矩控制。

关键词:三项异步电动机;能耗;启动控制;调速;适量控制1.绪论1.1研究背景随着电子科技的不断发展,控制精度不断地提升,工业4.0马上就要到来。

在我们工业生产中电动机的能耗比例越来越重,怎么能够有效的提高电动机能耗比是工厂节能减排的重要的一个关键点。

当然对于整个的生产设备来说,合适的电动机控制方案可以有效的提高整个机械运转系统的稳定性。

1.2发展现状对于三相异步电动机的状态控制分为三大类型:电动机启动、电动机制动、电动机调速。

对于电动机启动随着电子技术的发展已经得到比较完善的解决方案,所以对于电动机的启动研究一直是附加在对电动机的调速控制和精准控制上。

虽然对电动机的制动方式的研究也已经有很多的优秀方案,但是从能量回收再利用方面还需要努力,现在大多数的制动方式还是以转化为热能释放在空气中的方式来解决的,随着超级电容技术的成熟应用,未来在大型设备的电动机制动能量的回收一定有完善的解决方案。

2.三相异步电动机状态控制分析2.1总体概述三相异步电动机是生产生活中应用比较早的电动机类型,从转子的结构来分分为:一是鼠笼式异步电动机,二是绕线式异步电动机。

相异步电动机的七种调速方法及特点:

相异步电动机的七种调速方法及特点:

三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。

不改变同步转速的调速方法在生产机械中广泛使用。

2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。

一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

三相异步电动机的七种调速方式及其特点

三相异步电动机的七种调速方式及其特点

本文介绍了三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。

三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

三相异步电动机的调速方法与特性(精)

三相异步电动机的调速方法与特性(精)

由定子绕组展开图知: 只要改变一相绕组中一半元 件的电流方向即可改变磁极 对数。当T1、T2、T3外接三 相交流电源,而T4、T5、T6 对外断开时,电动机的定子 绕组接法为△,极对数为2P, 当T4、T5、T6外接三相交流 电源,而T1、T2、T3连接在 一起时,电动机定子绕组的 接法为YY,极对数为P,从 而实现调速,其控制电路图 如所示。
5.5 三相异步电动机的调速
由 可知,若要改变异步电动机的转速,可以有 以下三种方法: (1)改变电动机的磁极对数p。 (2)改变电动机的电源频率f1。 (3)改变电动机的转差率s。 下面对各种调速方法的原理及特点做一简单 介绍。
60 f1 n n1 (1 s ) (1 s ) p
5.5.1 变极调速
△/YY变极调速控制原理图
其工作情况为:合上刀开 关QS后,当KM3闭合而KM1、 KM2断开时,电动机定子绕组 为D接法,电动机低速启动。当 KM3断开,而KM2、KM1闭合 时,电动机的定子绕组接成YY, 电动机高速运行。△/YY接法的 调速方式适用于恒功率负载, 其机械特性如图4.25所示。 由机械特性知,变极调速 时电动机的转速几乎是成倍的 变化,因此调速的平滑性差, 但是稳定性较好,特别是低速 启动转矩大。
1 1 1 N 1 1 N N
1 1
1 1
1 1
1
1
1
5.5.3 改变转差率调速
改变转差率的方法主要有三 种:定子调压调速、转子电路串电 阻调速和串级调速。下面分别介绍。 1.定子调压调速 图为定子调压的机械特性曲线, 由图可知对恒转矩负载而言,其调 速范围很窄,实用价值不大,但对 于通风机负载而言,其负载转矩TL 随转速的变化而变化,如图中虚线 所示。可见其调速范围很宽,所以 目前大多数的风扇采用此法。 但是这种调速方法在电动机转 速较低时,转子电阻上的损耗较大, 使电动机发热较严重,所以这种调 速方法一般不宜在低速下长时间运 图 行。

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

异步电动机的调速

异步电动机的调速

10.1 三相异步电动机的降定子电压调速 调压调速是一种比较简单的调方法,控制电路价格
较低。但是低速时转子铜耗较大,效率较低。
• 其特点和性能为: 1)三相异步电动机降压调速方法比较简单; 2)对于一般的鼠笼式异步电动机,拖动恒转矩负载 时,调速范围很小,没多大实用价值; 3)若拖动泵类负载时,如通风机,降压调速有较好 调速效果,但在低速运行时,由于转差率s 增大, 消耗在转子电路的转差功率增大,电机发热严重; 4)低速时,机械性能太软,其调速范围和静差率达 不到生产工艺的要求; 5)采用下述闭环控制系统的调速范围一般为10:1。
• 1.转差率调速
改变转差率的方法很多,常用的方案有改变异步电
动机的定子电压调速,采用电磁转差(或滑差)离合
器调速,转子回路串电阻调速以及串极调速。前两种
方法适用于鼠笼式异步电动机,后者适合于绕线式异
步电动机。这些方案都能使异步电动机实现平滑调
速,但共同的缺点是在调速过程中存在转差损耗,即
在调节过程中转子绕组均产生大量的钢损耗
转子回路串电阻属恒转矩调速方法,其特点和性为: 1)绕线式异步电动机转子回路串电阻调速方法简单,调速设备简单,易于实现; 2)调速方法为分段多级调节,为有级调速系统,且调速的平滑性较差; 3)不利于空载或轻载调速,表现于转速变化很小; 4)低速时转差率s大。转差功率大,转子回路中的功率损耗大,效率低,发热严重经济性差; 5)调速范围不,也按比例身高电源电压时不允许的,只能保持电压为UN不变, 频率f1 越高,磁通 越低,是一种降低磁通升速的方法,这相当于他励直流电动机弱磁调速。
保持UN =常数,升高频率时,电动机的电磁转矩为
m
• 变频调速的特点和性能
• (1)变频调速设备(简称变频器)结构复杂,价格昂贵,容量有限。需要专用的变频电源, 应用上受到一定限制。但随着电力电子技术的发展,变频器向着简单可靠、性能优异、价格 便宜、操作方便等趋势发展;

异步电动机的调速

异步电动机的调速
2
பைடு நூலகம்
′σ R2 x22 ] − [− 2 + ′ dT 3 pf1 E1 s R2 = ( ) =0 2 ′ ′ ds 2π f 1 R2 sx2σ 2 [ + ] ′ s R2 ′ ′ R2 x′ 2 R2 2σ = ⇒ sm = 2 ′ ′ s R2 x 2σ
一、变频调速
1) 保持E1/f1=const 保持E
异步电动机的调速
补充内容
异步电动机的调速
60 f 1 n = n1 (1 − s ) = (1 − s ) p 三相异步电动机的调速方法很多,大致可以分成以下 三相异步电动机的调速方法很多, 几种类型: 几种类型:
1)变频调速 1)变频调速 2)变极调速 2)变极调速 3)变转差率调速 3)变转差率调速 变转差率调速包括:包括降低电源电压、绕线式异步 变转差率调速包括:包括降低电源电压、 电动机转子回路串电阻
一、变频调速
′ R2 3 pU S T = 2 ′ R2 ′ 2 2πf1 R1 + + ( x1σ + x 2σ ) S
2 1
2) 保持U1/f1=const 保持U
==
sm =
3 p U1 2 f 2π 1 ′ R2 ′ 2 R1 + + (x1σ + x 2σ ) ' s
U1 ≈ E1 = 4.44 f1 N1k dp1Φ m

降低电源频率时,必须同时降低电源电压。 降低电源频率时,必须同时降低电源电压。降低电源电 压有两种控制方法。 压有两种控制方法。
一、变频调速
1) 保持E1/f1=const 保持E
R′ ′ 2 3( I 2 ) 2 PM s = 3p T = = 2π n1 2π f 1 R ′ Ω1 2 60 s ′ R2 2 3 pf 1 E1 s = 2π f 1 R 2 2 ′ ′ 2 + ( x 2σ ) s ′ E2 + (x ′ σ 2

机车三相异步电动机调速特性—变频调速的特性

机车三相异步电动机调速特性—变频调速的特性

变频调速的特性
在通常情况下,等值电路中的Xm>>X1和X‘2,Im很小,则I1≈I’2,
这样电流公式可以简化为:
I1 I '2
U1
( R1
R'2 S
)2
(X1
X '2
)2
上式代入:
T
mp
2f1
I '22
R'2
/
S
电磁转矩为:
T
m p (U1 )2
2 f1
( SR1
R'2
Sf1 R'2 ) S2(X1
I'2
SE 1 R'2
E1 f2 R'2 f1
且在恒功率范围内,U1已提高到一定数值,可认为U1≈E1,故得
T
mp
2R'2
(U1 f1
)2
f2
或:
Tf1 KU12
f2 f1
K (U12 f1
)
f2
KU12 S
变频调速的特性
(1)U1不变,S=f2/f1=常数的调节方式
由于f1较高,与电抗相比可忽略R1的影响,则最大转矩可
异步电机等效电路
变频调速的特性 一、异步电机的等值电路及转矩表达式
图中 U1 、I1 — 电源相电压和电机定子
电流; I1 — 归算到定子侧的转子电
流; Im — 电机激磁电流; E1 E2 — 分别为一相定子感应电势和归算到定子
侧的转子感应电势; S — 转差率,为
转差频率与定子频率的比值:S=f2/f1; R1、X1 — 定子绕组电阻及漏电抗; R2'、X2 —归算到定子侧的转子电阻及 漏电抗; Rm、Xm — 激磁电阻及电抗。

三相异步电动机变频调速

三相异步电动机变频调速

.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。

根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。

所以调节三相异步电动机的转速有三种方案。

异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。

改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。

如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。

三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。

如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。

因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。

.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。

这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安全管理编号:YTO-FS-PD664
三相异步电动机几种调速方式通用版
In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities.
标准/ 权威/ 规范/ 实用
Authoritative And Practical Standards
三相异步电动机几种调速方式通用

使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。

文件下载后可定制修改,请根据实际需要进行调整和使用。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法
这种调速方法是用改变定子绕组的接红方式来改变笼
型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;
无转差损耗,效率高;
接线简单、控制方便、价格低;
有级调速,级差较大,不能获得平滑调速;
可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法
变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:
效率高,调速过程中没有附加损耗;
应用范围广,可用于笼型异步电动机;
调速范围大,特性硬,精度高;
技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法
串级调速是指绕线式电动机转子回路中串入可调节的
附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:
可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;
装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;
调速装置故障时可以切换至全速运行,避免停产;
晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法
绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

属有级调速,机械特性较软。

五、定子调压调速方法
当改变电动机的定子电压时,可以得到一组不同的机
械特性曲线,从而获得不同转速。

由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。

为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。

为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。

调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。

晶闸管调压方式为最佳。

调压调速的特点:
调压调速线路简单,易实现自动控制;
调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。

调压调速一般适用于100KW以下的生产机械。

六、电磁调速电动机调速方法
电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。

直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。

电磁转差离合器由电枢、磁极和励磁绕组三部分组成。

电枢和后者没有机械联系,都能自由转动。

电枢与电
动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。

当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。

当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。

电磁调速电动机的调速特点:
装置结构及控制线路简单、运行可靠、维修方便;
调速平滑、无级调速;
对电网无谐影响;
速度失大、效率低。

本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。

七、液力耦合器调速方法
液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。

壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带
动生产机械运转。

液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。

在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为:功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;
结构简单,工作可靠,使用及维修方便,且造价低;
尺寸小,能容大;
控制调节方便,容易实现自动控制。

本方法适用于风机、水泵的调速。

该位置可输入公司/组织对应的名字地址
The Name Of The Organization Can Be Entered In This Location。

相关文档
最新文档