地球化学
地球化学
一.关于地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。
二.地球化学的基本问题1、地球系统中元素的组成(质)2、元素的共生组合和赋存形式(量)3、元素的迁移和循环(动)4:地球的历史和演化(史)三.地球化学研究思路在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
(一句话那就是“见微而知著”)第一章地球和太阳系的化学组成第一节地球的结构和组成一.大陆地壳和大洋地壳的区别:1.大洋地壳较薄,10-5公里,平均厚8公里;大陆地壳较厚,最厚可达70公里,平均厚33公里。
(整个岩石圈也是大陆较厚,海洋较薄。
海洋为50—60公里,大陆为100—200公里或更深。
)2.在元素的分配上,洋壳比陆壳贫硅和碱金属,但较富镁富铁。
正是这种原因,大洋沉积物中富含Fe、Mn、Co、Ni等亲铁元素,它们是现代海洋中巨大的潜在资源。
二. 固体地球各圈层的化学成分特点○1地壳:O、Si、Al、Fe、Ca○2地幔:O、Mg、Si、Fe、Ca○3地核:Fe-Ni○4地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度一.概念1.地球化学体系:按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C,T,P等)并且有一定的时间联系。
2.丰度:表示元素在某地质体中(如地球,地壳,宇宙星体及某岩类,岩体等)的含量。
3.克拉克值:元素在地壳中的平均含量4.质量克拉克值:若计算元素在地壳中的平均含量时以质量计算,则称为质量克拉克值。
5.原子克拉克值:以原子数之比表示的元素相对含量(即指某元素在某地质体中全部元素的原子总数中所含原子个数的百分数)任意元素的原子克拉克值=某元素在某地质体中的相对原子数(用N表示)/所有元素相对原子数之和(用 N表示)6.浓度克拉克值:某元素在某地质体中的平均含量/元素克拉克值二.克拉克值的变化规律:①递减:元素的克拉克值大体上随原子序数的增加而减少(但锂,铍,硼以及惰性气体的含量并不符合上述规律,丰度值很低)②偶数规则:周期表中原子序数为偶数的元素总分布量(86%)大于奇数元素的总分布量(14%)。
地球科学中的地球化学与地球动力学
地球科学中的地球化学与地球动力学地球科学是研究地球上自然界各种现象和规律的学科。
在地球科学的研究领域中,地球化学和地球动力学是两个重要的分支学科。
地球化学研究地球物质的组成、结构、性质和变化规律;地球动力学则研究地球内外部分的运动和变形。
一、地球化学的概念与研究内容地球化学是研究地球物质元素组成、地球化学过程和演化规律的学科。
地球化学研究的对象包括地壳、岩石、矿物、地下水和大气等,通过分析采集的样品中元素和同位素的含量及其分布,揭示地球物质的成因和变化过程。
地球化学的研究方法包括野外调查、采样、室内分析和实验模拟等。
地球化学的研究成果可以为资源勘探、环境监测和地质灾害预测提供科学依据。
二、地球化学的应用领域地球化学在各个领域都有广泛的应用。
在矿产资源研究中,地球化学可以通过分析矿石中的元素含量,判断矿石成因和找寻潜在矿床。
在环境地球化学研究中,地球化学可以通过分析大气中的污染物和土壤中的重金属元素,评估环境污染程度。
在地质灾害研究中,地球化学可以通过分析地下水中的元素含量,预测地震和火山喷发等灾害的发生。
三、地球动力学的概念与研究内容地球动力学是研究地球内外部分的运动和变形的学科。
地球动力学研究的对象包括板块运动、地震、火山活动等地球运动现象。
地球动力学主要通过地震仪和其他地球观测设备来获得地球运动的数据,通过数学模型和计算机模拟来解释地球运动的原理和机制。
四、地球动力学的应用领域地球动力学的研究成果在地震预测、资源勘探和地质灾害预测等领域有重要应用价值。
在地震预测中,地球动力学可以通过监测地表和地下的变形和应力分布,预测和评估地震的可能性和危险程度。
在资源勘探中,地球动力学可以通过研究地下构造和地壳应力,发现矿产和能源资源的分布规律。
在地质灾害预测中,地球动力学可以通过模拟地下构造和地震活动,预测和评估地质灾害的潜在风险。
综上所述,地球化学和地球动力学在地球科学中起着重要的作用。
地球化学通过研究地球物质的化学组成,为资源勘探和环境保护提供科学依据;地球动力学通过研究地球运动的原理和机制,为地震预测和地质灾害预测提供科学支持。
地球化学中的有机地球化学
地球化学中的有机地球化学地球化学是一门研究地球化学元素的分布、运移、化学特性及其在地球圈层中的变化规律的科学。
有机地球化学则是研究有机物质在地球中的分布、特性、形成与演化的学科。
它是现代地球化学领域中的一个分支,与矿物地球化学、水文地球化学等有机结合,构成了地球化学研究的核心内容。
本文将从有机地球化学的研究对象、有机质的主要成分、有机地球化学古气候学、有机地球化学与环境科学等几个方面结合实例进行阐述。
一、有机地球化学的研究对象有机地球化学的研究对象包括石油、煤炭、天然气、沉积岩石等。
这些物质均含有不同程度的有机质,是现代人类社会生产生活的重要能源与原料资源。
石油、煤炭、天然气是含碳量极高的有机物,其成分除了含碳之外,还含有氢、氮、硫等元素。
石油和天然气是构成地球深部烃类资源的主要成分,而煤炭则是由大量的植物残骸在地质历史长期压缩和化学反应形成的,是地球上储量最丰富的燃料。
沉积岩石则是指岩石中含有可见的、经过生物化学反应后形成的化石和其他有机标志物的沉积物。
有机质最为集中的地方是深度较浅的沉积岩系。
研究沉积岩石中的有机质,有助于了解岩石的沉积环境、沉积旋回、海水温度、海平面变化等。
有机质通常包括一系列的生物标志物,如芳香烃、脂肪烃等,这些标志物具有结构独特、成分多样、稳定性高的特征,可以用来将岩石的沉积环境重建出来。
二、有机质的主要成分有机质的主成分是有机碳、有机氮、有机硫、有机氧等元素的有机物。
为了更好的理解有机质和岩石成因的关系,我们需要掌握有机质的具体特征。
(1)碳同位素组成燃料油、煤中的有机碳含量可以用碳同位素组成进行表征。
碳同位素组成是指不同样品中碳的不同原子量之间的比例,以表征碳源以及化学分馏过程。
同位素测量得到的结果是以δ13C ‰ (PDB) 的形式表示的。
其中δ13C为样品同位素组成相对于标准物质Pee Dee Belemnite(PDB)的偏移值,计算公式如下:δ13C ‰ (PDB) = [(13C/12C)样品/(13C/12C)PDB - 1] × 1000‰(2)生物标志物分析生物标志物分析是有机地球化学中的重要研究手段之一。
地球化学的基本原理与应用
地球化学的基本原理与应用地球化学是一门研究地球各部分以及地球与外部环境间元素、化学物质在地球上的分布、变化和相互关系的学科。
它是地球科学中的一个重要分支,具有广泛的应用领域。
下面将介绍地球化学的基本原理以及其在各个领域的应用。
一、地球化学基本原理1. 元素和同位素:地球化学研究中关注的核心是元素的存在形式和同位素的分布。
元素是组成地球和生物体的基本构成单元,而同位素则可用来追踪地球系统中的物质运移和循环过程。
2. 地质过程:地质过程是地球化学变化的根源。
包括岩浆活动、土壤形成、水文循环、生物地球化学等。
通过对地质过程和地球物质的研究,可以了解地球表层的演化历史和地壳成因。
3. 地球系统:地球是一个复杂的系统,包括大气、海洋、地壳和生物圈等多个组成部分。
地球化学通过研究这些组成部分之间的相互作用,揭示地球系统中物质循环的规律。
4. 化学平衡和反应:物理化学原理是地球化学中的基础。
化学平衡理论被应用于地球化学计算模型的构建,以揭示物质在地球系统中的分布和转化。
二、地球化学的应用领域1. 矿产资源勘探:地球化学可以应用于矿床勘探和矿产资源评价。
通过分析不同元素的分布和同位素组成,可以找到矿床的富集区域和找矿指示。
2. 环境污染与地质灾害:地球化学方法可以用于环境污染物迁移和转化的研究,例如水体中的重金属污染、土壤中的有机物污染等。
同时,地球化学还能够评估地震、火山和滑坡等地质灾害的潜在危险性。
3. 水文地质研究:地球化学可以用于水文地质研究,例如地下水的起源、成分及其与地下水补给区域的关系。
同时,地球化学方法也可以应用于地下水的污染源溯源。
4. 古气候与环境演化:地球化学分析在古气候和环境研究中起着重要作用。
通过分析沉积岩中的同位素组成和微量元素含量,可以重建过去气候变化和环境演化的历史。
5. 生物地球化学和生态系统研究:地球化学可以揭示生物地球化学循环的机制和影响因素,例如元素的生物地球化学循环过程、生态系统中的能量流动与物质转化等。
地球化学特征及环境意义
地球化学特征及环境意义地球化学是研究地球化学元素在地球上的分布、演化和环境意义的学科。
地球化学元素是指地球上存在的化学元素,包括金属元素和非金属元素,它们的存在对地球的演化和生命的存在起着至关重要的作用。
地球化学特征是指地球上不同地区地壳中元素的分布特征。
地球化学特征的研究可以揭示地球的演化历史、构造特征和成矿作用等。
根据元素的分布特征,地球化学元素可以分为两类:亏损元素和富集元素。
亏损元素是指地球地壳中含量较低的元素,如锂、铝、钠、钾等。
这些元素在地壳中分布不均,主要分布在大陆岩石中,而海洋中含量较低。
亏损元素的分布特征与地球的演化历史和构造特征密切相关,其研究可以揭示地球的演化历史和构造特征。
富集元素是指地球地壳中含量较高的元素,如铁、铜、铅、锌等。
这些元素在地壳中分布较为均匀,但不同地区的含量差异较大。
富集元素的分布特征与成矿作用密切相关,其研究可以揭示成矿作用的机制和规律。
环境意义是指地球化学元素对环境的影响和作用。
地球化学元素对环境的影响主要包括以下几个方面。
首先,地球化学元素对生命的存在和发展起着至关重要的作用。
一些元素如碳、氧、氮、氢等是生命的基本组成部分,而另一些元素如钙、镁、钾、钠等则是生命体内的必需元素。
其次,地球化学元素对环境的污染和治理具有重要的意义。
一些元素如汞、铅、镉、铬等对环境和人类健康造成严重危害,需要采取有效的治理措施。
最后,地球化学元素对资源开发和利用具有重要的意义。
一些元素如铁、铜、铝、锌等是工业生产的重要原料,其开发和利用对经济发展具有重要的意义。
综上所述,地球化学特征及环境意义是地球化学研究的重要内容。
对地球化学元素的分布特征和环境意义的研究有助于揭示地球的演化历史和构造特征,为资源开发和利用提供科学依据,同时也有助于保护环境和人类健康。
地球化学专业学什么
地球化学专业学什么地球化学是一门研究地球内部和外部化学组成、构造和演化的学科,地球化学专业主要研究地球化学的基本理论和应用方面的知识。
在地球化学专业的学习过程中,学生将掌握地球化学的基本概念、基本理论和实验技术,了解地球化学在资源勘探、环境保护、地质灾害预测等方面的应用,并具备独立从事地球化学研究和工作的能力。
1. 基础理论知识地球化学专业的学习首先会涉及到一些基础理论知识,如基本化学理论、矿物学、岩石学和地质学等。
学生将学习到地球内部和外部物质的组成和性质,了解地球的构造和演化过程。
掌握这些基础理论知识对于后续的专业学习和研究是非常重要的。
2. 分析测试技术地球化学专业的学生还需要学习各种分析测试技术,如光谱分析、质谱分析、电子显微镜等。
这些技术可以用来分析和检测地球中的各种物质,包括矿石、岩石、土壤和水等。
通过学习这些分析测试技术,学生能够准确地测定地球化学样品中的各种元素组成和含量,为地球化学研究和应用提供数据支撑。
3. 地球化学的应用地球化学专业的学生将学习地球化学在资源勘探、环境保护、地质灾害预测等方面的应用。
地球化学可以帮助人们找到矿藏和矿产资源,发现地下水资源,预测地质灾害的发生,评估环境的污染状况等。
学生将了解并应用不同地球化学的方法和技术,为相关领域的研究和工作提供科学依据。
4. 实践和实习地球化学专业的学生通常也会进行实践和实习环节的学习。
实践和实习可以帮助学生将理论知识应用到实际问题中,培养学生的实践操作能力、解决问题能力和团队合作精神。
通过实际操作和实地调查,学生可以更好地理解和应用地球化学的知识,为将来从事地球化学研究和应用打下坚实的基础。
5. 学习成果地球化学专业的学生毕业后,将具备扎实的地球化学理论基础和实验技术能力,能够从事地球化学的研究和工作。
他们可以在矿产资源勘探、环境保护、地质灾害预测、水资源管理等领域工作,也可以选择继续深造,攻读硕士或博士学位,从事地球化学的高级研究和教学工作。
地球化学
一.名词解释1勘查地球化学:在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析和数据处理,发现地球化学异常与其它地球化学标,据此作为找矿的线索和依据,进而寻找矿床;同时用以解决一些地质等其它问题。
1.区域化探:是大规模、大范围的概略地球化学调查,以查明成矿远景区为目的,以地球化学省、地球化学带、矿田晕、大型矿床晕为目标所进行的化探。
2.矿区化探:是以准确圈定矿床具体位臵,甚至能确定矿体位臵,埋深情况为目标,所进行的化探。
3.相容性元素:是指容易进入结晶相而在残余流体相中迅速降低的元素。
4.不相容元素:是指那些在结晶分异过程中倾向于残余流体相中聚集的元素。
5.地球化学省:在地壳的某一大范围内,某些成分富集特征特别明显,不只是一两类岩石中元素丰度特别高,而且该种元素的矿床常成群出现,矿产出现率也特别高。
通常将地壳的这一区段成为地球化学省。
6.地球化学指标:是指一切能提供地球化学信息或地质信息的,能直接或间接测定的地球化学变量。
7.地球化学场:地球化学指标在三度空间和时间上的演化称为地球化学场。
8.地球化学障:凡是浓度梯度极大值所在的点,叫做地球化学障,其实质就是地球化学环境发生骤然变化,元素活动性发生急剧改变的地段。
9.原生环境:是指天然降水循环面以下直到岩浆分异和变质作用发生的深部空间的物理化学条件的总和。
10.次生环境:是地表天然水,大气影响所及的空间所具有的物理化学条件的总和。
11.地球化学储量:地球化学系统中元素的总量。
12.采样单元:元素在地球化学场内分布是不均匀的,当把研究区按一定面积分割成若干足够小的单元时,可以近似把这一单元内元素看做是均匀分布的,这个最小单元叫做采样单元。
13.检出限:某一分析方法或分析仪器能可靠的检测出样品中某一元素的最小重量或质量。
14.灵敏度:某一分析方法在一定条件下能可靠地检测出的最低含量。
《地球化学》章节笔记
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。
地球化学中的基本理论和应用
地球化学中的基本理论和应用地球化学是研究地球上各种物质构成、变化、分布规律的科学学科,它是地球科学中的重要分支之一。
在地球化学中,有一些基本理论和应用,下面就从这方面进行探讨。
一、地球化学的基本理论1. 元素的存在及分类所有的物质都由原子或分子组成,地球化学认为地球上大约有94种元素,每个元素都有自己的原子序数和原子量,其中,能够构成地球上大部分物质的元素称为地球化学主要元素,主要元素一般按照丰度高低分为四类:岩石形成元素、水形成元素、生命形成元素和大气成分元素。
2. 地球内部元素运动地球内部核心处温度很高,铁、镍等元素在核心处形成了实心核,实心核周围的外核是流动的液态铁合金,地核与原始外壳之间的地幔则是由硅、钙、铝、镁等元素构成的岩石体。
地球内部元素运动的过程中,发生了一些反应,例如地壳内不同元素间的化学反应、矿物的形成等等,这些过程都对地球化学的研究产生了深远的影响。
3. 元素的地球化学分布地球化学研究的重要目的之一是确定元素在地球各层次中的分布规律,这对于研究地球内部物理和化学过程、地质过程以及矿床成因等方面很有帮助。
二、地球化学在实际场景中的应用1. 环境保护近些年来,自然灾害、生态破坏、人工污染等问题日益严重。
然而,只有全面了解地球元素分布规律,才能采取更有效的环境治理措施。
2. 矿产资源勘探矿产资源勘探是地球化学的另一个重要应用领域,地球化学方法可以通过对矿区的地球化学特征和物质组成获取矿区信息,为矿产资源勘查和利用提供基础资料。
3. 水文地球化学水文地球化学指的是利用地球化学分析方法,研究水文过程中含有的各种元素化合物及其变化规律,为地下水污染治理提供更准确的科学依据。
4. 石油地质学石油地质学是探讨石油的成因、分布、储集及运移规律的专门学科,石油地质学包括石油地球化学、石油地震学、石油岩石学等方面。
这些技术的应用可以大大提高开采效率,促进石油资源的可持续利用。
总之,在现代社会中,掌握地球化学基本理论及其应用技术,无论是在科学研究、还是在工业生产和环境保护等方面,都具有非常重要的意义。
2023年地球化学专业介绍及就业方向
2023年地球化学专业介绍及就业方向地球化学是研究地球物质构成、分布、变化及地球与周围环境的相互作用的一门专业。
其研究内容涉及地球内部结构、岩石矿物组成、大气、水、土壤等地球环境中的物质及其变化规律等方面。
该专业是自然科学中的一门基础性学科,其在地球科学的领域中占有重要地位。
那么,地球化学专业毕业后可以从事哪些就业方向呢?一、地球科研机构毕业生可以选择考取硕士、博士继续深入研究,也可以选择到国内外的大学、科研机构等单位从事地球科研工作。
如中国科学院、中科院地质与地球物理研究所、地质矿产部门等。
二、能源矿产企业地球化学专业也在能源矿产领域有应用,例如石油、天然气、煤炭等方面的勘探、开采、应用等。
毕业生成为这些企业的技术员、地质勘探员、工程师、技术骨干等。
三、环境监测、管理机构随着人类对于环境保护意识的不断提高,毕业生也可以选择到环保监测、管理机构从事相关工作。
比如大气污染物、水质、土壤等污染物的排放、减排、监测与治理,以及环境安全论证等。
四、教育机构地球化学专业的毕业生也可以选择到高中、中小学从事教师、教育研究员等职业。
此外,如高等教育、职业教育等也需要地球化学专业的教师。
五、科技咨询、管理机构毕业生也可以选择到科技咨询、管理领域从事工作。
如工程/科技/资产评估、科技创新管理等领域。
此外,为政府部门、科研院所、中小企业等提供地球化学技术服务也是另一大就业方向。
六、其他地球化学专业的毕业生还可以选择到其他领域从事工作,如投资银行、咨询公司等。
本科生还可以选择继续深造,比如学习地球化学研究所需的物理、化学、数学和计算机和数据分析技巧等相关的硕士或博士学位。
总体来说,地球化学专业虽然门槛相对较高,但是就业前景广阔,就业岗位种类繁多,应用范围广泛。
对于对地球科学感兴趣的学生,选择地球化学专业是一个稳妥的选择。
地球化学复习重点
绪论:1. 地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学.2. 地球化学研究的基本问题:①元素(同位素)在地球及各子系统中的组成②元素的共生组合和存在形式③研究元素的迁移④研究元素(同位素)的行为⑤元素的地球化学演化3. 地球化学的研究思路:"见微而知著"。
通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。
4. 简述地球化学的研究方法:A. 野外工作方法:①宏观地质调研②运用地球化学思维观察、认识地质现象③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品B.室内研究方法:④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值⑤质的研究,也就是元素结合形态和赋存状态的研究⑥动的研究,地球化学作用过程物理化学条件的测定和计算。
包括测定和计算两大类。
⑦模拟地球化学过程,进行模拟实验。
⑧测试数据的多元统计处理和计算。
第一章:基本概念1. 地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P 等)2. 丰度:一般指的是元素在这个体系中的相对含量(平均含量)。
3. 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。
4. 分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。
5. 研究元素丰度的意义:①元素丰度是每一个地球化学体系的基本数据以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。
是研究地球、研究矿产的重要手段之一。
②研究元素丰度是研究地球化学基础理论问题的重要素材之一。
宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。
什么是地球化学?
什么是地球化学?地球化学是研究地球上各种元素的分布、循环、演化及其间的相互关系的学科。
地球化学家通过对地球上物质元素丰度、分布、运移、远景、转换和生物地球化学过程的研究,揭示了地球和太阳系的过去、现在和未来之间的相互作用及其对生物圈的影响。
地球化学在环境、资源、矿产、能源等领域中起着重要的作用,因此越来越受到人们的关注。
一、地球化学的起源与发展地球化学学科的源头最早可以追溯到19世纪中叶,当时一些科学家想要研究地球内部物质的成分以及它们是如何形成的。
20世纪早期,随着地球化学技术的逐渐发展,地球化学作为一门独立的学科开始逐渐形成。
现代地球化学是吸收了化学、物理、生物、地球科学等多个学科的研究成果并结合自身实践而形成的,目前为止已经成为了一个相对完整的学科体系。
二、地球化学的研究内容1. 地壳、地幔和核的物质成分研究地球分为地壳、地幔和核三部分,地壳是固体的外壳,地幔是固体的底部层,核则分为地核和外核。
地球化学家对这三部分物质的成分进行了分析研究,为地质学、矿物学和地球物理学的发展提供了重要的基础。
2. 环境污染的分析与治理地球化学家通过对环境样品进行组分测定,可以对污染源、传输途径和环境背景进行分析,从而为环境治理和保护提供科学依据。
例如,地下水、大气、土壤、净水等方面的环境保护等。
3. 土壤和植物的养分研究土壤是地球上生命活动所依赖的重要载体,而植物则是土壤中身份的代表。
地球化学家可以通过土壤、植物和水等生态系统元素分布的研究,了解土壤和植物的养分状况,为高产、优质和减少化肥的使用提供依据。
4. 能源和矿产资源的开发与利用地球化学在能源和矿产资源的开发与利用方面也发挥了重要作用。
例如,地球化学家可以通过对石油、天然气、金属矿物和非金属矿物等资源的地球气息研究,为这些资源的开发、利用和优化提供依据和指导。
三、结语地球化学在当今的环境保护、能源矿产开采和冶炼等方面都有着非常重要的作用。
地球化学家的研究能够让我们更好地了解地球上的物质元素,以及它们在自然界中的循环和演化,为构建可持续发展的地球环境做出积极贡献。
地球化学指标范文
地球化学指标范文
地球化学指标是衡量地球化学特征和变化的一系列指标。
它们可以用
于研究地球物质的组成、性质和演化过程,以及反映地球环境的变化和演化。
地球化学指标可以从不同的角度来评估地球化学特征,包括元素丰度、同位素分馏、地球化学循环、地球化学年代学等方面。
以下是对一些常用
的地球化学指标的介绍。
同位素分馏是指同一个元素的不同同位素之间在地质过程中的分离和
富集现象。
同位素分馏可以用来研究地球物质的物质交换、地质过程和生
物地球化学循环。
例如,同位素分馏可以用来研究地球大气和海洋的氧同
位素组成,以揭示古代气候变化。
地球化学循环是描述地球物质在不同地球系统之间的交换和转化过程
的指标。
地球化学循环可以涉及元素、同位素、有机物质等,在地球环境
中发挥重要的作用。
例如,地球化学循环可以揭示碳、氧、氮、硫等元素
在大气、地壳和海洋之间的交换和转化过程,以及它们对全球气候变化的
影响。
地球化学年代学是研究地球物质的形成时代和历史演化过程的一种方法。
地球化学年代学可以通过分析地球物质中的同位素组成和元素丰度来
揭示地球历史上的环境变化和演化过程。
例如,地球化学年代学可以用来
确定古代岩石的形成时代和古地磁场的演化历史。
总而言之,地球化学指标是研究地球化学特征和变化的重要工具。
它
们可以帮助我们了解地球环境的演化历史、预测未来的环境变化,以及探
索地球外环境和生命的可能性。
地球化学指标的研究对于推动地球科学的
发展具有重要的意义。
地球化学
名词解释1.地球化学:是研究地球及其子系统(含部分宇宙体)的化学组成、化学机制和化学演化的学科。
2.元素丰度:通常将元素在宇宙体或较大的地球化学系统中的平均含量称为丰度。
3.浓度克拉克值:某元素在某地质体中的平均含量与其克拉克值的比值。
4.克拉克值:通常将元素在宇宙体或较大的地球化学系统中的平均含量称为丰度,而元素在地壳中的丰度则称为克拉克值。
5.浓集系数:元素在矿床中的最低可采品位与克拉克值的比值,称为该元素的浓集系数。
6.离子电位π表示离子吸引或排斥对方电荷的能力,是表征离子电场强度的参数,π等于离子的电荷Z与半径r(单位为10nm)的比值。
7.元素的赋存状态:元素在其迁移历史的某个阶段所处的物理化学状态及与共生元素的结合特征。
8.Eh值:指环境的氧化还原电位,是氧化还原反应强度的指标。
当体系处于平衡状态时,体系中个氧化还原反应的电极电位(非标准电极电位)E应与环境的氧化还原电位Eh相等。
9.晶体场稳定能:d轨道电子能级分裂后的d电子能量之和, 相对于未分裂前d电子能量之和的差, 称为晶体场稳定能(CFSE).10.八面体择位能:任意给定的过渡元素离子在八面体配位的晶体场中获得的晶体场稳定能通常高于其在四面体配位的晶体场中获得的晶体场稳定能,二者的差值称为该离子的八面体择位能。
11.微量元素:微量元素是一个相对概念,通常将自然体系中含量低于0.1%的元素称为微量元素。
12.封闭温度:当岩石、矿物形成以后冷却到基本上能完全保留放射成因子体同位素的温度,称同位素封闭温度,简称封闭温度。
13.CHUR:具有球粒陨石w(Sm)/w(Nd)比值的均一岩浆库14.BABI:指玄武质无球粒陨石的(87Sr/86Sr) 比值为0.69897±0.00003,代表地球形成时的初始比值.15.δ值:是稳定同位素质谱分析所给出的样品的重/轻同位素比值R样与标准样品的重/轻同位素比值R标的相对偏差,一般用千分数表示Δ(‰)=(R样-R标)/R标×1000=(R样/R标-1)×100016.Tdm为样品相对于亏损地幔的Nd同位素模式年龄,代表地壳物质从亏损地幔总分离的时代.17.电负性:电负性为电离能与电子亲和能之和,是元素的原子在化合物中吸引电子能力的标度,其值与原子在化合物中吸引电子的能力成正比。
地球化学的基本知识
地球化学的基本知识地球化学是研究地球物质成分、构造、演化及其与生命和环境的相互关系的科学。
它涉及到地球物质的地球化学元素和同位素地球化学、地球化学循环和地球化学环境等方面的内容。
在地球科学中,地球化学是一个非常重要的学科,对于我们了解地球内部的构造和演化过程、地球环境问题以及探索地质资源方面都有着重要的作用。
地球化学元素地球化学元素是组成地球物质的最基本成分,它们是地球化学研究的重点。
地球化学元素可分为7类,包括:1. 结构元素:构成地球物质的主体,包括氧、硅、铝、钙、钾、钠、镁等。
2. 生命元素:在生命过程中起重要作用的元素,包括碳、氧、氢、氮、磷、硫等。
3. 外源元素:由于地球物质的外来污染而进入地球大气圈和地表水的元素,包括铜、铅、锌、镉等。
4. 稀有元素:在地球物质中数量较少,但对人类发展有重要作用的元素,包括铀、银、金、铂等。
5. 晶体元素:在矿物中起构成稳定晶体结构的作用,包括铝、硅、钾、钠、钙等。
6. 地壳亏损元素:在地壳中含量很少,经常进入地球内部或者被深海沉积物吸附,包括锆、铪、钨、锂等。
7. 稳定代表元素:是代表不同物质来源的元素,包括铷、锶、氧等。
同位素地球化学同位素指同一元素的不同质量数的原子,它们具有相同的原子序数但是质量不同。
同位素地球化学主要研究同位素的地球化学特征及其在地球环境中的物质循环。
同位素的研究可以揭示地球的起源和演化历程,也可以为寻找矿产资源提供线索,同时还可以在环境研究中提供很多信息。
同位素地球化学有很多研究方向,涵盖了从宏观到微观的各个层面。
其中最常用的应用是同位素地球化学年代学,即利用某些放射性同位素的衰变规律测定岩石和化石的年龄。
同位素地球化学还可以研究地球历史和地质过程中物质的迁移和循环,以及对生态和环境方面的影响。
地球化学循环地球化学循环是指地球物质在各种环境作用下发生的化学反应,并通过不同的地球系统之间相互转移,形成一个复杂的物质循环过程。
地球化学的应用实例
地球化学的应用实例地球化学是研究地球内部和地球表层的化学组成、结构、演化以及地球化学过程的学科。
地球化学的研究范围广泛,涉及地球内部岩石矿物的成因、大气和水体的化学特征、生物地球化学过程以及环境污染等方面。
在实际应用中,地球化学具有重要的作用,下面将介绍几个地球化学的应用实例。
一、地球化学在矿产资源勘探中的应用地球化学在矿产资源勘探中起着重要的作用。
通过对地表和地下水体、土壤、岩石等样品的化学分析,可以确定地下矿体的存在和分布。
例如,在铜矿勘探中,地球化学分析可以通过铜元素在地壳中的赋存状态,确定铜矿的形成环境和矿体的分布规律,为矿产资源的开发提供重要依据。
二、地球化学在环境监测和污染治理中的应用地球化学在环境监测和污染治理中也有广泛应用。
通过对大气、水体、土壤等样品的化学分析,可以监测环境中重金属、有机污染物等污染物质的浓度和分布。
这些数据可以评估环境的污染状况,并为制定相应的污染治理措施提供科学依据。
例如,在水源地保护中,地球化学分析可以确定水体中有害物质的来源和迁移途径,为水源的保护和治理提供支持。
三、地球化学在地质灾害预测和防治中的应用地球化学在地质灾害预测和防治中也具有重要的应用价值。
地球化学分析可以通过研究地下水体、土壤、岩石等样品的化学特征,判断地质灾害的潜在风险。
例如,在滑坡灾害的预测中,地球化学分析可以通过分析土壤中的水分、有机质和重金属元素等,判断土壤的稳定性,并提前预测滑坡的可能性,为灾害防治提供依据。
四、地球化学在古环境研究中的应用地球化学在古环境研究中也有广泛应用。
通过对古代岩石、古土壤、古植物等样品的地球化学分析,可以重建古环境的演化过程。
例如,在古气候研究中,地球化学分析可以通过分析古代岩石中的同位素含量,推测古气候的变化,并了解古代地球环境的特征和演化规律。
五、地球化学在地球科学研究中的应用地球化学在地球科学研究中扮演着重要的角色。
通过对地球内部岩石、矿物、地幔物质等的化学分析,可以揭示地球的内部结构和演化历史。
地球化学知识点总结
地球化学知识点总结地球化学是研究地球上元素在地壳、海洋、大气、生物圈等不同地球部分的分布和演化规律的一门科学。
它是地球科学、环境科学、地球化学和物质科学的交叉学科。
地球化学可以帮助人们更好地理解地球的起源与演化过程,从而为人类的生存、发展提供科学依据。
下面将从地壳、海洋、大气和生物圈等方面详细介绍地球化学的知识点。
1.地壳化学:地壳是地球表面上最外面的固体壳层,它主要由岩石和土壤组成。
地壳化学研究地壳中元素的组成、分布和形成机制。
地壳中的元素可分为岩石形成的主要元素和矿物形成的次要元素。
主要元素包括氧、硅、铝、铁、钙、钠、钾等,次要元素包括钛、锰、镁、铜、锌、铅等。
地壳化学的主要目标是研究地壳元素的含量、赋存形态和变化规律,从而探索地壳的演化历史和地球构造的变化。
2.海洋化学:海洋是地球上最大的水体,其中溶解有大量的盐类和其他化学物质。
海洋化学研究海水中元素的分布、循环和相互作用。
海洋中的主要元素包括氯、钠、镁、硫、钾、钙等,其含量和分布受到多种因素的影响,如河流输入、地壳物质的侵蚀和火山喷发等。
海洋化学的研究可以揭示海洋中元素的循环和交换过程,为海洋环境保护和资源开发提供科学依据。
3.大气化学:4.生物地球化学:生物圈是地球上生物活动的部分,其中包括陆地生态系统和海洋生态系统。
生物地球化学研究生物圈中元素的循环和生物对地球化学过程的影响。
生物圈中的生物通过光合作用和呼吸作用,将二氧化碳转换为有机物,并释放出氧气。
同时,生物还通过摄食和分解等过程参与地球化学循环,如植物吸收地壳中的元素,动物通过排泄将元素输入土壤等。
生物地球化学的研究可以揭示生物对地球化学循环的调节作用,为生物多样性保护和生态系统管理提供科学依据。
地球化学的研究方法包括采样、分析和模拟等。
采样是获取地球样品的过程,可以通过地质勘探、海洋探测和环境监测等方式进行。
分析是对样品进行化学分析的过程,可以利用化学分析仪器和实验方法进行。
(完整word版)地球化学知识点整理
地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
即“见微而知著”。
第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。
这种不均一性在地球的一定深度表现为突变性质。
由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。
界面分别为:莫霍面和古登堡面。
(2)上地壳和下地壳分界面为康拉德面。
上地壳又叫做硅铝层,下地壳又叫做硅镁层。
大陆地壳由上、下地壳,而大洋地壳只有下地壳。
【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。
它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。
(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。
地球化学的基本原理与研究方法
地球化学的基本原理与研究方法地球化学是研究地球各种元素、同位素在地球内外相互分配的科学,是研究地球层、地表、水体和大气中元素和同位素组成、分布和迁移规律的学科。
地球化学研究的主要内容包括物质来源、地球化学过程、地球化学时标以及地球化学计量等方面。
本文将介绍地球化学的基本原理与研究方法。
一、地球化学的基本原理地球化学研究以元素和同位素为研究对象,其基本原理可以概括为以下几点:1. 元素循环:地球上的元素在不同的地球系统之间进行循环。
例如,在岩石圈中,元素经历了岩浆作用、岩石风化和沉积作用等过程,不断地在地球系统中迁移和转化。
2. 同位素分馏:同位素分馏是地球化学中的重要现象。
同位素的分馏是指在地质、化学或生物过程中,不同同位素的分布比例发生变化。
通过研究同位素分馏过程,可以揭示地质、化学和生物时间尺度上的环境变化和地球演化过程。
3. 地球系统的开放性:地球系统是开放的,并与外部环境进行物质交换。
例如,大气中的的氧气可以通过生物作用与地壳中的氧发生反应形成氧化物。
这些交换过程对地球系统的物质组成和环境变化产生重要影响。
二、地球化学的研究方法地球化学研究方法是通过采集地球样品,利用实验室中的仪器设备对样品中的元素和同位素进行分析,来揭示地球化学特征和环境变化。
主要的研究方法包括:1. 野外样品采集:地球化学研究通常需要采集岩石、土壤、水体、大气等不同类型的地球样品。
采集样品的方法要求采集的样品具有代表性,以保证研究结果的可靠性。
2. 样品前处理:采集到的地球样品需要进行前处理,包括样品的破碎、磨粉、溶解等步骤。
这些前处理工作是为了获得样品中的溶液或粉末,以便进行后续的元素和同位素分析。
3. 元素分析:地球化学研究中常用的元素分析方法包括原子吸收光谱法、电感耦合等离子体质谱法和质谱法等。
这些方法可以对地球样品中的元素进行准确的定量和定性分析。
4. 同位素分析:同位素分析是地球化学研究中重要的手段,通过测量同位素的比例来研究地球化学过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不相容元素
incompatible elements释文:又称湿亲岩浆元素(hy-gromagmatophile elements),在岩浆或热液的矿物结晶过程中趋向于在液相中富集的某些微量元素(如Sn、Li、Rb、Sr、Cs、Be、Ba、Zr、Hf、Nb、Ta、Th、U和稀土元素)。
因其浓度低,不能形成独立矿物相。
因受其离子半径、电荷和化合键所限,很难进入造岩矿物晶体结构中,而在残余岩浆或热液中相对富集。
其固——液相分配系数近于零。
元素的不相容性可因结晶条件的不同而改变。
相容元素
compatible element释文:在岩浆或热液中的某些微量元素(如Cr、Ni、Co、V等)。
在矿物结晶过程中趋向于在早期固相中富集。
因其浓度低,不能形成独立矿物,但其离子半径、电荷、晶体场等晶体化学性质与构成结晶矿物的主要元素相似,故在固——液相反应或平衡中易于呈类质同象形式进入有关矿物相。
其固——液相分配系数明显大于1。
元素的相容性可因结晶条件的不同而改变。
高场强元素
电价较高、半径较小、具有较高离子场强(为离子与半径之比)的,典型代表为Nb、Ta、zr、Hf、Th等。
这些元素性质一般较稳定,不易受、蚀变和作用等的影响,因此常用来恢复遭后期变化的原岩性质。
指小、离子电荷大、(2/R)大于3的元素,如、、、、、、等。
大离子亲石元素
large ion lithophile element,LILE 释文:大离子亲石元素是指离子半径大,电荷低,离子电位π<3,易溶于水的元素,化学性质活泼,地球化学活动性强,特别是有流体参与的系统。
典型代表为K、Rb、Sr、Ba、Cs、Pb2+、Eu2+等。
亏损地幔
depleted mantle,DM 释文:亏损地幔是指曾对地壳的形成作出过贡献,易熔组分已被明显消耗的地幔物质,其中大离子亲石元素、热产元素等明显亏损,难熔组分则相对富集。
亏损地幔又称残留地幔,是经过部分熔融出岩浆后的地
幔残留部分。
其相对于原始地幔明显亏损易熔组分,如K
2O、Na
2
O、CaO、Al
2
O
3
、
TiO
2
等,Mg质高,多大于91,一般为91.5-93.5。
微量元素中地幔不相容元素亏损,如出现左倾的稀土配分型式等。
亏损地幔,是洋中脊玄武源区的主要成分,主要特征是低Rb/Sr,高Sm/Nd;143Nd/144Nd比值高,87Sr/86Sr比值低,其&Nd(t)为高正值,&Sr(t)为负值。
富集地幔
在地球发展演化的早期阶段,地幔不断地发生部分熔融,相当部分容易进入液相的元素随着熔融作用不断地移出地幔源区进入岩浆,从而使地幔亏损了上述组分,形成了化学上的亏损地幔。
如Si、AL、Ca、Na、K等。
如果地幔中加入了上述元素,则形成富集地幔。