湘教版中考数学知识点总结归纳

合集下载

湘教版数学中考考点知识梳理

湘教版数学中考考点知识梳理

湘教版数学中考考点知识梳理在人类历史发展和社会生活中,数学发挥着不可替换的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

数学属于情势科学,而不是自然科学。

今天作者在这给大家整理了一些湘教版数学中考考点知识梳理,我们一起来看看吧!湘教版数学中考考点知识梳理【三角形中位线的定理】三角形的中位线平行于三角形的第三边,并且等于第三边的一半.【平行四边形的性质】①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线相互平分.【矩形的性质】①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等.正方形的判定与性质1.判定方法:(1)邻边相等的矩形;(2)邻边垂直的菱形;(3)对角线垂直的矩形;(4)对角线相等的菱形;2.性质:(1)边:四边相等,对边平行;(2)角:四个角都相等都是直角,邻角互补;(3)对角线相互平分、垂直、相等,且每长对角线平分一组内角。

等腰三角形的判定定理【等腰三角形的判定方法】1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会显现直线,这是角平分线的对称轴才会用直线的,这也触及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上数学中考考点知识梳理单项式与多项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

当一个单项式的系数是1或-1时,“1”通常省略不写。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳
一、整数和有理数
1.整数的概念和表示方法
2.整数的加法和减法运算
3.整数的乘法和除法运算
4.有理数的概念和表示方法
5.有理数的加法和减法运算
6.有理数的乘法和除法运算
二、代数式与等式
1.代数式的概念和表示方法
2.代数式的加减法运算
3.代数式的乘法运算
4.代数式的除法运算
5.等式的概念和性质
6.等式的变形与解方程
三、变量与函数
1.变量的概念和应用
2.一元一次方程的解法
3.一元一次方程组的解法
4.二次根式的概念和性质
5.二次根式的运算
6.一元二次方程的解法
四、图形的性质与变换
1.直线、线段和射线的概念
2.角的概念和性质
3.三角形的性质和分类
4.四边形的性质和分类
5.圆的概念和性质
6.图形的平移、旋转和对称
五、图形的计量
1.长度的计量和单位换算
2.面积的计算和单位换算
3.体积的计算和单位换算
4.直角三角形的边长关系
5.圆的周长和面积计算
六、相似与全等
1.相似图形的概念和性质
2.相似三角形的判定条件
3.相似三角形的性质和运用
4.全等图形的概念和判定
5.全等三角形的性质和运用
七、统计与概率
1.数据的收集和整理
2.数据的统计和分析
3.数据的表示和解读
4.概率的概念和计算
以上是湘教版初中数学知识点的一个精华版归纳。

在学习中应重点理解和掌握这些知识点,通过练习题巩固理解,并注重解题方法和思维的培养,以提高数学解题能力。

湘教版数学初三知识点总结

湘教版数学初三知识点总结

湘教版数学初三知识点总结一、有理数1. 有理数的概念有理数是指可以表示为两个整数的比值(分母不为零)的数,包括正整数、负整数、零。

2. 有理数的性质(1)有理数的加法和乘法封闭性两个有理数的和或积仍是有理数。

(2)有理数的加法和乘法交换律、结合律有理数的加法和乘法满足交换律和结合律。

(3)有理数加法逆元和乘法逆元任何有理数的相反数仍是有理数;非零有理数的倒数仍是有理数。

(4)有理数大小比较两个有理数的大小比较可以通过其表示数的大小及符号来确定。

(5)有理数的乘法有理数相乘,符号相同得正,符号不同得负。

(6)有理数的除法有理数相除,可以先化简成乘法,再进行运算。

二、整式与因式1. 整式的概念整式是由数字、字母和它们的积、商以及和所组成的代数式。

2. 整式的加减法整式的加减法符合交换律和结合律,可以将同类项合并。

3. 整式的乘法利用分配律将整式相乘,然后合并同类项。

4. 整式的因式(1)根据其计算结果分解;(2)根据其特殊的代数式分解;(3)根据构造公式分解;(4)根据取公因式分解。

三、方程与不等式1. 一元一次方程(1)解一元一次方程应注意合并同类项、去括号、去分母、移项和因式分解等。

(2)解一元一次方程应注意检验解的合理性,并讨论求解情况。

2. 一元二次方程(1)利用因式分解法、配方法、求根公式等方法解一元二次方程。

(2)解一元二次方程时应特别注意讨论解的存在性和范围。

3. 一元一次不等式(1)解一元一次不等式需要注意方程的倍增、分组、图解等方法。

(2)解一元一次不等式时应特别注意小心细致的过程和范围的讨论。

4. 一元一次方程与不等式利用方程的性质和解法,能够解决一些实际问题。

四、平面图形与几何变换1. 图形的概念及分类二维图形包括直线、射线、线段、角、多边形、圆等。

2. 三角形(1)三角形的基本性质三角形内角和为180°,三角形两边之和大于第三边,三角形两角之差小于第三角。

(2)三角形的分类根据边和角的性质,三角形可分为等边三角形、等腰三角形、直角三角形、等腰直角三角形、普通三角形等。

湘教版中考数学知识点总结归纳Word版

湘教版中考数学知识点总结归纳Word版

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X 的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

湘教版数学初中必考知识点归纳

湘教版数学初中必考知识点归纳

湘教版数学初中必考知识点归纳湘教版数学作为初中数学教材的一个重要版本,涵盖了丰富的数学知识点,以下是一些必考的知识点归纳:# 数与式- 有理数:正数、负数、零的概念,有理数的四则运算。

- 代数式:整式、分式、多项式的概念,代数式的加减乘除运算。

- 因式分解:提取公因式法、公式法、十字相乘法等。

# 方程与不等式- 一元一次方程:解法、应用题。

- 一元二次方程:直接开平方法、配方法、公式法、因式分解法。

- 不等式:不等式的基本性质,解一元一次不等式。

# 函数- 平面直角坐标系:坐标系的基本概念,点的坐标表示。

- 一次函数:图象、性质、应用。

- 反比例函数:图象、性质、应用。

# 几何- 线段、角:线段的性质,角的分类和性质。

- 三角形:三角形的分类,三角形的内角和定理,全等三角形的判定。

- 四边形:平行四边形、矩形、菱形、正方形的性质和判定。

- 圆:圆的性质,圆周角定理,切线的性质。

# 统计与概率- 数据的收集与处理:数据的分类、整理、描述。

- 统计图:条形统计图、折线统计图、饼图的绘制和解读。

- 概率:概率的基本概念,概率的计算方法。

# 解题技巧- 审题:仔细阅读题目,理解题意。

- 画图:利用图形帮助理解题目,寻找解题思路。

- 转化:将复杂问题转化为简单问题,运用已知知识解决问题。

# 考试策略- 时间管理:合理分配答题时间,确保每题都有足够的时间思考。

- 检查:完成所有题目后,留出时间检查答案,避免低级错误。

通过系统地学习和掌握这些知识点,学生可以在数学考试中取得优异的成绩。

同时,数学的学习不仅仅是为了应对考试,更重要的是培养逻辑思维和解决问题的能力。

初中湘教版数学知识点总结归纳

初中湘教版数学知识点总结归纳

初中湘教版数学知识点总结归纳一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。

- 有理数的运算:加法、减法、乘法、除法、乘方。

- 有理数的性质:交换律、结合律、分配律。

2. 整式与分式- 整式的概念:由数和字母的有限次幂的和或差组成。

- 单项式与多项式:单项式是只有一个项的整式,多项式是多个单项式的和。

- 整式的加减:合并同类项。

- 整式的乘法:分配律的应用。

- 乘法公式:平方差公式、完全平方公式。

- 分式的概念:分子和分母都是整式的有理式。

- 分式的运算:乘除法、加减法、化简。

3. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

- 解方程的基本方法:代入法、消元法、加减法。

4. 函数- 函数的概念:从一个数集到另一个数集的映射。

- 函数的表示:解析式、图象、表格。

- 线性函数:y=kx+b,其中k为斜率,b为截距。

- 函数的性质:定义域、值域、单调性、奇偶性。

二、几何1. 平面几何- 点、线、面的基本性质。

- 角的概念:邻角、对角、同位角、内角、外角。

- 三角形:分类(锐角、直角、钝角三角形)、性质(三角形的内角和为180度)。

- 四边形:平行四边形、矩形、菱形、正方形的性质和计算。

- 圆的基本性质:圆心、半径、直径、弦、弧、切线。

2. 几何图形的变换- 平移:图形沿直线移动。

- 旋转:图形绕一点旋转一定角度。

- 轴对称:图形关于某条直线对称。

- 相似与全等:相似比、全等条件。

3. 解析几何- 坐标系:平面直角坐标系、点的坐标。

- 距离与斜率:两点间的距离公式、斜率的概念及计算。

- 直线的方程:点斜式、斜截式、两点式、一般式。

- 圆的方程:标准式、一般式。

三、统计与概率1. 统计- 数据的收集与整理:普查、抽样、频数分布表。

- 描述性统计量:平均数、中位数、众数、方差、标准差。

- 概率的初步认识:随机事件、概率的定义。

湘教版初中数学知识点归纳(总6页)

湘教版初中数学知识点归纳(总6页)

湘教版初中数学知识点归纳-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除湘教版初中数学知识点归纳七年级上册第一章有理数具有相反意义的量数轴、相反数与绝对值有理数大小的比较有理数的加法和减法有理数的乘法和除法有理数的乘方有理数的混合运算第二章代数式用字母表示数列代数式代数式的值整式整式的加法和减法第三章一元一次方程建立一元一次方程模型等式的性质一元一次方程的解法一元一次方程模型的应用第四章图形的认识几何图形线段、射线、直线角第五章数据的收集与统计数据的收集与抽样统计图七年级下册第一章二元一次方程组建立二元一次方程组二元一次方程组的解法二元一次方程组的应用三元一次方程组第二章整式的乘法整式的乘法乘法公式第三章因式分解多项式的因式分解提公因式法公式法第四章相交线与平行线平面上两条直线的位置平移平行线的性质平行线的判定垂线两条平行线间的距离第五章轴对称与旋转轴对称旋转图形变换的简单应用八年级上册第一章分式分式分式的乘法和除法整数指数幂分式的加法和减法可化为一元一次方程的分式方程第二章三角形三角形命题与证明等腰三角形线段的垂直平分线全等三角形用尺规作图第三章实数平方根立方根实数第四章一元一次不等式(组)不等式不等式的基本性质一元一次不等式的解法一元一次不等式的应用一元一次不等式组第五章二次根式二次根式二次根式的乘法和除法二次根式的加法和减法八年级下册第一章直角三角形直角三角形的性质与判定(1)直角三角形的性质与判定(2)直角三角形全等的判定角平分线的性质第二章四边形多边形平行四边形中心对称和中心对称图形三角形的中位线矩形菱形正方形第三章图形与坐标平面直角坐标系简单图形的坐标表示轴对称和评议的坐标表示第四章一次函数函数和它的表示法一次函数一次函数的图像用待定系数法确定一次函数表达式一次函数的应用第五章频数及其分布频数与频率频数直方图九年级上册第一章反比例函数反比例函数反比例函数的图像和性质反比例函数的应用第二章一元二次方程一元二次方程一元二次方程的解法一元二次方程根的判别式一元二次方程根与系数的关系一元二次方程的应用第三章图形的相似比例函数平行线分线段成比例相似的图形相似三角形的判定与性质相似三角形的应用位似第四章锐角三角函数正弦和余弦正切解直角三角形解直角三角形的应用第五章用样本推断总体总体平均数与方差的估计统计的简单应用九年级下册第一章二次函数二次函数二次函数的图像与性质不共线三点确定二次函数的表达式二次函数与一元二次方程的连续二次函数的应用第二章圆元的对称性圆心角、圆周角垂径定理过不共线三点作圆直线与圆的位置关系弧长和扇形面积正多边形与圆第三章投影与视图投影直棱柱、圆锥的侧面展开图三视图第四章概率随机事件与可能性概率及其计算用频率估计概率。

完整word版湘教版中考数学知识点总结归纳良心出品必属

完整word版湘教版中考数学知识点总结归纳良心出品必属

加法:①同号相加,取相同的符号,把绝对值相加。

②异号相初中数学知识点总结加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

一、基本知识减法:减去一个数,等于加上这个数的相反数。

㈠、数与代数乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任、数与式:A何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

、有理数1除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

负整数有理数:①整数→正整数/0/的积的运算叫做乘方,乘方的结果叫AN个相同因数乘方:求负分数②分数→正分数/ 叫次数。

叫底数,N幂,A,选(原点)数轴:①画一条水平直线,在直线上取一点表示0混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数括号里的。

轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数 2、实数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这无理数:无限不循环小数叫无理数两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的就,那么这个正数XX的平方等于A平方根:①如果一个正数两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左就X的平方等于A,那么这个数叫做A的算术平方根。

②如果一个数X ,负数小于0,正数大于负数。

0边的大。

正数大于负数没有平的平方根为0//0A的平方根。

③一个正数有2个平方根叫做绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该叫做被开方数。

叫做开平方,的平方根运算,其中A方根。

④求一个数A负数的绝对值是他的相反数、②正数的绝对值是他的本身、数的绝对值。

A就叫做A 的立方等于,那么这个数XX立方根:①如果一个数的绝对值是00。

两个负数比较大小,绝对值大的反而小。

负数的立方根是负00的立方根。

②正数的立方根是正数、的立方根是、有理数的运算:22- 1数。

初中数学知识点总结湘教版

初中数学知识点总结湘教版

初中数学知识点总结湘教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。

- 整数的四则运算规则及其应用。

- 分数的意义、性质和运算。

- 小数的意义、性质和运算。

2. 代数表达式- 字母表示数的概念。

- 单项式和多项式的定义及运算。

- 代数式的基本变形,如合并同类项、分配律等。

3. 一元一次方程与不等式- 一元一次方程的建立、解法及其应用。

- 不等式的概念和基本性质。

- 一元一次不等式的解法和解集表示。

4. 二元一次方程组- 二元一次方程组的建立。

- 代入法和消元法解二元一次方程组。

- 理解方程组的解及解集的含义。

5. 函数的初步认识- 函数的概念及其表示方法。

- 线性函数、二次函数的图像和性质。

- 函数的基本运算,如函数的和、差、积、商等。

二、几何1. 图形初步- 点、线、面、体的基本概念。

- 直线、射线、线段的性质和区别。

- 角的概念、分类及其性质。

2. 平面图形- 平行线的性质和判定。

- 三角形的分类、性质和内角和定理。

- 四边形的分类、性质和对角线关系。

- 圆的基本性质、圆周角定理和垂径定理。

3. 几何变换- 平移、旋转、轴对称等基本几何变换。

- 通过几何变换解决图形的相似和全等问题。

4. 空间图形- 空间图形的基本概念和性质。

- 立体图形的表面积和体积计算。

- 棱柱、棱锥、圆柱、圆锥的结构特征。

三、统计与概率1. 统计- 数据的收集、整理和描述。

- 频数、频率的意义和计算。

- 统计图表的绘制和解读,如条形图、折线图、饼图等。

2. 概率- 随机事件的概念和分类。

- 概率的初步认识和计算。

- 通过实验和模拟理解概率的基本概念。

四、实践与应用1. 数学实践活动- 结合实际问题进行数学建模。

- 运用所学数学知识解决实际问题。

2. 数学应用题- 一元一次方程和不等式的应用。

- 二元一次方程组在实际问题中的应用。

- 函数知识在解决实际问题中的应用。

以上是湘教版初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率以及实践与应用四个方面。

初中数学湘教版知识点总结

初中数学湘教版知识点总结

初中数学湘教版知识点总结一、整数与有理数1. 整数的概念整数包括正整数、负整数和零,表示为......2. 整数的加法整数的加法包括同号数相加、异号数相加,以及加法交换律、结合律......3. 整数的减法整数的减法可以通过加法的逆运算来实现,例如a-b=a+(-b)......4. 整数的乘法整数的乘法也包括同号数相乘、异号数相乘,以及乘法交换律、结合律......5. 整数的除法整数的除法同样也可以通过乘法的逆运算来实现,例如a÷b=a×(1/b)......6. 有理数的概念有理数包括整数和分数,在数轴上可以表示为有限小数或循环小数......7. 有理数的比较有理数的比较可以通过数轴上的位置来确定大小关系,也可以通过化简、通分等方法来比较大小......二、整式与方程1. 代数式代数式是由变量和数的运算符号组成的符号串,可分为单项式、多项式、恒等式......2. 整式整式是由代数式经过加、减和乘运算得到的式子,根据乘法交换律和结合律可以进行展开和化简操作......3. 方程方程是表示两个代数式相等的式子,可以通过变形、消元等方法解得未知数......4. 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程......5. 二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,通过消元、代入等方法可以解得未知数的值......三、图形的认识1. 点、线和面图形由点、线和面组成,可以通过这些基本要素来构建各种图形......2. 直线、射线和线段直线是由点无限延伸而成,射线是由点有一个方向延伸而成,线段是由有限个点构成的线段......3. 角角是由两条射线共同起点构成的几何图形,可以通过度数来表示大小......4. 三角形三角形是由三条边和三个角构成的图形,可以根据边长、角度大小等属性进行分类......5. 四边形四边形是由四条边和四个角构成的图形,可以根据边长、对角线长度等属性进行分类......四、比例1. 比例的概念比例是指两个量之间的对应关系,可以用等号表示为a:b=c:d......2. 比例的性质比例具有重要性质,如比例中各个比例项的积相等、比例中的对应项成比例、比例可逆等......3. 比例的应用比例广泛应用于实际生活中,如用比例来解决生活中的问题、制作比例尺模型等......五、数的运算1. 分数的加减分数的加减可以通过找到公共分母、通分等方法来实现,然后进行数的加减运算......2. 分数的乘除分数的乘除可以通过找到公共倍数、通分等方法来实现,然后进行数的乘除运算......3. 分数的化简分数的化简是指将分子分母的公因数约去,使得分数的值不变而更简便......六、数据的处理1. 平均数平均数是指一组数值的总和除以其个数所得的值,可以用来表示数值的集中趋势......2. 中位数中位数是指一组数值按大小顺序排列后正中间的数,可以用来表示数值的集中趋势......3. 众数众数是指一组数值中出现频次最多的数,可以用来表示数值的集中趋势......七、统计与概率1. 数据的收集与整理数据的收集与整理是指对一组数据进行采集、整理、分类、汇总等操作,以便后续的统计运算......2. 错误数据的处理错误数据是指在数据收集过程中产生的错误值,可以通过排除或更正的方式来处理......3. 概率的概念概率是指在一次试验中某一事件发生的可能性,可以通过频率、古典概率等方法来计算......八、平面与立体图形1. 平面图形平面图形是指位于同一平面中的图形,包括多边形、圆、椭圆、直线、曲线等......2. 立体图形立体图形是指具有厚度、体积的图形,包括立方体、长方体、正方体、棱锥、棱柱、圆柱、圆锥、球体等......3. 图形的相似与全等图形的相似是指对应角相等、对应边成比例,图形的全等是指对应边相等、对应角相等......九、乘法和因式分解1. 一次多项式一次多项式是指多项式中的最高次项的次数为一,可以表示为y=kx+b......2. 二次根式二次根式是指形如√a、√(a+√b)、(√a+√b)/c等形式的根式......3. 乘法定理乘法定理是指两个多项式相乘后展开的规律,可以化简为每一项与每一项相乘的和......4. 因式分解因式分解是指将一个多项式拆解为两个或多个因式的乘积,可以用来求多项式的零点、化简等......以上就是初中数学湘教版的知识点总结。

(完整word版)湘教版中考数学知识点总结归纳(必属)

(完整word版)湘教版中考数学知识点总结归纳(必属)

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/ 负整数②分数→正分数 / 负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就获取数轴。

②任何一个有理数都能够用数轴上的一个点来表示。

③假如两个数只有符号不一样,那么我们称此中一个数为此外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的双侧,并且与原点距离相等。

④数轴上两个点表示的数,右侧的总比左边的大。

正数大于0,负数小于 0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的自己、负数的绝对值是他的相反数、0 的绝对值是 0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取同样的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0 相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与 0 相乘得 0。

③乘积为 1 的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不可以作除数。

乘方:求 N个同样因数 A 的积的运算叫做乘方,乘方的结果叫幂, A 叫底数, N叫次数。

混淆次序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无穷不循环小数叫无理数平方根:①假如一个正数X 的平方等于 A,那么这个正数X 就叫做 A 的算术平方根。

②假如一个数X 的平方等于 A,那么这个数 X 就叫做 A 的平方根。

③一个正数有 2 个平方根 /0 的平方根为 0/ 负数没有平方根。

④求一个数 A 的平方根运算,叫做开平方,此中 A 叫做被开方数。

立方根:①假如一个数 X 的立方等于 A,那么这个数 X 就叫做 A 的立方根。

湘教版中考数学知识点总结归纳

湘教版中考数学知识点总结归纳

湘教版中考数学知识点总结归纳一、概括基础知识:包括数的基本概念、数的运算、代数式及其运算等,这些是数学学习的基石,也是中考常考内容。

几何知识:涵盖平面几何和立体几何的基本概念、图形的性质、图形的变换等,对学生的空间想象力和逻辑推理能力有较高要求。

函数与方程:函数是数学的核心概念之一,方程则是解决实际问题的重要工具。

中考中常涉及一次函数、二次函数以及方程的解法等知识点。

统计与概率:包括数据的收集、整理、描述以及概率的基本运算,与现实生活紧密相连,是中考的重要考点。

1. 简述中考数学的重要性中考数学是学生升学的重要参考依据。

良好的数学成绩可以为学生在高中阶段选择优质学校和专业提供有力支持。

数学作为培养逻辑思维和分析能力的关键学科,对学生未来的学术发展乃至职业发展都具有深远的影响。

数学在日常生活中的应用无处不在,从财务管理到空间感知,从问题解决到逻辑推理,都离不开数学的支持。

中考数学不仅是对学生学业水平的检验,更是对学生未来生活能力的一次考察。

中考数学的重要性体现在其对学生学业发展的推动作用、未来生活能力的考察以及其作为评价学生综合素质的重要标准上。

学生在备考过程中应充分认识到这一点,全面而深入地理解和掌握数学知识,培养自己的数学思维能力和问题解决能力。

2. 强调知识点总结归纳的必要性总结归纳知识点有助于形成完整的知识体系。

湘教版中考数学涵盖了广泛的数学知识点,这些知识点之间有着紧密的联系和逻辑关系。

通过总结归纳,学生可以清晰地掌握每个知识点的概念、性质、公式以及应用方法,进而形成完整的知识体系,从而更好地理解和掌握数学知识。

其次, 总结归纳有助于提升复习效率。

复习是中考备考的关键环节,有效的复习方法能显著提高学习效率。

通过总结归纳,学生可以明确自己的学习重点和难点,有针对性地进行复习和巩固。

这样不仅能避免在复习过程中的盲目性和无效性,还能使复习过程更加系统化、条理化。

知识点总结归纳有助于提高学生的思维能力。

中考数学湘教版知识点归纳

中考数学湘教版知识点归纳

中考数学湘教版知识点归纳中考数学是初中阶段数学学习的重要总结,湘教版数学教材以其独特的教学理念和内容安排,为学生提供了丰富的学习资源。

以下是湘教版中考数学的知识点归纳:一、数与式1. 有理数:包括正数、负数和零的概念,有理数的四则运算。

2. 无理数:如圆周率π,平方根等。

3. 代数式:包括整式、分式、多项式、单项式等,以及它们的加减乘除运算。

4. 幂的运算:包括幂的乘方、积的乘方、幂的加减等。

二、方程与不等式1. 一元一次方程:解法和应用。

2. 一元二次方程:包括因式分解法、配方法、公式法等解法。

3. 不等式:包括不等式的基本性质和解法。

三、函数与图象1. 函数的概念:自变量、因变量、函数值等。

2. 一次函数:包括线性函数的表达式、图象和性质。

3. 二次函数:包括抛物线的表达式、图象和性质,以及顶点式的应用。

4. 反比例函数:图象和性质。

四、几何初步1. 线段、射线、直线:定义和性质。

2. 角:包括锐角、直角、钝角、平角、周角等。

3. 平行线:包括平行线的定义、判定和性质。

4. 三角形:包括三角形的分类、性质和全等三角形的判定。

5. 四边形:包括梯形、平行四边形、矩形、菱形、正方形等的性质和判定。

6. 圆:包括圆的性质、圆周角、切线的性质等。

五、统计与概率1. 数据的收集与处理:包括数据的分类、汇总和图表的制作。

2. 统计图:如条形统计图、折线统计图、饼图等。

3. 概率:包括概率的基本概念和简单事件的概率计算。

六、空间几何1. 空间图形:包括立体图形的识别和性质。

2. 空间图形的表面积和体积:如长方体、正方体、圆柱、圆锥、球等。

七、综合应用1. 数学建模:将实际问题转化为数学问题,并用数学方法解决。

2. 解决实际问题:如速度、时间、距离问题,面积、体积问题等。

结束语湘教版中考数学知识点的归纳为同学们提供了一个全面的复习框架,希望同学们能够通过系统地复习,掌握数学的基本概念、原理和方法,提高解题能力和数学素养,为中考取得优异成绩打下坚实的基础。

湘教初中数学知识点总结

湘教初中数学知识点总结

湘教初中数学知识点总结湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。

- 有理数的分类:正有理数、负有理数和零。

- 有理数的运算:加法、减法、乘法、除法和乘方。

2. 整数- 整数的性质:加法交换律、结合律;乘法交换律、结合律、分配律。

- 素数与合数:素数是只能被1和自身整除的大于1的整数;合数是除了1和自身外还有其他因数的整数。

3. 分数与小数- 分数的基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。

- 小数的四则运算:小数的加法、减法、乘法和除法。

4. 代数式- 单项式与多项式:单项式是只含有乘法运算的代数式;多项式是由若干个单项式通过加减法组成的代数式。

- 代数式的加减运算:合并同类项。

- 代数式的乘法运算:单项式与单项式、单项式与多项式、多项式与多项式的乘法。

5. 一元一次方程- 方程的解法:移项、合并同类项、系数化为1。

- 实际问题中的一元一次方程:根据问题描述列出方程并求解。

6. 二元一次方程组- 方程组的解法:代入法、消元法。

- 线性方程组的应用:根据实际问题列出方程组并求解。

7. 不等式- 不等式的性质:基本性质,如不等式的两边同时加上或减去同一个数,不等号方向不变。

- 一元一次不等式:解法,包括移项、合并同类项、系数化为1。

- 一元一次不等式的解集:表示方法,如区间表示法。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的定义和分类:邻角、对顶角、同位角等。

- 三角形的性质和分类:等边三角形、等腰三角形、直角三角形和一般三角形。

- 四边形的性质和分类:平行四边形、矩形、菱形、正方形和梯形。

2. 图形的变换- 平移:图形沿直线移动,大小和形状不变。

- 旋转:图形绕一点旋转一定角度,大小和形状不变。

- 轴对称:图形关于某条直线对称。

3. 圆的基本性质- 圆的定义:平面上所有与定点等距离的点的集合。

- 圆的半径、直径、弦、弧、切线等基本概念。

湘教版数学初三知识点归纳

湘教版数学初三知识点归纳

湘教版数学初三知识点归纳一、代数与函数代数与函数是初中数学的重点内容之一。

在初三阶段,学生需要进一步学习代数与函数的知识,包括多项式函数、一次函数与二次函数的性质、函数的图像与解析式等。

1.多项式函数多项式函数是由常数与变量的乘积相加而成的函数。

常见的多项式函数有一次多项式函数和二次多项式函数。

学生需要了解多项式函数的定义、次数、系数等概念,以及多项式函数的运算法则。

2.一次函数一次函数是形如y = kx + b的函数,其中k和b是常数。

学生需要掌握一次函数的斜率和截距的概念,能够根据函数图像或已知条件确定函数的解析式。

另外,学生还需要熟练运用一次函数进行实际问题的解答。

3.二次函数二次函数是形如y = ax^2 + bx + c的函数,其中a、b和c是常数。

学生需要了解二次函数的图像特点,包括抛物线的开口方向、顶点坐标等。

此外,学生还需要学习二次函数的性质,如零点、对称轴等。

二、几何与空间几何与空间是初中数学的另一个重点内容。

在初三阶段,学生会学习三角形、四边形、圆等图形的性质与运算,以及空间几何的相关知识。

1.三角形三角形是最简单的几何图形之一,学生需要掌握三角形的定义、分类、性质等。

此外,学生还需要学习三角形的周长、面积计算方法,以及利用三角形的性质解决实际问题。

2.四边形四边形是由四条线段连接的图形,学生需要了解四边形的分类、性质等。

在学习四边形的过程中,学生需要掌握四边形的周长、面积计算方法,以及利用四边形的性质解决实际问题。

3.圆圆是由一条曲线围成的图形,学生需要了解圆的定义、性质等。

在学习圆的过程中,学生需要学习圆的直径、半径、周长、面积的计算方法,以及利用圆的性质解决实际问题。

三、数据与统计数据与统计是初中数学的另一个重要内容。

在初三阶段,学生会进一步学习数据的收集、整理和分析方法,以及统计的基本概念和方法。

1.数据的整理与分析学生需要学习数据的收集、整理和分析方法,包括频数表、频率表、条形图、折线图等。

湘教版初中数学知识点总复习资料

湘教版初中数学知识点总复习资料

教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第三单元函数第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123OM (x,y)M1(x+a,y) M2(x+a,y+b)3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.y=k2x+by=k1x+b3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线知识点四:命题与证明9.命题与证明(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.例:下列命题是假命题的有(③)①相等的角不一定是对顶角;②同角的补角相等;③如果某命题是真命题,那么它的逆命题也是真命题;④若某个命题是定理,则该命题一定是真命题.第15讲一般三角形及其性质一、知识清单梳理知识点一:三角形的分类及性质关键点拨与对应举例1.三角形的分类(1)按角的关系分类(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形失分点警示:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系.例:等腰三角形两边长分别是3和6,则该三角形的周长为15.2.三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段四线性质(1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解. 角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半5.三角形中内、外角与角平分线的规律总结如图①,AD平分∠BAC,AE⊥BC,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B);如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二:三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形(1)性质:①边角关系:三边相等,三角都相等且都等于60°.即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,例:把长为10cm的线段进行黄金分21P COBAPCO BADABC abcDABC abcFEDCBAl5l4l3l2l1ODCBAEDCBA分割那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形FEDCBAFEDCBAFEDCBA。

湖南中考数学复习资料(湘教版)

湖南中考数学复习资料(湘教版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,πφa a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

湘教版初中数学知识点总结

湘教版初中数学知识点总结

湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的概念与性质- 有理数的加法、减法、乘法、除法运算- 有理数的乘方与开方- 绝对值的概念及性质- 有理数的比较大小2. 整数- 整数的概念- 整数的四则运算- 整数的性质,如奇数、偶数、质数、合数等3. 分数与小数- 分数的表示法、性质和运算- 小数的表示法、性质和运算- 分数与小数的相互转换4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法、除法运算- 代数式的因式分解5. 一元一次方程- 方程的概念及解法- 一元一次方程的解法- 方程的应用题6. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解二元一次方程组 - 二元一次方程组的应用题7. 不等式与不等式组- 不等式的概念与性质- 一元一次不等式的解法- 一元一次不等式的解集表示- 不等式组的解法8. 函数- 函数的概念及表示方法- 正比例函数与反比例函数- 一次函数与二次函数的图像与性质 - 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形与圆的面积计算 - 长方体、正方体与圆柱的体积计算3. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似多边形与相似比4. 解析几何- 坐标系的概念与应用- 直线的方程表示- 圆的方程表示- 坐标系中的几何问题求解5. 三角函数- 三角函数的定义- 三角函数的基本关系- 三角函数的图像与性质- 三角函数的应用三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读,如条形图、折线图、饼图等 - 统计量的概念,如平均数、中位数、众数、方差等2. 概率- 概率的基本概念- 随机事件的概率计算- 概率的加法公式与乘法公式- 条件概率与独立事件的概念以上是湘教版初中数学的主要知识点总结,涵盖了初中数学的核心内容。

(完整word版)湘教版初中数学知识点总复习资料

(完整word版)湘教版初中数学知识点总复习资料

教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第三单元函数第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123OM (x,y)M1(x+a,y) M2(x+a,y+b)3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.y=k2x+by=k1x+b3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线知识点四:命题与证明9.命题与证明(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.例:下列命题是假命题的有(③)①相等的角不一定是对顶角;②同角的补角相等;③如果某命题是真命题,那么它的逆命题也是真命题;④若某个命题是定理,则该命题一定是真命题.第15讲一般三角形及其性质一、知识清单梳理知识点一:三角形的分类及性质关键点拨与对应举例1.三角形的分类(1)按角的关系分类(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形失分点警示:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系.例:等腰三角形两边长分别是3和6,则该三角形的周长为15.2.三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边.3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段四线性质(1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解. 角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半5.三角形中内、外角与角平分线的规律总结如图①,AD平分∠BAC,AE⊥BC,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B);如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二:三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形(1)性质:①边角关系:三边相等,三角都相等且都等于60°.即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,例:把长为10cm的线段进行黄金分21P COBAPCO BADABC abcDABC abcFEDCBAl5l4l3l2l1ODCBAEDCBA分割那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形FEDCBAFEDCBAFEDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1>有理数有理数:①整数T正整数/0/负整数②分数T正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0 (原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数犬于0,负数小于0,正数犬于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是Oo两个负数比较犬小,绝对值犬的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得Oo③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幕,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X 的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A ,那么这个数X 就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A 的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幕的运算:AM+AN=A (M+N )(AM) N=AMN(A/B) N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幕分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为Oo②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)—个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1o二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1) 一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当丫的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。

也就是该方程的解了2) 一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-B/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1) 配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2) 分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3) 公式法这方法也可以是在解一元二次方程的万能方法7,方程的根Xi={-b+A/[B-4ac)]}/2a,X2={-b-V[b-4ac)]}/2a3) 解一元二次方程的步骤:(1) 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2) 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3) 公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a, 一次项的系数为b,常数项的系数为c4) 韦达定理利用韦达定理去了解,韦达定理就是在一兀二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为xi+x2=-b/a,xiX2=c/a0利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5) 一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为2V',读作"diaota,而△ =b2-4ac,这里可以分为3种情况:I当△>()时,一元二次方程有2个不相等的实数根;II当△=()时,一元二次方程有2个相同的实数根;III当△<()时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B? A-OB-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B ? A*C>B*C (C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B ? A*C<B*C (C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X, 丫间的关系式可以表示成Y=KX+B (B为常数,K不等丁0)的形式,则称丫是X的一次函数。

②当B=0时,称丫是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量丫的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数丫二KX的图象是经过原点的一条直线。

③在一次函数中,当K <0? B <0? 则经234象限;当K <0? B> 0时,则经124象限;当K> 0? B〈0时,则经134象限;当K> 0? B> 0时,则经123象限。

④当K> 0时,Y的值随X值的增犬而增大,当X〈0时,Y的值随X值的增犬而减少。

㈡空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

相关文档
最新文档