高等代数课件(北大版)第八章 λ-矩阵§8.3
《高等代数》PPT课件

命题5.1.2 对于任意向量和任意数a都有:
0=0, a0=0.
a()=(a) = a.
a=0a=0 或 =0.
2021/8/17
15
三. 约定
设V是数域F上的一个向量空间. 如果a是F中的一个数, 是V中的一个向量, 我们约定 a=a. 设1, 2,…, n,是V中的n个向量, 以它们为元素写成一个1n矩阵 (1, 2,…, n). 再设A是F上的一个nm阶矩阵. 则我们可以像普通矩 阵的乘法一样, 将(1, 2,…, n)和A相乘, 但是 (1, 2,…, n)A的结果 是一个以向量为元素的矩阵, 即:
3) 0+ = 4) 对任意 ,存在 ,使得 + = 0, 称为的负元素; 5) a( +) = a +a ; 6) (a+b) =a +b ; 7) a (b)=(ab) ;
8) 1 = .
2021/8/17
8
二、向量空间的定义
定义1 设V是一个非空集合,F是一个数域. 我们
把V中的元素用小写希腊字母, ,,…来表示,
2021/8/17
4
例2 在平面上建立直角坐标系后,把从原点出发的一切向
量组成的集合记为V2. 对V2中任意向量X和Y, 用平行四边形法则,有X+YV2. 对
任意实数k以及V2中任一向量X,有kXV2. 并且对任意的X, Y,
ZV2,a, bR,有
1) X+Y=Y+X;
2) (X+Y)+Z=X+(Y+Z);
高等代数课件
2021/8/17
1
第五章 向量空间
5.1 向量空间的定义 5.2 向量的线性相关性 5.3 基维数和坐标 5.4 子空间 5.5 向量空间的同构
高等代数(北大版)第8章习题参考答案

第八章 —矩阵1. 化下列矩阵成标准形1) 2)3) 4)5)6)解 1)对矩阵作初等变换,有A= B,B即为所求。
2)对矩阵作初等变换,有A= B,B即为所求。
3)因为的行列式因子为1=1, 2 =, 3 = ,所以1 = 1,2 = = ,3 = = ,从而A= B,B即为所求。
4)因为的行列式因子为1=1, 2 =, 3 = , 4 = ,所以1 = 1,2 = = ,3 = = ,4 = = ,从而A= B,B即为所求。
5)对矩阵作初等变换,有A= B,B即为所求。
6)对矩阵作初等变换,有A,在最后一个行列式中3=1, 4 =, 5 = ,所以1 =2 =3 =1,4 = =,5 = =。
故所求标准形为B= 。
2.求下列矩阵的不变因子:1) 2)3) 4)5)解 1)所给矩阵的右上角的二阶子式为1,所以其行列式因子为1=1, 2 =1, 3 = ,故该矩阵的不变因子为1 =2 =1,3 =。
2)因为所给矩阵的右上角的三阶子式为-1,所以其行列式因子为3 =2 =1=1,4 =,故矩阵的不变因子为1 =2 =3 =1,4 =。
3)当时,有4 = = ,且在矩阵中有一个三阶子式= ,于是由,3 = 1,可得3 = 1,故该矩阵的不变因子为1 =2 =3 =1,4 = 。
当时,由1=1, 2 =1, 3 = , 4 = ,从而1 =2 =1,3 = ,4 = = 。
4)因为所给矩阵的左上角三阶子式为1,所以其行列式因子为1=1, 2 =1, 3 =1, 4 = ,从而所求不变因子为1 =2 =3 =1,4 = 。
5)因为所给矩阵的四个三阶行列式无公共非零因式,所以其行列式因子为3 =1,4 = ,故所求不变因子为1 =2 =3 =1,4 = 。
3.证明:的不变因子是,其中= 。
证因为n = ,按最后一列展开此行列式,得n == ,= ,因为矩阵左下角的阶子式= ,所以= 1,从而1=2 = … = = 1,故所给矩阵的不变因子为1 =2 = … = = 1,= = ,即证。
高等代数【北大版】课件

线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
高等代数课件(北大版)第八章 λ-矩阵§8.5

等价. 然后对 D1 ( ) 重复上述讨论.
2012-9-22§8.5 初等因子
数学与计算科学学院
如此继续进行,直到对角矩阵主对角线上元素所含
1 的方幂是按逆升幂次排列为止.
再依次对 2 , , r 作同样处理. 最后便得到与 D ( ) 等价的对角阵 D ( ).
结论2、两个同级数字矩阵相似
它们有相同的初等因子.
可见:初等因子和不变因子都是矩阵的相似不变量.
2012-9-22§8.5 初等因子
数学与计算科学学院
三、初等因子的求法
1、(引理1)若多项式 f 1 ( ), f 2 ( ) 都与 g 1 ( ), g 2 ( ) 互素,则
f 1 ( ) g 1 ( ),
2
2, 1, 1
得A的不变因子为:
d 3 ( x ) ( 1) ( 2),
2
d 2 ( x ) d 1 ( x ) 1.
2012-9-22§8.5 初等因子
数学与计算科学学院
结论1、若两个同级数字矩阵有相同的不变因子,
则它们就有相同的初等因子; 反之,若它们有相同的初等因子,则它们就有 相同的不变因子.
d 1 ( x ) ( 1 ) d 2 ( x ) ( 1 )
k 11
( 2 )
k 12
( r )
k1 r
, , .
k 21
( 2 )
k 22
( r )
k2 r
d n ( x ) ( 1 )
kn1
( 2 )
f ( ) | f 2 ( ) g 2 ( ),
高等代数课件 第八章

( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).
第八章 二次型

f = ax2 + 2bxy + cy2
(1)
为了便于研究这个二次曲线的几何性质(例如判断是什么曲线), 我们可以对它进行适 当的坐标变换
⎧x
⎨ ⎩
y
= =
x′ cosθ x′ sin θ
− +
y′ sin θ y′ cos θ
,
(2)
将 f 化成标准方程.
(1)式的右端是一个二次齐次多项式. 从代数的观点看, 所谓化标准方程就是用变量的 线性替换(2)化简一个二次齐次多项式, 使它只含有平方项.
一、配方法
配方法就是利用平方公式
(x1 + x2 +L + xn )2 = x12 + x22 +L + xn2 + 2x1x2 + 2x1x3 +L + 2x1xn + 2x2 x3 +L + +2x2 xn +L + 2xn−1xn
对已知二次型进行配方. 配方法主要有以下两种情形:
(1) 如果二次型中, 某个变量平方项的系数不为零, 如有 a11 ≠ 0 , 先将含 x1 的所有因
子都配成平方项, 然后再对其它含平方项的变量配方, 直到全配成平方和的形式.
(2) 如果二次型中没有平方项, 而有某个 aij ≠ 0(i ≠ j) , 则可作线性替换
⎧xi = yi + y j
⎪ ⎨
x
j
பைடு நூலகம்
=
yi
−
yj
⎪ ⎩
xk
=
yk ,
k ≠ i, j
化成含有平方项的二次型, 然后再配方.
例 1 将二次型
初等矩阵(高等代数课件)

1、 对调两行或两列
对调 E 中第 i , j 两行,即 ( ri rj ),得初等方阵
1 P (i , j ) 1
1
0
1 1
1
第i 行
第 j 行
1
0
1
(换法矩阵)
§4.6 初等矩阵
2、以数 k 0 乘某行或某列
3) n 级方阵A可逆
Ps AQ1Q2
A的标准形为单位矩阵E. A与单位矩阵E等价.
4) 定理6
n 级方阵A可逆 A能表成一些初等矩阵的积,
§4.6 初等矩阵
即 A Q1Q2
Qt .
推论1 两个 s n 矩阵A、B等价
存在 s 级可逆矩阵P及 n 级可逆矩阵Q, 使 B PAQ . 由此得定理5的另一种叙述: 对任一 s n 矩阵A,存在可逆矩阵 Pss , Qnn , 使
r2 r3 , c1 2c3 ,
1r3 , 1c3
P (i , j ) A :
对换 A 的 i , j 两行;
AP ( i , j ): 对换 A 的 i , j 两列. P ( i ( k )) A :用非零数 k乘 A 的第 i 行; AP ( i ( k )) :用非零数 k 乘 A 的第 i 列. P ( i , j ( k )) A : A 的第 j 行乘以 k 加到第 i 行 ; AP ( i , j ( k )) :A的第 i 列乘以 k 加到第 j 列.
§4.6 初等矩阵
A 如果要求Y CA , 则可对矩阵 作初等列变换, C A 列变换 E 1 , 即可得 Y CA1 . C CA
1
也可改为对( AT , C T ) 作初等行变换, (A , C )
(完整word版)高等代数教案北大版第八章

讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第八章λ-矩阵第一讲λ-矩阵2 学时讲课种类讲解法与练习法使学生认识-矩阵的观点,以及-矩阵和数字矩阵的关系,基本掌握-矩阵秩的判断,可逆的条件,以及求逆矩阵。
-矩阵秩的判断,可逆的条件,以及求逆矩阵。
求 -矩阵的逆矩阵启迪式讲解,议论,练习n 阶矩阵A与对角阵相像的充要条件是A有 n 个线性没关的特点向量.那么当只有 m( m n) 个线性没关的特点向量时, A与对角阵是不相像的.对这类情况 ,我们“退而求其次” ,找寻“几乎对角的”矩阵来与A相像 .这就引出了矩阵在相像下的各样标准型问题 .Jordan 标准型是最靠近对角的矩阵而且其相关的理论包括先前相关与对角阵相像的理论作为特例 .其他 , Jordan 标准型的宽泛应用波及到 Hamilton-Cayley 定理的证明 ,矩阵分解 ,线性微分方程组的求解等等 .因为Jordan 标准型的求解与特点多项式相关,而从函数的角度看,特点多项式其实是特别的函数矩阵(元素是函数的矩阵),这就引出对-矩阵的研究 .一、- 矩阵及其标准型定义 1称矩阵 A() ( f ij ()) 为-矩阵 ,此中元素f ij ( )(i1,2,L, m; j 1,2,L , n)为数域 F 上对于的多项式 .定义 2称 n 阶-矩阵A() 是可逆的,假如有A B B A I n并称 B( ) 为A() 的逆矩阵.反之亦然.定理 1 矩阵A() 可逆的充要条件是其队列式为非零的常数,即det( A( )) c0 .证明:( 1)充足性设A=d 是一个非零的数. A*表示A() 的伴随矩阵 ,则d1A*也是一个-矩阵 ,且有A d 1 A* d 1 A*A I所以,A( ) 是可逆的.(2) 必需性设A() 有可逆矩阵B() ,则A B I两边取队列式有A B I1因为 A与 B都是多项式 ,而它们的乘积为1,所以它们都是零次多项式 ,即都是非零常数 .证毕 .例题 1判断-矩阵2 +121A=11能否可逆 .解固然2 +121A=1=201A( ) 是满秩的,但A不是非零常数 ,因此A() 是不行逆的.注意与数字矩阵不一样的是满秩矩阵未必是可逆的.这么定义可逆是有必要的 ,可逆的实质就是要保证变换的矩阵能够经过非零常数的倒数逆回去.定义3假如矩阵A() 经过有限次的初等变换化成矩阵B() ,则称矩阵A( ) 与B()等价,记为A B定理2矩阵A()与B() 等价的充要与条件是存在可逆矩阵P、Q,使得B P A Q证明因为 A B, 所以A() 能够经过有限次初等变换变为B() ,即存在初等矩阵P( ),P( ),L ,P( )12s与初等矩阵Q1 ( ), Q2 ( ),L ,Q t ( )使得B( ) P( )P( )L P( )A( )Q( )Q( )L Q( )12s12t令P( ) P1 ( )P2 ( )L P s () ,Q( ) Q1( )Q2 ( )L Q t ( )就是所要求的-矩阵 .它们都是初等矩阵的乘积,进而使可逆的 .证毕 .定义 4矩阵 A() 的所有非零k阶子式的首一(最高次项系数为1)最大公因式 D k称为 A() 的k阶队列式因子.定理 2等价矩阵拥有同样的秩和同样的各级队列式因子.证明设-矩阵A( )经过一次行初等变换化为了B() ,f () 与 g( ) 分别是A( )与B() 的 k 阶队列式因子.需要证明f( )= g().分3种状况议论:( 1)A( )i , j B( ),此时,B() 的每个 k 阶子式或许等于A( ) 的某个k 阶子式,或许与A( ) 的某个阶子式反号,所以 , f ()是B() 的k阶子式的公因子 ,进而f ()| g() .(2)A( )i(c)B( ) ,此时,B( )的每个k阶子式或许等于A( )的某个 k 阶子式,或许等于 A() 的某个 k 阶子式的c倍.所以,f()是B() 的 k 阶子式的公因式 ,进而f()|g( ) .(3)A( )i j( )行与 j行的阶子式和B( ) ,此时,B( )中那些包括i那些不包括 i 行的 k 阶子式都等于A() 中对应的 k 阶子式; B() 中那些包括 i 行但不包括 j 行的 k 阶子式,按 i 行分红两个部分,而等于A( )的一个k阶子式与另一个 k 阶子式的( ) 倍的和,,也就是A() 的两个 k 阶子式的线性组合,所以,f( ) 是的k阶子式公因式进而 f( )| g().,对于列变换, 能够同样地议论.总之 , A() 经过一系列的初等变换变为B() ,那么f()|g() .又因为初等变换的可逆性, B( )经过一系列的初等变换能够变为 A() ,进而也有g( )| f() .当 A( ) 所有的阶子式为零时, B() 所有的 k 阶子式也就等于零;反之亦然.故 A() 与 B( ) 又同样的各阶队列式因子,进而有同样的秩.证毕.既然初等变换不改变队列式因子,所以 ,每个-矩阵与它的标准型有完整相同的队列式因子.而求标准型的矩阵是较为简单的,因此 ,在求一个-矩阵的队列式因子时 ,只需求出它的标准型的队列式因子即可.议论、练习与作业课后反省讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第二将λ-矩阵在初等变换下的标准型2讲课种类讲解课认识- 矩阵的初等变换,掌握求标准型的方法,掌握最小多项式的观点和求最小多项式的方法。
高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
高等数学(高教版)第八章λ 矩阵第五节

所以
证毕
下面的定理给了我们一个求初等因子的方法,
它不必事先知道不变因子.
定理 9 首先用初等变换化特征矩阵 E - A
为对角形式,然后将主对角线上的元素分解成互不
相同的一次因式方幂的乘积,
则所有这些一次因
式的方幂(相同的按出现的次数计算)就是 A 的全
部初等因子.
证明 设 E - A 已用初等变换化为对角形
如果多项式 f1(), f2() 都与 g1(), g2() 互
素,则
(f1()g1() , f2()g2())=(f1() , f2())(g1() , g2()).
事实上,令
( f1()g1() , f2()g2()) = d() , ( f1() , f2()) = d1() , ( g1() , g2()) = d2() .
因式的方幂
( j )k1 j , ( j )k2 j ,, ( j )knj
( j 1,2,, r)
在 D() 的主对角线上按递升幂次排列后,得到的
新对角矩阵 D () 与 D() 等价.
此时 D () 就是
E - A 的标准形而且所有不为 1 的
因子,因而它们相似.
反之,如果两个矩阵相似,
则它们有相同的不变因子,因而它们有相同的初
等因子.
综上所述,即得:
定理 8 两个同级复数矩阵相似的充分必要条
是它们有相同的初等因子.
三、初等因子的求法
初等因子和不变因子都是矩阵的相似不变量. 但是初等因子的求法与不变因子的求法比较,反而 方便一些.
在介绍直接求初等因子的方法之前,先来说明 关于多项式的最大公因式的一个性质:
(
j )kij
北京大学数学系《高等代数》(第3版)(章节题库 λ-矩阵)

,则
,从而
,于是
由于
的若当标准形依次为
故 A*的若当标准形为
7.求 A 的全体零化多项式集,其中
解:将特征矩阵化为标准形
得 A 的最小多项式为
,故 A 的零化多项式的集合为
最小多项式有着广泛的用途,例如求矩阵的若当标准形,判定
矩阵能否对角化等等.
8.设实数域 R 上矩阵
5 / 64
圣才电子书
标准形为
A 的初等因子是 A+3,(λ-1)2;不变因子是
由
,故 A 的有理标准形为
4.已知
(1)求 A 的不变因子,初等因子和最小多项式.(2)求 A 的若当标准形. 解:(1)用初等变换将 λE-A 化为标准形,
于是 A 的不变因子是 1)2,(λ-1)2;最小多项式为(λ-1)2.
(2)A 的若当标准形为
十万种考研考证电子书、题库视频学习平 台
(1)求 A 的特征多项式 f(λ). (2)f(λ)是否为 R 上不可约多项式?(3)求 A 的最小多项式,要写出理由;(4) A 在 R 上可否对角化? 解:将 λE-A 化为标准形
故 A 不变因子为
(1)A 的特征多项式
(2)由 R 上的不可约多项式仅有 2 次,2 次多项式,故 f(λ)在 R 上可约.
故 a=b=c.由
,即
故 A 至少有两个特征值为 0. 3.设
求矩阵 A 的不变因子,初等因子,若当标准形,有理标准形. 解:因为
2 / 64
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故 A 的特征值为 λ2=3,λ2=1(2 重),1 的几何重数为 3-r(E-A)=1,故 A 的若当
高等代数(绪论)讲解课件

善于总结
在做题过程中,要注意总结解题方法和技巧 ,形成自己的解题思路和经验。
学习过程中注重归纳总结
要点一
归纳知识体系
在学习过程中,要注重归纳总结,将所学知识形成完整的 知识体系,以便更好地理解和记忆。
要点二
总结解题方法
对于同一类问题,要总结出通用的解题方法,形成自己的 解题技巧和策略。
培养数学思维与逻辑推理能力
矩阵的加法、减法、乘法
矩阵的逆
掌握矩阵的基本运算规则,能够进行 矩阵的加法、减法和乘法运算。
掌握矩阵逆的定义和性质,能够求出 矩阵的逆。
矩阵的转置
了解矩阵转置的定义和性质,能够进 行矩阵的转置运算。
多项式的因式分解与根的性质
因式分解
掌握多项式的因式分解方法,如提取公因式、分组分 解、十字相乘法等。
线性变换与几何变换
总结词
线性变换是高等代数中描述几何变换的 基本工具,它可以用于图像处理、计算 机图形学和机器人学等领域。
VS
详细描述
线性变换是矩阵在向量空间上的作用,它 可以描述旋转、平移、缩放等基本的几何 变换。通过线性变换,可以研究几何对象 的性质和关系,并将其应用于图像处理、 计算机图形学等领域,实现图像的旋转、 缩放和剪切等操作。
培养数学思维
学习高等代数需要具备数学思维,即能够运用数学语言 和符号进行推理和表达的能力。
提高逻辑推理能力
通过学习和练习高等代数的证明和推导,可以提高逻辑 推理能力,增强思维的严密性和条理性。
T量是一个有方向的量,它由一组有 序数组成。在高等代数中,向量通常 表示为有序数对的序列,这些数对可 以表示空间中的点、方向和大小。
矩阵
矩阵是一个矩形阵列,由若干行和若 干列组成。在高等代数中,矩阵是重 要的数学工具,它可以表示向量之间 的关系、线性变换等。
高等代数 第八章 2第二节 Lamda-矩阵在初等变换下的标准形

次数是非负整数,不可能无止境地降低. 但次数是非负整数,不可能无止境地降低 因此在有限步以后,我们将终止于一个 将终止于一个λ因此在有限步以后,我们将终止于一个 -矩阵 左上角元素b 可以除尽B Bs(λ),它的左上角元素 s(λ)≠0,而且可以除尽 s(λ) ,它的左上角元素 ,而且可以除尽 全部元素b , 的全部元素 ij(λ),即 bij(λ)=bs(λ)qij(λ) , 对Bs(λ)作初等变换 作
返回 上页 下页
定义4 -矩阵A(λ)称为与 称为与B(λ)等价,如果可以经 等价, 定义4 λ-矩阵 称为与 等价 化为B(λ). 过一系列初等变换将A(λ)化为 一系列初等变换将 化为 . 等价是 -矩阵之间的一种关系 之间的一种关系, 等价是λ-矩阵之间的一种关系,这个关系显 然具有下列三个性质 三个性质: 然具有下列三个性质: 反身性:每一个λ-矩阵与它自身等价 与它自身等价. (1) 反身性:每一个λ-矩阵与它自身等价. 对称性: 等价, (2) 对称性:若A(λ)与B(λ)等价,则B(λ)与A(λ)等 与 等价 与 等 这是由于初等变换具有可逆性的缘故. 初等变换具有可逆性的缘故 价. 这是由于初等变换具有可逆性的缘故 传递性: 等价, 等价, (3) 传递性:若A(λ)与B(λ)等价,B(λ)与C(λ)等价, 与 等价 与 等价 等价. 则A(λ)与C(λ)等价 与 等价
返回 上页 下页
定理2 任意一个非零的 非零的s× 的 -矩阵A(λ)都等价 定理2 任意一个非零的 ×n的λ-矩阵 都 于下列形式的矩阵
d 1 (λ ) d 2 (λ ) O d r (λ ) 0 O 0
其中r≥1, 其中 ,di(λ)(i=1,2, …,r)是首项系数为1的多项式, 是首项系数为1的多项式, 且 di(λ)| di+1(λ), (i=1,2, …,r-1). 这个矩阵称为A(λ)的标准形 的标准形. 这个矩阵称为
高等代数第八章 Lamda-矩阵(小结)

6.
是数域P上两个 矩阵. 相似的 设A,B是数域 上两个 ×n矩阵.A与B相似的 , 是数域 上两个n× 矩阵 与 相似
<=>是它们的特征矩阵 -A和λE-B等价 = 是它们的特征矩阵λE- 和 - 等价 是它们的特征矩阵 等价. 7. 两个同级复数矩阵相似的 = 是 两个同级复数矩阵相似的<=>是它们有相同 同级复数矩阵相似
的初等因子. 的初等因子 8. 首先用初等变换化特征矩阵 -A为对角形式, 首先用初等变换化特征矩阵λE- 为对角形式, 特征矩阵
然后将主对角线上的元素分解成互不相同的一次 然后将主对角线上的元素分解成互不相同的一次 因式方幂的乘积, 所有这些一次因式的方幂( 因式方幂的乘积,则所有这些一次因式的方幂(相 的全部初等因子 同的按出现的次数计算)就是A的全部初等因子. 同的按出现的次数计算)就是 的全部初等因子
返回 上页 下页
每个n级的复数矩阵A都与一个若当形矩阵相似, 级的复数矩阵 若当形矩阵相似 9. 每个 级的复数矩阵 都与一个若当形矩阵相似, 这个若当形矩阵除去其中若当块的排列次序外是 这个若当形矩阵除去其中若当块的排列次序外是 若当形矩阵除去其中若当块的排列次序外 被矩阵A唯一决定的,它称为A的若当标准形. 被矩阵 唯一决定的,它称为 的若当标准形. 唯一决定的 10. 是复数域上n维线性空间V的线性变换, 10 设A是复数域上 维线性空间 的线性变换, 是复数域上 在V中必定存在一组基,使A在这组基下的矩阵是 中必定存在一组基, 在这组基下的矩阵是 若当形,并且这个若当形矩阵除去其中若当块的 若当形,并且这个若当形矩阵除去其中若当块的 排列次序外是被A唯一决定的 唯一决定的. 排列次序外是被 唯一决定的. 11. 复数矩阵A与对角矩阵相似 相似的 = 是 的 11 复数矩阵 与对角矩阵相似的<=>是A的初等 因子全为一次的( 因子全为一次的(或A的不变因子都没有重根). 全为一次的 的不变因子都没有重根).
高等代数【北大版】课件

多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。
高等代数课件

对于一个线性变换,如果存在一组基 使得该线性变换在这组基下的矩阵表 示是恒等变换,那么这组基是这线性 变换的一个基底。
CHAPTER 02
线性方程组与矩阵的秩
线性方程组的解法
高斯消元法
通过消元将线性方程组转化为求解单变量方程,是求解线性方程 组的基本方法。
克拉默法则
适用于系数行列式不为零的线性方程组,通过展开式求解。
特征值的计算方法与性质
计算方法
特征多项式f(λ)=|λE-A|,其中E为单位矩 阵,A为给定矩阵。通过求解f(λ)=0得到 的根即为特征值。
VS
性质
特征多项式f(λ)的根即是特征值,f(λ)的阶 数即是矩阵A的阶数。f(λ)无重根,则A有 n个线性无关的特征向量。
特征向量的应用与性质
应用
在矩阵理论中,特征向量的应用广泛,如求解线性方程组、判断矩阵的稳定性、求矩阵的秩等。
性质
对于可逆矩阵A,其逆矩阵的特征向量是A的特征向量的倍数。对于相似矩阵,它们的特征向量是相互正交的。
CHAPTER 04
行列式与高阶矩阵
行列式的定义与性质
总结词
行列式是n阶方阵所有行列的n个代数余子 式的乘积之和,具有丰富的性质。
详细描述
行列式是一种特殊的n阶方阵的函数,其值 按照排列方式决定。行列式的定义可以推广 到任意阶数。行列式具有以下性质
递推公式法:利用递推公式,将高阶行 列式转化为低阶行列式,以便计算。
行列展开法:利用代数余子式的性质, 将行列式按照某一行或某一列展开,转 化为低阶行列式,以便计算。
详细描述
化简法:利用行列式的性质,化简行列 式,将其转化为更简单的形式,以便计 算。
高阶矩阵的运算与性质
高等代数课件

相等.
推论 8.2.6 任意n维欧氏空间都与Rn同构.
8.3 正交变换与对称变换
一 、 正交变换的定义及性质
定义1 欧氏空间V的线性变换称为正
交变换, 如果它保持任意两个向量的内积不 变, 即对任意, V,有 (), ()=, .
例1 在欧氏空间V2 中, 是把V2 中任意向量
例 2 函数 1, cosx, sinx, …, cosnx, sinnx, …是C[0,2]的一个正交
组. 定理 8.2.1 设{1, 2,…, n}是欧氏空间的一个正交组, 则1, 2,…, n 线性无关. 如果n维欧氏空间V中n个1, 2,…, n向量构成一个正交组, 则由 定理8.2.1这n个向量构成V的一个基. 这种两两正交的向量构成的基 叫做V的正交基. 两两正交的单位向量构成的基叫做标准正交基.
例 7 (Schwartz不等式) 考虑例3的欧氏空间C[a, b], 对区间[a,b] 上的任意连续函数f(x), g(x)都有:
a f ( x) g ( x)dx a f
b
b
2
( x)dx
b 2 g ( x)dx a
五. 向量的夹角
定义 3 设与是欧氏空间的两个非零向量. 与的夹角由以
六. 欧氏空间的同构
定义 3 设V与V' 是两个欧氏空间, 如果 (i) 作为实数域上的向量空间, 存在V 到V' 的一个同构影射 f: V
V'.
(ii) 对任意,V, 都有: < , >=<f(), f()>. 则称V与V' 是同构的. 定理 8.2.6 两个有限维欧氏空间同构的充要条件是它们的维数
( x1 y1 ) 2 ( x2 y2 ) 2 ( xn yn ) 2
高等代数教案第八章λ-矩阵

第八章 -λ矩阵§1 -λ矩阵设P 是数域,λ是一个文字,作多项式环][λP ,一个矩阵如果它的元素是λ的多项式,即][λP 的元素,就称为-λ矩阵.在这一章讨论-λ矩阵的一些性质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理.因为数域P 中的数也是][λP 的元素,所以在-λ矩阵中也包括以数为元素的矩阵.为了与-λ矩阵相区别,把以数域P 中的数为元素的矩阵称为数字矩阵.以下用Λ),(),(λλB A 等表示-λ矩阵.我们知道,][λP 中的元素可以作加、减、乘三种运算,并且它们与数的运算有相同的运算规律.而矩阵加法与乘法的定义只是用到其中元素的加法与乘法,因此可以同样定义-λ矩阵的加法与乘法,它们与数字矩阵的运算有相同的运算规律.行列式的定义也只用到其中元素的加法与乘法,因此,同样可以定义一个n n ⨯的-λ矩阵的行列式.一般地,-λ矩阵的行列式是λ的一个多项式,它与数字矩阵的行列式有相同的性质.定义1 如果-λ矩阵)(λA 中有一个)1(≥r r 级子式不为零,而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r .零矩阵的秩规定为零.定义 2 一个n n ⨯的-λ矩阵)(λA 称为可逆的,如果有一个n n ⨯的-λ矩阵)(λB 使E A B B A ==)()()()(λλλλ, (1)这里E 是n 级单位矩阵.适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A ..定理1 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.§2 -λ矩阵在初等变换下的标准形-λ矩阵也可以有初等变换定义3 下面的三种变换叫做-λ矩阵的初等变换:(1) 矩阵的两行(列)互换位置;(2) 矩阵的某一行(列)乘以非零的常数c ;(3) 矩阵有某一行(列)加另一行(列)的)(λϕ倍,)(λϕ是一个多项式. 和数字矩阵的初等变换一样,可以引进初等矩阵.例如,将单位矩阵的第j 行的)(λϕ倍加到第i 行上得行行列列j i j i P j i ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11)(11))(.(O M O ΛO λϕϕ 仍用),(j i P 表示由单位矩阵经过第i 行第j 行互换位置所得的初等矩阵,用))((c i P 表示用非零常数c 乘单位矩阵第i 行所得的初等矩阵.同样地,对一个n s ⨯的-λ矩阵)(λA 作一次初等变换就相当于在)(λA 的左边乘上相应s s ⨯的初等矩阵;对)(λA 作一次初等列变换就相当于)(λA 在的右边乘上相应的n n ⨯的初等矩阵.初等矩阵都是可逆的,并且有))(,())(,(,))(())((,),(),(1111ϕϕ-===----j i P j i P c i P c i P j i P j i P .由此得出初等变换具有可逆性:设-λ矩阵)(λA 用初等变换变成)(λB ,这相当于对)(λA 左乘或右乘一个初等矩阵.再用此初等矩阵的逆矩阵来乘)(λB 就变回)(λA ,而这逆矩阵仍是初等矩阵,因而由)(λB 可用初等变换变回)(λA .定义4 -λ矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB .等价是-λ矩阵之间的一种关系,这个关系显然具有下列三个性质: (!) 反身性:每一个-λ矩阵与它自身等价.(2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价.(3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与)(λC 等价. 应用初等变换与初等矩阵的关系即得,矩阵)(λA 与)(λB 等价的充要条件为有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=. (2)这一节主要是证明任意一个-λ矩阵可以经过初等变换化为某种对角矩阵. 引理 设-λ矩阵)(λA 的左上角元素0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低.定理2 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于下列形式的矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.这个矩阵称为)(λA 的标准形.例 用初等变换化-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛--++---=232211121)(λλλλλλλλλλλA 为标准形.§3 不 变 因 子现在来证明,-λ矩阵的标准形是唯一的.定义5 设-λ矩阵)(λA 的秩为r ,对于正整数,1,r k k ≤≤,)(λA 中必有非零的k 级子式. )(λA 中全部k 级子式的首项系数为1的最大公因式)(λk D 称为)(λA 的k 级行列式因子.由定义可知,对于秩为r 的-λ矩阵,行列式因子一共有r 个.行列式因子的意义就在于,它在初等变换下是不变的.定理3 等价的-λ矩阵具有相同的秩与相同的各级行列式因子.现在来计算标准形矩阵的行列式因子.设标准形为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d (1) 其中)(,),(),(21λλλr d d d Λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.不难证明,在这种形式的矩阵中,如果一个k 级子式包含的行与列的标号不完全相同,那么这个k 级子式一定为零.因此,为了计算k 级行列式因子,只要看由k i i i ,,,21Λ行与k i i i ,,,21Λ列组成的k 级子式就行了,而这个k 级子式等于)(,),(),(21λλλk i i i d d d Λ显然,这种k 级子式的最大公因式就是)()()(21λλλk d d d Λ定理4 -λ矩阵的标准形是唯一的.证明 设(1)是)(λA 的标准形.由于)(λA 与(1)等价,它们有相同的秩与相同的行列式因子,因此,)(λA 的秩就是标准形的主对角线上非零元素的个数r ;)(λA的k 级行列式因子就是),,2,1()()()()(21r k d d d D k k ΛΛ==λλλλ. (2)于是)()()(,,)()()(,)()(112211λλλλλλλλ-===r r r D D d D D d D d Λ. (3) 这就是)(λA 的标准形(1)的主对角线上的非零元素是被)(λA 的行列式因子所唯一决定的,所以)(λA 的标准形是唯一的.定义6 标准形的主对角线上非零元素)(,),(),(21λλλr d d d Λ称为-λ矩阵)(λA 的不变因子.定理5 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.由(3)可以看出,在-λ矩阵的行列式因子之间,有关系式)1,,2,1()(|)(1-=+r k D D k k Λλλ. (4)在计算-λ矩阵的行列式因子时,常常是先计算最高级的行列式因子.这样,由(4)就大致有了低级行列式因子的范围了.例如,可逆矩阵的标准形.设)(λA 为一个n n ⨯可逆矩阵,由定理1知d A =|)(|λ,其中d 是一非零常数,这就是说1)(=λn D于是由(4)可知,),,2,1(1)(n k D k Λ==λ从而),,2,1(1)(n k d k Λ==λ因此,可逆矩阵的标准形是单位矩阵E .反过来,与单位矩阵等价的矩阵一定是可逆矩阵,因为它的行列式是一个非零的数.这就是说,矩阵可逆的充要条件是它与单位矩阵等价.又矩阵)(λA 与)(λB 等价的充要条件是有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=特别是,当时E B =)(λ,就得到定理6 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积. 推论 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.§4 矩阵相似的条件在求一个数字矩阵A 的特征值和特征向量时曾出现过-λ矩阵A E -λ,我们称它A 为的特征矩阵.这一节的主要结论是证明两个n n ⨯数字矩阵A 和B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.引理1 如果有n n ⨯数字矩阵00,Q P 使00)(Q B E P A E -=-λλ, (1)则A 和B 相似.引理2 对于任何不为零的n n ⨯数字矩阵A 和-λ矩阵)(λU 与)(λV ,一定存在-λ矩阵)(λQ 与)(λR 以及数字矩阵0U 和0V 使0)()()(U Q A E U +-=λλλ, (2)0))(()(V A E R V +-=λλλ. (3)定理7 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.矩阵A 的特征矩阵A E -λ的不变因子以后简称为A 的不变因子.因为两个-λ矩阵等价的充要条件是它们有相同的不变因子,所以由定理7即得推论 矩阵A 与B 相似的充要条件是它们有相同的不变因子.应该指出,n n ⨯矩阵的特征矩阵的秩一定是n .因此,n n ⨯矩阵的不变因子总是有n 个,并且,它们的乘积就等于这个矩阵的特征多项式.以上结果说明,不变因子是矩阵的相似不变量,因此我们可以把一个线性变换的任一矩阵的不变因子(它们与该矩阵的选取无关)定义为此线性变换的不变因子.§5 初等因子一、初等因子的概念定义7 把矩阵A (或线性变换A )的每个次数大于零的不变因子分解成互不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A (或线性变换A )的初等因子.例 设12级矩阵的不变因子是222229)1)(1()1(,)1()1(,)1(,1,,1,1++-+--λλλλλλ43421Λ个. 按定义,它的初等因子有7个,即22222)(,)(,)1(,)1(,)1(,)1(,)1(i i +-++---λλλλλλλ.其中2)1(-λ出现三次,1+λ出现二次.现在进一步来说明不变因子和初等因子的关系.首先,假设n 级矩阵A 的不变因子)(,,)(,)(21λλλn d d d Λ为已知.将),,2,1)((n i d i Λ=λ分解成互不相同的一次因式方幂的乘积:r k r k k d 11211)()()()(211λλλλλλλ---=Λ,r k r k k d 22221)()()()(212λλλλλλλ---=Λ,nr n n k r k k n d )()()()(2121λλλλλλλ---=ΛΛΛΛΛΛΛ,则其中对应于1≥ij k 的那些方幂)1()(≥-ij k j k ij λλ就是A 的全部初等因子.注意不变因子有一个除尽一个的性质,即)1,,2,1()(|)(1-=+n i d d i i Λλλ,从而),,2,1;1,,2,1()(|)(,1r j n i j i ij k j k j ΛΛ=-=--+λλλλ.因此在)(,,)(,)(21λλλn d d d Λ的分解式中,属于同一个一次因式的方幂的指数有递升的性质,即),,2,1(21r j k k k nj j j ΛΛ=≤≤≤.这说明,同一个一次因式的方幂作成的初等因子中,方次最高的必定出现在)(λn d 的分解中,方次次高的必定出现在)(1λ-n d 的分解中.如此顺推下去,可知属于同一个一次因式的方幂的初等因子在不变因子的分解式中出现的位置是唯一确定的.二、初等因子与不变因子的求法上面的分析给了我们一个如何从初等因子和矩阵的级数唯一地作出不变因子的方法.设一个n 级矩阵的全部初等因子为已知,在全部初等因子中将同一个一次因式),,2,1)((r j j Λ=-λλ的方幂的那些初等因子按降幂排列,而且当这些初等因子的个数不足n 时,就在后面补上适当个数的1,使得凑成n 个.设所得排列为),,2,1(,)(,,)(,)(1,1r j j j n nj kj k j k j ΛΛ=----λλλλλλ. 于是令 ),,2,1()()()()(2121n i d ir i i k r k k i ΛΛ=---=λλλλλλλ,则)(,,)(,)(21λλλn d d d Λ就是A 的不变因子.这也说明了这样一个事实:如果两个同级的数字矩阵有相同的初等因子,则它们就有相同的不变因子,因而它们相似.反之,如果两个矩阵相似,则它们有相同的不变因子,因而它们有相同的初等因子.综上所述,即得定理8 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.初等因子和不变因子都是矩阵的相似不变量.但是初等因子的求法与不变因子的求法比较,反而方便一些.如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则.))(,)(())(,)(())()(),()((21212211λλλλλλλλg g f f g f g f ⋅=.引理 设)()(00)()()(2211λλλλλg f g f A =,)()(00)()()(2112λλλλλg f g f B =,如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则)(λA 和)(λB 等价.定理9 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A 的全部初等因子.§6 若尔当(Jordan)标准形的理论推导我们用初等因子的理论来解决若尔当标准形的计算问题.首先计算若尔当标准形的初等因子.不难算出若尔当块nn J ⨯⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0001000010001000λλλΛM M M M ΛΛΛ 的初等因子是n )(0λλ-.事实上,考虑它的特征矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=-00001000010001000λλλλλλλΛM M M M ΛΛΛJ E显然n J E )(00λλλ-=-,这就是0J E -λ的n 级行列式因子.由于0J E -λ有一个1-n 级子式是100)1(100100001001--=------n ΛΛM MM M ΛΛλλλλ,所以它的1-n 级行列式因子是1,从而它以下各级的行列式因子全是1.因此它的不变因子n n n d d d )()(,1)()(011λλλλλ-====-Λ.由此即得,0J E -λ的初等因子是n )(0λλ-.再利用§5的定理9,若尔当形矩阵的初等因子也很容易算出. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=s J J J J O21 是一个若尔当形矩阵,其中),,2,1(100010001000s i J ii k k i i ii ΛΛM M M M ΛΛΛ=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯λλλ. 既然i J 的初等因子是),,2,1()(s i i k i Λ=-λλ,所以i J E -λ与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i k i )(11λλO 等价.于是⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-s k k k J E J E J E J E s λλλλO2121 与⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---s k s k k )(11)(11)(112121λλλλλλOOO 等价.因此,J 的全部初等因子是:s k s k k )(,,)(,)(2121λλλλλλ---Λ.这就是说,每个若尔当形矩阵的全部初等因子就是由它的全部若尔当形矩阵的初等因子构成的.由于每个若尔当块完全由它的级数n 与主对角线上元素0λ所刻划,而这两个数都反映在它的初等因子n )(0λλ-中.因此,若尔当块被它的初等因子唯一决定.由此可见,若尔当形矩阵除去其中若尔当块排列的次序外被它的初等因子唯一决定.定理10 每个n 级的复数矩阵A 都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A 唯一决定的,它称为A 的若尔当标准形.例1 §5的例中,12级矩阵的若尔当标准形就是1212101011110111011101⨯⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----i i i i 例2 求矩阵⎪⎪⎪⎭⎫⎝⎛-----=411301621A的若尔当标准形.定理10换成线性变换的语言来说就是:定理11 设A 是复数域上n 维线性空间V 的线性变换,在V 中必定存在一组基,使A 在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A 唯一决定的.应该指出,若尔当形矩阵包括对角矩阵作为特殊情形,那就是由一级若尔当块构成的若尔当形矩阵,由此即得定理12 复数矩阵A 与对角矩阵相似的充要条件是A 的初等因子全为一次的.根据若尔当形的作法,可以看出矩阵A 的最小多项式就是A 的最后一个不变因子.因此有定理13 复数矩阵A 与对角矩阵相似的充要条件是A 的不变因子都没有重根.虽然我们证明了每个复数矩阵A 都与一个若尔当形矩阵相似,并且有了具体求矩阵A 的若尔当标准形的方法,但是并没有谈到如何确定过渡矩阵T ,使AT T 1-成若尔当标准形的问题. T 的确定牵涉到比较复杂的计算问题.最后指出,如果规定上三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000100000100001λλλλΛΛM M M M M ΛΛ为若尔当块,应用完全类似的方法,可以证明相应于定理10,定理11的结论也成立.§7 矩阵的有理标准形前一节中证明了复数域上任一矩阵A 可相似于一个若尔当形矩阵.这一节将对任意数域P 来讨论类似的问题.我们证明了P 上任一矩阵必相似于一个有理标准形矩阵.定义8 对数域P 上的一个多项式n n n a a d +++=-Λ11)(λλλ称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=--12110010001000a a a a A n n n ΛM M M M ΛΛΛ (1)为多项式)(λd 的伴侣阵.容易证明,A 的不变因子(即A E -λ的不变因子)是)(,1,,1,11λd n 43421Λ个-.(见习题3)定义9 下列准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A A A A O21, (2) 其中i A 分别是数域P 上某些多项式),,2,1()(s i d i Λ=λ的伴侣阵,且满足)(||)(|)(21λλλs d d d Λ,A 就称为P 上的一个有理标准形矩阵.引理 (2)中矩阵A 的不变因子为)(,,)(,)(,1,,1,121λλλs d d d ΛΛ,其中1的个数等于)(,,)(,)(21λλλs d d d Λ的次数之和n 减去s .定理14 数域P 上n n ⨯方阵A 在上相似于唯一的一个有理标准形,称为A 的有理标准形.把定理14的结论变成线性变换形式的结论就成为定理15 设A 是数域P 上n 维线性空间V 的线性变换,则在V 中存在一组基,使A 在该基下的矩阵是有理标准形,并且这个有理标准形由A 唯一决定的,称为A 的有理标准形.例 设33⨯矩阵A 的初等因子为)1(,)1(2--λλ,则它的不变因子是1,2)1(,)1(--λλ,它的有理标准形为.⎪⎪⎪⎭⎫ ⎝⎛-210100001.第八章 -λ矩阵(小结)一、基本概念-λ矩阵,可逆的-λ矩阵,秩;-λ矩阵的初等变换及标准形,-λ矩阵的等价;行列式因子,不变因子,初等因子;若尔当标准形,矩阵的有理标准形.二、主要结论1. 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.2. 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于其唯一的标准形矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.3. 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.4. 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积.5. 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.6. 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.7. 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.8. 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A的全部初等因子.9. 每个n级的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A唯一决定的,它称为A的若尔当标准形.10. 设A是复数域上n维线性空间V的线性变换,在V中必定存在一组基,使A在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A唯一决定的.11. 复数矩阵A与对角矩阵相似的充要条件是A的初等因子全为一次的(或A的不变因子都没有重根).12. 数域P上nn 方阵A在上相似于唯一的一个有理标准形,称为A的有理标准形.13. 设A是数域P上n维线性空间V的线性变换,则在V中存在一组基,使A在该基下的矩阵是有理标准形,并且这个有理标准形由A唯一决定的,称为A 的有理标准形.。
高等代数.第八章.λ-矩阵(介绍).课堂笔记

课堂笔记
第九章
第八章 λ-矩阵(介绍)
本章主要介绍如何求给定的复数矩阵的若尔当标准形. 已学知识回顾: 第七章第五节 ∀������ ∈ P ������×������ ,������与对角矩阵相似当且仅当������有������个线性无关的特征向量. 事实上������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ), ������ ∈ P ������×������ ,������可逆, ⟺ ������������ = ������ ∙ ������������������������(������1 , ������2 , … , ������������ ) ⟺ ������������������ = ������������ ������������ , ������ = 1,2, … , ������, 其中,������������ 为������的第������ 个列向量,即������ = (������1, ������2 , … , ������������ ). 第九章第六节 ∀������ ∈ P ������×������ 且������ = ������′,������正交相似于对角阵,即存在正交阵������, 使得������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ). ∀������ ∈ ℂ������×������ ,������与若尔当形矩阵������相似,且出去若尔当块排列次序外,������是唯一的(称为 ������的若尔当标准形). ——定理 14 这里,������级若尔当块是指如下形式的复数矩阵: ������0 1 ������0 ,记作������(������0 , ������), ������0 ∈ ℂ, 1 ⋱ ⋱ ������0 [ 1 ������0 ] 而由若干个若尔当块合成的分块对角矩阵 ������1 ������ = [ ������2 ,称为若尔当形矩阵,其中������������ = ������(������������ , ������������ ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)(定理4) 矩阵的标准形是唯一的. 证:设 矩阵 A ( ) 的标准形为
d1 ( ) d r ( ) D ( ) 0 0
其中 d 1 ( ), d r ( ) 为首1多项式,且
d i ( ) d i 1 ( ) , i 1, 2, r 1,
2012-9-22§8.3 不变因子
数学与计算科学学院
由2),A ( ) 的 k 级行列式因子为
D k ( ) d 1 ( ) d 2 ( ) d k ( ), k 1, 2, r .
2
2 1 0 0
又
D3 A
1 .
3
所以,A 的不变因子为 :
d 1 D1 1, d3 D3 D2 d2
2
D2 D1
证:必要性显然. 只证充分性. 若 A ( ) 与 B ( ) 有相同的行列式因子,则
A ( ) 与 B ( ) 也有相同的不变因子, 从而 A ( ) 与 B ( )
有相同的标准形, 所以 A ( ) 与 B ( ) 等价.
2012-9-22§8.3 不变因子
数学与计算科学学院
又 A ( ) 的n个行列式因子满足:
Dk ( ) Dk 1 ( ) , k 1, 2, , n 1.
D k ( ) 1,
k 1, 2, , n.
数学与计算科学学院
2012-9-22§8.3 不变因子
从而不变因子
d k ( ) Dk ( ) Dk 1 ( ) 1, k 1, 2, , n
2012-9-22§8.3 不变因子
数学与计算科学学院
解:1) A ( ) 的非零1级子式为:
,
2
2 0 A( ) 0 0 0
2 1 0 0
,
1
2
.
D1 1
A ( ) 的非零二级子式为:
1 ,
1 .
2012-9-22§8.3 不变因子
数学与计算科学学院
2)
1 0 0 2 1 0 1, 0 2 1
D 3 1.
A
2 1 0 0 0 2 1 0 0 0 2 1 0 0 0 2
A ( ) P1 Ps EQ 1 Q t P1 Ps Q 1 Q t .
推论:两个 s n 的 矩阵 A ( ) 、B ( ) 等价
存在一个 s s 可逆矩阵 P ( ) 与一个 n n 可逆
矩阵 Q ( ) ,使
B ( ) P ( ) A ( )Q ( ).
k 级子式的 c倍.
因此,f ( )是 B ( ) 的 k 级子式的
f ( ) g ( ) .
数学与计算科学学院
公因式, 从而
2012-9-22§8.3 不变因子
③ A B . 此时 B ( ) 中包含 i , j 两行
i j
D k ( ) D k 1 ( ),
2012-9-22§8.3 不变因子
k 1, 2, , r 1.
数学与计算科学学院
二、不变因子
1. 定义:
矩阵 A ( ) 的标准形
d1 ( ) d r ( ) D ( ) 0 0
于是
d 1 ( ) D1 ( ), d 2 ( ) D2 ( ) D1 ( ) , , d r ( ) Dr ( ) Dr 1 ( )
即 d 1 ( ), , d r ( ) 由 A ( ) 的行列式因子所唯一确定. 所以 A ( ) 的标准形唯一. 4)秩为 r 的 矩阵的 r 个行列式因子满足:
4
2012-9-22§8.3 不变因子
数学与计算科学学院
练习:求 A ( ) 的不变因子
1 A 0 0 0 0 0 0 0 0 an 0 a n 1 a2 1 a1
0 0
2)若 n n 的 矩阵 A ( )可逆,则 A ( ) 的不变 因子全部为1, A ( ) 的标准形为单位矩阵 E ,即
A ( ) 与 E 等价.
证;若 A ( ) 可逆,则 A ( ) d , d 为一非零常数.
A ( ) 的第n个行列式因子 D n 1.
所以,A ( ) 的标准形为 E .
注:A ( ) 可逆
A ( )与 E 等价.
3)(定理6) A ( ) 可逆 A ( ) 可表成一些初等 矩阵的乘积.
2012-9-22§8.3 不变因子
数学与计算科学学院
证:A ( ) 可逆 A ( ) 与 E 等价
存在初等矩阵 P1 , , Ps , Q 1 , Q t , 使
g ( ) 分别是 A ( ) 与 B ( ) 的 k级行列式因子.
下证 f g ,分三种情形:
2012-9-22§8.3 不变因子
数学与计算科学学院
① A ( ) B ( ). 此时 B ( ) 的每个 k 级子式或
i , j
者等于 A ( ) 的某个 k 级子式, 或者与 A ( ) 的某个
2012-9-22§8.3 不变因子
数学与计算科学学院
2. 有关结论
1) (定理3)等价矩阵具有相同的秩与相同的各级
行列式因子.
(即初等变换不改变 -矩阵的秩与行列式因子) 证:只需证, -矩阵经过一次初等变换,秩与行 列式因子是不变的. 设 A ( ) 经过一次初等变换变成 B ( ) ,f ( ) 与
的主对角线上的非零元素 d 1 ( ), d 2 ( ), , d r ( ) 称为 A ( ) 的不变因子.
2012-9-22§8.3 不变因子
数学与计算科学学院
2. 有关结论
B 1)(定理5) 矩阵 A ( ) 、 ( ) 等价 A ( ) 、 ( )有相同的不变因子. B A ( ) 、 ( )有相同的行列因子. B
2012-9-22§8.3 不变因子
数学与计算科学学院
例、求 矩阵的不变因子
2 0 A 0 0 0
A
1
2 1 0 0
2
2 1 0 0 0 2 1 0 0 0 2 1 0 0 0 2
0 2 1 , 0
2
0
3
0
1
2
,
2
0
0
1
2
1 .
数学与计算科学学院
2012-9-22§8.3 不变因子
D2 1 .
2 0 A( ) 0 0 0
第八章 λ─矩阵
§1 λ-矩阵 §2 λ-矩阵的 标准形 §3 不变因子 §4 矩阵相似的条件 §5 矩阵相似的条件 §6 若当(Jordan)标准形 的理论推导 小结与习题
2012-9-22 数学与计算科学学院
§8.3 不变因子
一、行列式因子 二、不变因子
2012-9-22§8.3 不变因子
数学与计算科学学院
证: A ( ) 与 D ( ) 等价, A ( ) 与 D ( ) 有相的秩与行列式因子.
在 D ( ) 中,若一个 k 级子式包含的行、列指标不
完全相同,则这个 k 级子式为零. 所以只需考虑由 i1 , i 2 , i k 行与 i1 , i 2 , i k 列组成的 k 级子式 (1 i1 , i 2 , i k r ), 即 d i ( ) d i ( ).
1 k
而这种 k 级子式的最大公因式为 d 1 ( ) d 2 ( ) d k ( ). 所以,A ( ) 的 k 级行列式因子
D k ( ) d 1 ( ) d 2 ( ) d k ( ), k 1, 2, r .
2012-9-22§8.3 不变因子
又
D1 D 2 , D 2 D 3
D1 D 2 1.
而
D4 A 2 .
4
A ( ) 的不变因子为
d 1 d 2 d 3 1, d 4 2 .
k 级子式反号. 因此, f ( ) 是 B ( ) 的 k 级子式的
公因式, 从而
i c
f ( ) g ( ) .
② A ( ) B ( ). 此时 B ( ) 的每个 k 级子式或
者等于 A ( ) 的某个 k 级子式,或者等于 A ( ) 的某个
的和不包含 j 行的那些 k 级子式与 A ( ) 中对应的 k 级子式相等; B ( ) 中包含 i 行但不包含 j 行的 k 级 子式,按 i 行分成 A ( ) 的一个 k 级子式与另一个 k 级子式的 ( ) 倍的和, 即为 A ( ) 的两个 k 级子式 的组合, 因此 f ( ) 是 B ( ) 的 k 级子式的公因式, 从而
f ( ) g ( ) .
f ( ) g ( ).
同理可得, g ( ) f ( ) .
2012-9-22§8.3 不变因子